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Thermodynamics

E
T
S
P
V

internal energy
temperature
entropy
pressure
volume

First Law of Thermodynamics

dE = δQ − δW
(Q = processed heat, W = work on its surroundings) for a
reversible process δQ = TdS , δW = PdV

dE = TdS − PdV

Since E , S and V are thermodynamical functions of a state, the
above is true non-reversible processes too.
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Thermodynamics – geometric setup

Define the 1–form:

α = dE − TdS + PdV

States of the gas are on integrals of kerα.

How many independent variables are there?
= What is the maximal dimension of an integral submanifold?

α ∧ (dα)2 = dE ∧ dT ∧ dS ∧ dP ∧ dV

(dα = −dT ∧ dS + dP ∧ dV 6= 0)

⇒ Max dimensional integral manifolds are 2 dimensional.

Deduce state equations for . . .
I . . . ideal gases;
I . . . van der Waals gases.
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Knots – definition

Naïvly a knot is:

Knots
a smooth (differentiable) embedding of a

Standard contact structure

Darboux’s theorem
Every contact manifold locally looks like (R2n+1, ξst).
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Contact structures – definition
Contact structure
on a (2n + 1)–manifold M is a “maximally nonintegrable”
hyperplane distribution ξ in the tangent space of M.

Locally: ξ = kerα (α ∈ Ω1(M))
“maximally nonintegrable” ⇔ α ∧ (dα)n 6= 0

Standard contact structure
On R2n+1 = {(x1, . . . , xn, y1, . . . , yn, z)} ξst = kerα

αst = dz +
n∑

i=0

xidyi

α is contact: (dα =
∑n

i=0 dxi ∧ dyi )

α ∧ (dα)n = 2ndz ∧ dx1 ∧ dy1 ∧ · · · ∧ ∧dxn ∧ dyn 6= 0

Darboux’s theorem
Every contact manifold locally looks like (R2n+1, ξst).
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Contact structures – origin

I thermodynamics;

I odd dimensional counterparts of symplectic manifolds;

I classical mechanics, contact element (Sophus Lie, Elie
Cartan, Darboux);

I Hamiltonian dynamics;

I geometric optics, wave propagation (Huygens, Hamilton,
Jacobi);

I Natural boundaries of symplectic manifolds.
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Contact structures – applications

I (Eliashberg) New proof for Cerf’s Theorem:
Diff(S3)/Diff(D4) = 0;

I (Akbulut–Gompf) Topological description of Stein domains;

I (Ozsváth–Szabó) HF detects the genus of a knot;

I (Ghiggini, Juhász, Ni) HFK detects fibered knots;

I (Kronheimer–Mrowka) First step to the Poincaré conjecture:
Every nontrivial knot in S3 has property P;

I (Kronheimer–Mrowka) Knots are determined by their
complement;

I (Kronheimer–Mrowka, Ozsváth–Szabó) The unknot, trefoil
and the figure eight knot are determined by their surgery.
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Contact structures on 3–manifolds
Contact structure (n=1)
on a 3–manifold Y is a “maximally nonintegrable” plane
distribution ξ in the tangent space of Y .
“maximally nonintegrable” ⇔ it rotates (positively) along any
curve tangent to ξ

Standard contact structure on R3

ξ = ker(dz + xdy)
= 〈 ∂

∂x , x
∂
∂z − ∂

∂y 〉 z  

x

y

Darboux’s theorem
Contact structures locally look like (R3, ξst).
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Examples
ξsym = dz + r 2dϑ = 〈 ∂

∂r , r
2 ∂
∂z − ∂

∂ϑ
〉

ξOT = ker(cos rdz+r sin rdϑ) = 〈 ∂
∂r , r sin r ∂

∂z−cos r ∂
∂ϑ
〉
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Equivalence of contact structures
Contact isotopy
Two contact structures are isotopic if one can be deformed to the
other with an isotopy of the underlying space. ∃Ψt : Y → Y ,
with Ψ0 = id and (Ψ1)∗(ξ0) = ξ1

ξsym and ξst are isotopic:
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Classification of contact structures

Do all 3–manifolds admit contact structures?

Yes (Martinet)

several proof using different technics:
I (Martinet, 1971) surgery along transverse knots;

I (Thurston–Winkelnkemper, 1975) open books;

I (Gonzalo, 1978) branched cover;

I (Ding–Geiges–Stipsicz) surgery along Legendrian knots.

How many contact structures does a 3–manifold admit?

∞
Lutz twist: Once a contact structure is found we can modify it in
the neighborhood of an embedded torus.
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Classification of contact structures
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Tight vs. overtwisted contact structures
overtwisted disc
D ↪→ Y such that D is tangent
to ξ

along ∂D

ξOT = ker(cos rdz + r sin rdϑ)
= 〈 ∂∂r , r sin r

∂
∂z − cos r ∂

∂ϑ 〉

overtwisted ( ⊇ overtwisted disc)
ξ

11

-- tight (not overtwisted)

Theorem (Eliashberg):
{overtwisted ctct structures}/isotopy↔ {2–plane fields}/homotopy

⇒ tight contact structures are “interesting”
geometric meaning: boundaries of complex/symplectic
4–manifolds
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Classification of tight contact structures

Do all 3–manifolds admit tight contact structures?

I (Eliashberg) S3 admits a unique tight contact structure: ξst;

but:

I (Etnyre–Honda)−Σ(2, 3, 5), the Poincaré homology sphere
with reverse orientation does not admit tight contact
structure;

I (Lisca–Stipsicz) there exist ∞ many 3–manifold with no
tight contact structure.

How many tight contact structures does a 3–manifold admit?

Characterization done on:
I (Giroux, Honda) Lens spaces;
I (Honda) circle bundles over surfaces;
I (Ghiggini, Ghiggini–Lisca–Stipsicz, Wu, Massot) some

Seifert fibered 3–manifolds.
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Methods for classification

How can we prove tightness?
I fillability;
I Legendrian knots.

How can we distinguish contact structures?
I homotopical data;
I contact invariant from HF-homologies (Seifert fibered

3–manifolds);
I embedded surfaces;

if we know the contact structure on the surface, then it is
also known in a neighborhood of the surface

How the contact structure on a surface can be encoded?
I characteristic foliation;
I on convex surfaces a multicurve is enough.

I embedded curves.
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Knots in contact 3–manifolds
Legendrian knot
is a knot L whose tangents lie in the contact planes:

TL ∈ ξ or α(TL) = 0

We have already seen Legendrian knots:
I an oriented plane field is a contact structure, if it “rotates”

along Legendrian foliations..
I the boundary of an OT disc is Legendrian.

ξ is tangent to D along ∂D ⇔ ξ does not “twist” as we move
along ∂D
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Classical Invariants

Thurston-Bennequin number

tb(L) = lk(L, L′)

where L′ is a push off L′ of L in the
transverse direction;

If Σ a Seifert surface of L
(i.e. ∂Σ = L), then:

tbΣ(L) = lk(L, L′) = #(L ∩ Σ)

Note:
D is OT ⇔ tbD = 0

Jump back to the proof

Rotation number
rot(L) is a relative Euler number of ξ on Σ w.r.t. TL
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Knots in (S3, ξst)

Recall:
ξ = ker(dz + xdy)

TK ⊂ ξ ⇐⇒ x = − dz
dy 6=∞

Claim:
Any knot can be put in Legendrian position.

Proof:
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Legendrian isotopy

Legendrian isotopy
Isotopy through Legendrian knots.

Legendrian Reidemeister moves
Legendrian isotopic knots are related by the following moves:
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Are they Legendrian isotopic?
Legendrian unknots

A B C D

Which ones are Legendrian isotopic?
Remember:

A ∼= B
√

and C ∼= D:
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Classical invariants in (S3, ξst)

Thurston-Bennequin invariant:
tb(L) = (#( )−#( ))−#( )

rotation number:
rot(L) = #( )−#( ))

for the Legendrian unknots:

tb(A) = −1

rot(A) = 0

tb(C) = −2 tb(D) = −2tb(B) = −1

rot(B) = 0 rot(C) = −2 rot(D) = −2
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The two definition agree in (S3, ξst = dz + xdy)

The “new definition”
tb(L) = (#( )−#( ))−#( )

=3-0-2=1

The “old definition”

tbΣ(L) = lk(L, L′) = #(L ∩ Σ)

where L′ is a push off in the transverse
direction and Σ is a Seifert surface of L.
∂
∂z is a transverse direction:
tb = 1 + 1− 1 = 1

The two definitions agree in general.
√



Knots and contact
structures

Vera Vértesi

Contact structures

smooth knots

Knots in contact
3–manifolds
invariants
standard contact
structure
classification
Legendrian simple
knots
. . .

Appendix

The two definition agree in (S3, ξst = dz + xdy)

The “new definition”
tb(L) = (#( )−#( ))−#( )

=3-0-2=1

The “old definition”

tbΣ(L) = lk(L, L′) = #(L ∩ Σ)

where L′ is a push off in the transverse
direction and Σ is a Seifert surface of L.

∂
∂z is a transverse direction:
tb = 1 + 1− 1 = 1

The two definitions agree in general.
√



Knots and contact
structures

Vera Vértesi

Contact structures

smooth knots

Knots in contact
3–manifolds
invariants
standard contact
structure
classification
Legendrian simple
knots
. . .

Appendix

The two definition agree in (S3, ξst = dz + xdy)

The “new definition”
tb(L) = (#( )−#( ))−#( )

=3-0-2=1

The “old definition”

tbΣ(L) = lk(L, L′) = #(L ∩ Σ)

where L′ is a push off in the transverse
direction and Σ is a Seifert surface of L.
∂
∂z is a transverse direction:

tb = 1 + 1− 1 = 1

∂
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A new smooth knot invariant

tb can be decreased:

tb(L±) = tb(L)− 1

rot(L±) = rot(L)± 1

+

−

Definition:
K is a smooth knot type, then:

tb(K ) = max{tb(L) : L is Legendrian repr. of K}

Bennequin inequality:
Σ is a (genus g) Seifert surface for a Legendrian knot L, then:

tb(L) + |rot(L)| ≤ −χ(Σ)

(S3, ξst) is tight.
If L is the unknot then tb(L) + |rot(L)| ≤ −χ(D) = −1, thus
tb(L) ≤ −1. So tb(L) 6= 0
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tb distinguishes mirrors.
Right and left-handed-trefoils

Bounds for the Thurston Bennequin number
The Seifert surface of the trefoil is a punctured torus, thus

tb(L) + |rot(L)| ≤ −χ(Σ) = 1

the right handed trefoil realizes
this bound (tb = 1):

but the left handed trefoil does
not. (tb = −6)
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Classification of Legendrian unknots
Legendrian isotopy ⇒ I smoothly isotopy;

I rot “=”;
I tb “=”.

We have seen:
tb(L) ≤ −1

tb = −1

rot = 0

tb = −2tb = −2

rot = −2 rot = 2

· · ·

Theorem (Eliashberg-Fraser):
For any pair

{(t, r) : t + |r | ≤ −1 & r ≡ t mod 2}
there is exactly one Legendrian unknot
with tb = t and rot = r

kl

Proof on the “Algebraic Geometry and Differential Topology Seminar” this Friday
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Classification of Legendrian knots
For the unknot we had:
tb “=” & rot “=” ⇔ Legendrian isotopic

Definition:
A knot type is called Legendrian simple if tb and rot is enough to
classify its Legendrian representations.

Legendrian simple knots:
I (Eliashberg-Fraser) unknot;
I (Etnyre-Honda) torus knots, figure eight knot;
I . . .

Chekanov’s example:
First example for a Legendrian nonsimple knot:
the 52 knot
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Some nonsimple knot types

Checkanov’s example:

tb = 1 and rot = 0

Other nonsimple knot types:

I (Epstein–Fuchs–Meyer) twist knots;
I Ng
I Ozsváth–Szabó–Thurston
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Further classification results

Classification of nonsimple knot types
I (Etnyre–Honda) Can classify Legendrian realizations of

K1#K2 in terms of the classification of the Legendrian
realizations of L1 and L2

I (Etnyre–Honda) (2, 3)-cable of the (2, 3) torus-knot;
I (Etnyre–Ng-V) Classification of Legendrian twist knots

(work in progress).

Legendrian Twist knots with maximal tb

I (Chekanov, Epstein–Fuchs–Meyer):
∼ n are known to be different

I (Etnyre–Ng-V) There are exactly⌈
( (2n+1)

2 +1)2

2

⌉
different Legendrian

representations (work in progress).

k l
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Thanks for your attention!
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Equivalent characterizations of contact structures

(Y , ξ) is contact iff locally:

I ξ is totally nonintegrable;
I ξ = kerα, where α ∈ Ω1(Y ) and α ∧ dα 6= 0;
I ξ rotates (positively) along a Legendrian foliation;

I ξ rotates (positively) along any Legendrian foliation;
I ξ is isotopic to (R3, ξst);
I ξ is isotopic to (R3, ξsym);

Jump back to 3-dimensional contact structures
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Property P
Surgery
cut out a tubular neighborhood of K

glue back along a diffeomorphism φ : T 2 → T 2

such a map is determined by φ(µ) = pµ′ + qλ′

The surgery is then called p
q -surgery

K

µ

λ

Property P
K has Property P if surgery along K cannot give a
counterexample for the Poincaré Conjecture.

Fact (Lickorish, Wallace)
Any 3–manifold can be obtained from S3 by surgery along a link.

Jump back to the applications
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Lutz twist

Lutz twist
We can change ξ along a knot T t ξ:
ξ is standard along T :

on ν(T )

ξ = ker(cos(
π

2
r)dt+r sin(

π

2
r)dϕ)

Change ξ on ν(T ) to:

ξ′ = ker(cos(π− 3π
2
r)dt+r sin(π− 3π

2
r)dϕ)

Jump back to the classification
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Poincaré homology sphere

from the dodecahedron:
Glue each pair of opposite faces of the dodecahedron by using
the minimal clockwise twist.

a factor of SO(3)
with the rotational symmetries of the dodecahedron (A5)

Jump back to the applications
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Convex surfaces
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