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Abstract. We show that for a tangle T with −∂0T ∼= ∂1T the Hochschild homology of the

tangle Floer homology C̃T (T ) is the link Floer homology of the closure T ′ = T/(−∂0T ∼
∂1T ) of the tangle, linked with the tangle axis.

1. introduction

Tangle Floer homology is an invariant of tangles in 3-manifolds with boundary S2 or
S2

∐
S2, or in closed 3-manifolds, which takes the form of a differential graded module,

bimodule, or a chain complex, respectively [5]. It behaves well under gluing and recovers
knot Floer homology. Before we state the main results, we recall some definitions from [5]
and make some new ones.

Definition 1.1. An n-marked sphere S is a sphere S2 with n oriented points t1, . . . , tn on
its equator S1 ⊂ S2 numbered respecting the orientation of S1.

Definition 1.2. A marked (m,n)-tangle T in an oriented 3-manifold Y with two bound-
ary components ∂0Y ∼= S2 and ∂1Y ∼= S2 is a properly embedded 1–manifold T with
(−∂0Y,−(∂0Y ∩∂T )) identified with anm-marked sphere and (∂1Y, ∂1Y ∩∂T ) identified with
an n-marked sphere (via orientation-preserving diffeomorphisms). We denote −(∂0Y ∩ ∂T )
and ∂1Y ∩ ∂T along with the ordering information by −∂0T and ∂1T .

Definition 1.3. A strongly marked (m,n)-tangle (Y, T , γ) is a marked (m,n)-tangle (Y, T ),
along with a framed arc γ connecting ∂0Y to ∂1Y in the complement of T such that γ and
its framing λγ (viewed as a push off of γ) have ends on the equators of the two marked
spheres, and we see −∂0T ,−∂0γ,−∂0λγ and ∂1T , ∂1γ, ∂1λγ in this order along each equator.
See Figure 1.

As a special case, an (m,n)-tangle in R2 × I is a cobordism (contained in [1,∞)×R× I)
from {1, . . . , m} × {0} × {0} to {1, . . . , n} × {0} × {1}. A tangle in R2 × I can be thought
of as a strongly marked tangle, by compactifying R2 × I to S2 × I, taking the images of
R × {0} × {0} and R × {0} × {1} to be the equators of the marked spheres, and setting
(γ, λγ) := ({(−1, 0)} × I, {(0, 0)} × I).

We turn our attention to strongly marked tangles (Y, T , γ) with −∂0T ∼= ∂1T .

Definition 1.4. A strongly marked tangle (Y, T , γ) is called closable if −∂0T ∼= ∂1T .
Given a closable tangle (Y, T , γ), we can “glue it to itself” to form its closure (T ′, Y ′, γ′)
by identifying the two boundary components of Y , −∂0Y and ∂1Y , with the same marked
sphere. The surgered closure of (Y, T , γ) is the pair (T0, Y0(γ)), where the link T0 is the union
of T ′ and the negatively oriented meridian µγ of γ in the 0-surgery Y0(γ) of Y ′ along the
framed knot γ′. We call µγ the tangle axis of the tangle T . See Figure 1.
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Figure 1. Left: A strongly marked tangle (T, Y, γ). Right: The surgered
closure (T0, Y0(γ)) of the tangle (T, Y, γ).

When Y is S2 × I and (γ, λγ) is a product as above, then Y0(γ) ∼= S3 and T0 is the link
formed by the closure of T ⊂ R2 × I ⊂ S3 and an unknot that is the boundary of a disk
containing −∂0T ∼ ∂1T , see Figure 2. For example, for a braid B ∈ R2 × I, the tangle axis
is precisely the braid axis.

T

. . .

. . .

. . .

. . .

T

Figure 2. Left: A tangle T ⊂ R2 × I. Right: The corresponding link T0 ⊂ S3.

For a tangle (Y, T , γ), the tangle Floer homology C̃T (Y, T , γ) is a left-right DA bimod-
ule over (A(−∂0T ),A(∂1T )), where A(−∂0T ) and A(∂1T ) are differential graded algebras
associated to −∂0T and ∂1T , respectively, see [5]. For a closable tangle, these two algebras
are the same, and one can take the Hochschild homology of the bimodule, see [1, Section
2.3.5]. We show that this Hochschild homology is the knot Floer homology of the surgered
closure of the tangle.

Theorem 1.1. Let (Y, T , γ) be a closable strongly marked tangle. Then

HH (C̃T (Y, T , γ)) ∼= H̃FK (T0, Y0(γ)).

Note that so far gradings for tangle Floer homology have only been defined when the
underlying manifold is S2 × I or B3, so Theorem 1.1 only claims an ungraded isomorphism.

For the special case of a tangle T in R2 × I, we state a graded version. In this case,

HH (C̃T (T )) inherits the Maslov and Alexander gradings M and A from C̃T (T ), and also
carries a strands grading S, see Section 3. Let l be the number of components of T0, and

label the components L0 = µγ, L1, . . . , Ll−1. The link Floer homology of T0, H̃FL(T0), is
multigraded, with Maslov grading M in Z+ l−1

2
and Alexander multigrading (A0, . . . , Al−1)
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in (1
2
Z)l, with each 1

2
Z factor corresponding to a component of the link [4]. Let H̃FL(T0, 0)

be H̃FL(T0) with multigrading collapsed to a trigrading by M , A0, and A′ := A1+ · · ·Al−1 =

A− A0 (here A = A0 + · · ·+ Al−1 is the Alexander grading on H̃FK (T0)).

Theorem 1.2. Let T be a tangle in R2 × I with −∂0T ∼= ∂1T , and let T0 be its surgered
closure. Then there is an isomorphism

HH (C̃T (T )) ∼= H̃FL(T0, 0)

which respects the trigrading in the following sense. If the isomorphism maps a homogeneous

element x ∈ HH (C̃T (T )) to an element y ∈ H̃FL(T0), then y is homogeneous and

M(y) = M(x) + S(x)− a− 1

A′(y) = A(x)− S(x) +
l

2
+ n− a− 1

A0(y) = S(x)−
n+ 1

2
,

where n = |∂1T |, and a is the number of positively oriented points in ∂1T .

Remark 1.3. The authors are in the process of upgrading the invariants in [5] to have
Alexander multigradings, corresponding to different components of the tangle. The argu-
ments in this paper automatically imply that the isomorphism from Theorem 1.2 respects
the multigrading, with appropriate additive constants.

Acknowledgments. The first author thanks Robert Lipshitz for a helpful conversation and
for the espresso.

2. Algebra review

Let A be a unital differential graded algebra over a ground ring k, where k is a direct sum
of copies of F2 = Z/2Z. The unit gives a preferred map ι : k → A. We assume that A is
augmented, i.e. there is a map ǫ : A → k such that ǫ(1) = 1, ǫ(ab) = ǫ(a)ǫ(b), and ǫ(∂a) = 0.
The augmentation ideal ker ǫ is denoted by A+.

A type DA bimodule over (A,A) is a graded k-bimoduleM , together with degree 0, k-linear
maps

δ11+j : M ⊗A[1]⊗j → A⊗M [1],

satisfying a certain compatibility condition, see [1, Definition 2.2.42].

A DA bimodule is bounded if the structure maps behave in a certain nice way, see [1,
Definition 2.2.45]. We will not recall the complete definition of boundedness here, but we
point out that the structures arising from nice Heegaard diagrams are bounded, and moreover
the only nonzero structure maps in that case are δ11 and δ12 . We will call a DA bimodule nice
if it is bounded and δ1i = 0 for all i > 2.

Given a bounded type DA bimodule N over (A,A), one can define a chain complex (N◦, ∂̃)
whose homology agrees with the Hochschild homology of the A∞-bimodule A ⊠ N corre-
sponding to N , see [1, Section 2.3.5]. The vector space N◦, called the the cyclicization of N ,
is the quotient N/[N,k], where [N,k] is the submodule of N generated by elements xk−kx,

for x ∈ N and k ∈ k. The differential ∂̃ is easy to describe when N is nice. We recall the
construction in this special case below.
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Define a cyclic rotation map R : (A⊗N)◦ → (N ⊗A+)
◦ by

R(a⊗ x) = x⊗ [(id−ι ◦ ǫ)(a)]

The map ǫ ⊗ id : A⊗ N → k ⊗ N = N descends to a map (A ⊗ N)◦ → N◦, which we will
also denote ǫ. We denote the cyclicizations of δ11 : N → A⊗ N and δ12 : N ⊗ A+ → A ⊗N

by δ11 and δ12 as well. Finally, ∂̃ is defined as

∂̃ = ǫ ◦ δ11 + ǫ ◦ δ12 ◦R ◦ δ11.

Given a tangle (Y, T , γ), one can represent it by a multipointed bordered Heegaard diagram
H with two boundary components H0 and H1, see [5, Section 8.2]. To −H0 and H1 one

associates differential algebras A(−H0) and A(H1), and to H a DA bimodule C̃T (H) over
A(−H0) and A(H1). The structure maps on the bimodule are obtained by counting certain
holomorphic curves in H × I2. See [5, Sections 7.2 and 10.3] For a tangle in R2 × I, the
bimodule can also be defined in terms of sequences of strand diagrams corresponding to a
decomposition of the tangle into elementary pieces, see [5, Sections 3 and 5.2]. We do not
recall the two constructions here, but refer the reader to [5].

3. Proof via special diagrams

We prove both theorems via nice diagrams.

Proof of Theorem 1.1. Let (Y, T , γ) be a closable strongly marked (n, n)-tangle, and let H =
(Σ,α,β,X,O, z) be a nice bordered Heegaard diagram for (Y, T , γ), which exists by [5,
Proposition 12.1]. Glue H to itself by identifying −∂0H and ∂1H, and call the result H′

(note this is not a valid Heegaard diagram). Recall that z = {z1, z2} is a set of two arcs in
Σ\ (α∪β) with boundary on ∂Σ\α, oriented from the left to the right boundary, and let z′1
and z′2 be the resulting closed curves inH′. Surger H′ along z′1 and z′2, and place 4 basepoints
in the 4 resulting regions: X1, O1, X2, and O2 in the region whose boundary contains a0n+1,a

0
1,

a02n+2, and a0n+2, respectively. The result is a diagram H◦ = (Σ◦,α◦,β◦,X◦,O◦), see Figure
3. Now

The reader can verify that H◦ represents (T0, Y0(γ)). Observe that the generators of H′, or
equivalently the generators of H◦, correspond to generators x of H with ō0(x) = o1(x).

Denote the algebra A(∂1H) ∼= A(−∂0H) by A, and its ring of idempotents by k. Recall
that A has a basis over F2 consisting of strand diagrams [5, Section 7]. We define the
augmentation map ǫ : A → k on this basis explicitly: it is the identity on generators in

k ⊂ A and zero on generators a /∈ k ⊂ A. The structure maps on the DA bimodule C̃T (H)
count the following types of domains (see [5, Sections 10 and 12]):

(1) empty provincial rectangles and bigons. These contribute to δ11, with image in k ⊗

C̃T (H) ⊂ A⊗ C̃T (H).
(2) empty rectangles that intersect ∂0H (the left boundary of H). These contribute to

δ11, with image in A+ ⊗ C̃T (H) ⊂ A⊗ C̃T (H).
(3) sets of empty rectangles, each of which intersects ∂1H (the right boundary of H).

These comprise δ12, whose image is entirely contained in k⊗ C̃T (H).

The differential on the Hochschild complex (C̃T (H)◦, ∂̃) then counts the following domains
onH. The map ǫ◦δ11 counts provincial rectangles and bigons, and then forgets the idempotent
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Figure 3. Left: A Heegaard diagram H for a closable tangle (Y, T , γ). The
left edge is ∂0H and the right edge is ∂1H. Middle: The diagram H′ obtained
by self-gluing H. Right: The Heegaard diagram H◦ obtained by surgery on
the two green curves on H′.

component of the output. These are exactly the empty rectangles and bigons in H◦ that
do not cross −∂0H = ∂1H. The map ǫ ◦ δ12 ◦ R ◦ δ11 counts rectangles as follows. Since
the rotation map R is zero on elements e ⊗ x with e ∈ k, only the part of δ11 that counts
domains of Type (2) contributes. Thus, the image of R ◦ δ11 is generated by elements of form
y ⊗ a, where a ∈ A+ is a generator with only one moving strand. Thus, the part of δ12 that
contributes to ǫ ◦ δ12 ◦R ◦ δ11 counts individual empty rectangles that intersect ∂1H. To sum
up, ǫ ◦ δ12 ◦ R ◦ δ11 counts pairs of empty rectangles, one with an edge on ∂0H and one with
an edge on ∂1H, which glue up to a rectangle after the identification −∂0H ∼ ∂1H. These
are exactly the empty rectangles in H◦ that cross −∂0H ∼ ∂1H.

Thus, (C̃T (H)◦, ∂̃) ∼= C̃FK (H◦). �

Proof of Theorem 1.2. We already discussed the isomorphism in the proof of Theorem 1.1.
It remains to identify the gradings.

LetH be a Heegaard diagram for T obtained by plumbing annular bordered grid diagrams,
as in [5, Section 4]. By gluing on a diagram for the straight strands ∂1T × I if necessary,
we may assume that H has even genus, which we denote by 2g (this makes for an easier
gradings argument). See the top diagram in Figure 4. We modify H to a diagram H◦ for
T0, as in the proof of Theorem 1.1. See the bottom diagram in Figure 4.

Call the part of H◦ away from the four regions resulting from the surgery on z′i the nice
part of H◦ (this is the part that is the plumbing of grid diagrams). As in Figure 3, we can
draw H◦ on the plane, as the union of two 2g-punctured disks with certain identifications
of the boundary, see Figure 7. As seen on Figure 7, we refer to the top/bottom disk as the
top/bottom half of H◦, respectively.

Denote the set of generators of H by S(H), and the subset of generators with i occupied
α-arcs on the right by Si(H). Denote the subsets of S(H) and Si(H) that correspond to
generators of H◦ by S(H)◦ and Si(H)◦, and the corresponding sets of generators of H◦

by S(H◦) and Si(H
◦), respectively. For a generator x ∈ S(H), denote the corresponding

generator in S(H◦) by x◦. Define a strands grading on generators by S(x◦

i ) = i for x◦

i ∈
Si(H

◦).



6 INA PETKOVA AND VERA VÉRTESI
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Figure 4. Top: A diagram for T in S2 × I. There are two grids on each ver-
tical annulus, Xs and Os omitted for simplicity. Bottom: The corresponding
diagram for T0 in S3, along with T0 in bold black.

Since H◦ is a diagram for S3, any two generators are connected by a domain. Let x◦,y◦ ∈
S(H◦), and let B ∈ π2(x

◦,y◦). By adding regions of Σ◦\α◦, we can assume that the domain
of B is contained entirely in the top half of H◦ and has zero multiplicity in the lowest region
(the one containing O1) of the top half of H◦. The oriented boundary of B splits into two
pieces, ∂αB ⊂ α◦ and ∂βB ⊂ β◦. The piece ∂αB is the union of arcs in α◦ such that
∂(∂αB) = y◦ − x◦. Let α1, . . . , αn+1 be the α-circles in H◦ resulting from the gluing of the
α-arcs in H, labelled so that a0i ∈ αi, and let xi = x◦ ∩ αi, yi = y◦ ∩ αi. Below, we turn
our attention to the oriented arcs ci := ∂αB ∩ αi, and to each ci we associate a number
ti ∈ {−1, 0, 1}. Since B is contained in the top half of H◦, there are three possibilities for
each ci:

• ci is contained in the rightmost/leftmost grid if and only if xi and yi are (in this case,
define ti = 0);

• ci covers both the rightmost and the leftmost grid, and is oriented to the right, as
seen on Figure 5, if and only if xi is in the rightmost grid and yi is in the leftmost
grid (in this case, define ti = 1);
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• ci covers both the rightmost and the leftmost grid, and is oriented to the left, as seen
on Figure 5, if and only if xi is in the leftmost grid and yi is in the rightmost grid (in
this case, define ti = −1).

For 1 ≤ i ≤ n, let Ri be the region of Σ◦ \ (α◦ ∪ β◦) containing the image of the interval
(a0i , a

0
i+1) in Σ◦, and let Rn+1 be the topmost region of the top half of H◦. See Figure 5.

c1

c2

cn

cn+1

R1

Rn

Rn+1
X1

O1

..
.

Figure 5. The top half of H◦, along with the arcs ci in thick red (cn+1 is just a point).

It is not hard to see that the multiplicity of B at each Ri is t1 + · · · + ti, and that the
multiplicity of B at Rn+1 is zero if and only if the generators x and y of H corresponding
to x◦ and y◦ occupy the same number of arcs on the right.

Suppose x◦,y◦ ∈ Si(H
◦). By the above, x◦ and y◦ are connected by a domain B contained

entirely in the nice part of H◦, i.e. nX1
(B) = nX2

(B) = nO1
(B) = nO2

(B) = 0, so A0(x) =
A0(y). Then B is the result of self-gluing a domain B′ in H. Note that the left and right
multiplicities of B′ match up, i.e. if p0 ∈ ∂0H and p1 ∈ ∂1H are points that are identified in
H◦, then m(∂0B′, p0) = −m(∂1B′, p1). Recall the definitions of the sets Si

O, S
i
X, S

i
x
, Si

y
and

of the gradings of domains from [5, Section 11.2]. For each of the four types of sets, p0 ∈ S̄0
•

if and only if p1 ∈ S1
•
. Further, e(B) = e(B′), and np(B) = np(B

′) for any point p. Then

M(B′) =− e(B′)− nx(B
′)− ny(B

′) +
1

2
m([∂∂B′], S̄0

x
+ S̄0

y
+ S1

x
+ S1

y
)

−m([∂∂B′], S̄0
O + S1

O) + 2nO(B
′) = −e(B)− nx(B)− ny(B) + 2nO(B) = M(B)

A(B′) =
1

2
m([∂∂B′], S̄0

X − S̄0
O + S1

X − S1
O) + nO(B

′)− nX(B
′) = nO(B)− nX(B) = A(B).

Thus, the relative (M,A) gradings are the same in C̃T (H) as in ĈFK (H◦), and the relative
A0 grading is zero, i.e.

M(x◦)−M(y◦) = M(x)−M(y)

A(x◦)−A(y◦) = A(x)− A(y)

A0(x
◦)− A0(y

◦) = 0.

Next, we compare the gradings of generators with distinct numbers of occupied arcs on
the right. The plumbing of 4g grid diagrams for H corresponds to a sequence of 4g shadows
P1, . . . ,P4g, see [5, Sections 3 and 4] and Figure 6. Suppose Si(H

◦) 6= ∅ and Si+j(H
◦) 6= ∅

for some i, j, and let xi ∈ Si(H)◦,xi+j ∈ Si+j(H)◦. The generator xi+j has j more strands
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than xi in each even-indexed shadow P2t, so in particular pick one strand in each P2t, and
let p2t−1 and p2t be the endpoints of the strand in ∂0P2t and ∂1P2t, respectively. Replacing
these 2g strands with the strands from p2t to p2t+1 produces a generator xi+j−1 ∈ Si+j−1(H)◦.
Repeating this procedure shows that Sk(H)◦ 6= ∅ for every i+ 1 ≤ k ≤ i+ j − 1 as well.

Then it suffices to choose two generators xi ∈ Si(H)◦ and xi+1 ∈ Si+1(H)◦ for each i such
that Si(H)◦ 6= ∅ and Si+1(H)◦ 6= ∅, and understand the relative (M,A,A0) grading for the
corresponding generators x◦

i ,x
◦

i+1. Let xi+1 ∈ Si+1(H)◦ and let p0, . . . , p4g ≃ p0 be as above.
Modify xi+1 as follows. First exchange each pt with the topmost point in ∂0Pt (along with
any associated strands), so that now p0, . . . , p4g ≃ p0 are the topmost points of the shadows.
Then, if the strands on P2t ending at p2t−1 and p2t are distinct, resolve their crossing so that
now there is a strand connecting p2t−1 and p2t. Let xi be the generator obtained from xi+1

by replacing these strands with the strands from p2t to p2t+1, as above. Now xi ∈ Si(H)◦

and xi+1 ∈ Si+1(H)◦ agree almost everywhere, except that xi+1 contains the strand at
the very top of each even-indexed shadow, and xi contains the strand at the very top of
each odd-indexed shadow. The Maslov and Alexander gradings on strand generators are
defined by counting various intersections of strands, see [5, Section 3.4], and one sees that
M(xi+1) = M(xi) and A(xi+1) = A(xi).

Switching back to Heegaard diagrams, xi and xi+1 differing in the above way is equivalent
to saying that the region Rn+1 connects x◦

i+1 to x◦

i . Since e(Rn+1) = 1 − g, nx
◦

i+1
(Rn+1) =

g/2 = nx
◦

i
(Rn+1), nX1

(Rn+1) = 1 and np(Rn+1) = 0 for any other p ∈ X ∪O, we see that

M(x◦

i+1)−M(x◦

i ) = 1

A(x◦

i+1)−A(x◦

i ) = 0

A0(x
◦

i+1)− A0(x
◦

i ) = 1.

So for i < j and arbitrary x◦

i ∈ Si(H
◦), x◦

j ∈ Sj(H
◦), we have

M(x◦

j )−M(x◦

i ) = M(xj)−M(xi) + j − i(1)

A(x◦

j)− A(x◦

i ) = A(xj)−A(xi)(2)

A0(x
◦

j )− A0(x
◦

i ) = j − i.(3)

The argument that the isomorphism respects the absolute gradings is analogous to the
one from [5, Section 6]. With the 4g grids arranged as in Figure 6, indexed G1, . . . , G4g

from left to right, let x◦

O be the generator formed by the bottom-left corner xj of each Oj

in G4i and G4i+1, the top-right corner xj of each Oj in G4i+2 and G4i+3, the very top-right
corner x′

4i+1 of each grid G4i+1, and the bottom-left corner x′

4i+3 of each grid G4i+3. Define
x◦

X analogously, by replacing Oj with Xj in the above definition.

Denote the β circle containing each xi or x′

i by βi or β ′

i, respectively. Form a set of
circles γ by performing handleslides (which are allowed to cross X but not O) of all βi and
perturbations of all β ′

i, as in Figure 7. We look at the holomorphic triangle map associated
to (Σ,α,β,γ,O), see [2, 3]. Let k be the number of Os in H (so the number of Os in
H◦ is k + 2). Observe that (Σ,β,γ,O) is a diagram for (#k+2S1 × S2), and let Θ be the
top-dimensional generator. Let y be the generator of (Σ,α,γ,O) nearest to x◦

O. There is a
holomorphic triangle that maps x◦

O ⊗Θ to y, so M(x◦

O) = M(y).

Observe that (Σ,α,γ,O) is a diagram for S3 with k+2 basepoints, so, as a group graded

by the Maslov grading, we have ĤF (Σ,α,γ,O) ∼= H∗+k+1(T
k+1). The diagram has 2k+1
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...

...

Figure 6. Top: A Heegaard diagram for T coming from a plumbing of grids
and the “bottom-most” generator xO. Bottom: The corresponding sequence
of shadows for T , and the strands diagram for xO.

generators, so they are a basis for the homology. Let y′ be the generator obtained from y

by replacing the intersection of γ′

4i+1 and the topmost α of G4i+1 with the intersection of
γ′

4i+1 and the bottommost α of G4i+2, and the intersection of γ′

4i+3 and the bottommost α of
G4i+3 with the intersection of γ′

4i+3 and the topmost α of G4i+4. There are k disjoint bigons
going into y′, so M(y′) ≤ −k. The shaded 4g-gon on Figure 7 from y′ to y shows that
M(y′) − M(y) = 1. Thus, M(y) = −k − 1, so M(x◦

O) = −k − 1. By Equation 1, for an
arbitrary generator x◦

i we have

M(x◦

i ) = M(xi) + i− a− 1.

Similarly, for the z-normalized (or, X-normalized, to match the notation in this paper)
grading N , we have N(x◦

X) = −k − 1. Since N = M − 2A− (k + 2− l), we get

A(x◦

X) =
1

2
(M(x◦

X)−N(x◦

X)− (k + 2− l)) =
1

2
(M(x◦

X) + l − 1).

On the other hand, we can compute M(xO) and A(xO) using the definition from [5,
Section 3.4]. The computation is analogous to the one from [5, Section 6], and we see that
M(xO) = −k, N(xX) = −k, A(xX) =

1
2
M(xX). Since M(x◦

X) = M(xX) + n− 2a− 1, we get

A(x◦

X) = A(xX) +
1

2
(n− 2a+ l − 2).

The Alexander multigrading on a generator x◦ can be described by the relative Spinc

structure s(x◦) ∈ Spinc(S3, L), see [4]. In the case when the link is in S3, one can think of Ai

by looking at the projection of a Seifert surface for Li onto H◦. Specifically, for a generator
x◦

i ∈ Si(H
◦), we can compute its A0 grading in the following way. Connect X1 to O1 and

X2 to O2 away from β◦, and O1 to X2 and O2 to X1 away from α◦ to obtain a curve C on
H◦ representing L0, so that C is negative the boundary of a disk D that is a neighborhood
of the rightmost grid (in general C may be immersed but not necessarily embedded). Then

A0(x
◦

i ) =
1

2
(e(D) + 2nx

◦

i
(D)− nX(D)− nO(D)) = i−

n + 1

2
.
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...1 2 2g2g-1

...1 2 2g2g-1

1

1

2

2

Figure 7. The Heegaard triple (Σ,α,β,γ,O), with the original X markings
left in. The black dots form the generator xO, the purple squares form y, the
white squares from y′, and the cyan triangles form Θ.

It follows that

A′(x◦

i ) = A(xi)− S(xi) +
l

2
+ n− a− 1

This completes the identification of gradings. �
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