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THE COMPLEXITY OF THE WORD-PROBLEM
FOR FINITE MATRIX RINGS

CSABA SZABÓ AND VERA VÉRTESI

(Communicated by Lance W. Small)

Abstract. We analyze the so-called word-problem for M2(Z2), the ring of
2 × 2 matrices over Z2. We prove that the term-equivalence problem for the
semigroup (and so for the ring) M2(Z2) is coNP-complete.

1. Introduction

In this paper we study the computational complexity of the word-problem for
M2(Z2). We shall use the standard notation for computational complexity, as P,
NP, coNP, etc.

The word-problem for an algebra A has two different versions for terms and for
polynomials. We call an expression term if it contains only variables and we call
it polynomial if it may contain elements of A. The term-equivalence problem over
A (TERM-EQA) asks whether two given terms agree for every substitution. For
example x6 and id are terms over the group S3, and they are equivalent because
the exponent of S3 is 6. The polynomial-equivalence problem (POL-EQA) asks
the same for polynomials, for example x(1, 2)yx2(1, 2, 3) and x2y are polynomials
over the group S3, but they are not equivalent, e.g. by substituting x = y = id the
two values are not equal. Here (1, 2) denotes the transposition flipping 1 and 2 and
(1, 2, 3) denotes the 3-cycle mapping 1 to 2, 2 to 3 and 3 to 1.

Let TERM-SATA and POL-SATA denote the term- and polynomial-satisfiabil-
ity problems, respectively. The instance of TERM-SAT (POL-SAT) is a term (poly-
nomial) t and an element a ∈ A. The question is whether there is an evaluation
of t such that t = a. Observe that for any finite algebra, TERM-EQ and POL-EQ
are both in coNP and TERM-SAT (POL-SAT) is in NP.

2. Preliminaries

We present a few recent results for some algebraic structures.
It is already known [3] that for a commutative ring R the TERM-EQ problem is

in P if R is nilpotent and coNP-complete otherwise. Burris and Lawrence proved
in [2] that the same holds for rings in general. Following their proof it is easy to
see that for a nilpotent ring R the problem POL-EQR is in P. A straightforward
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consequence of their result is that if the ring is not nilpotent, then POL-EQR is
coNP-complete.

So, for example, for the ring Z2, the coNP-completeness of TERM-EQZ2 is an
easy consequence of the NP-completeness of 3-SAT. But the proof uses high powers
of sums. This is the reason why Willard and Lawrence introduced the Σ version of
the problems, where every polynomial is a sum of monomials, e.g. an expression of
the form (x+y)n is too long when expanded. The TERMΣ-EQ (POLΣ-EQ) problem
asks whether two terms (polynomials), p and q — that are sums of monomials —
are equal at every substitution. They proved in [5] that

Theorem 1. Let R be a ring and J(R) denote its Jacobson radical.
If R/J(R) is commutative, then TERMΣ-EQR is in P.
If R = Mn(F ) is a finite matrix ring whose invertible elements form a non-

solvable group, then TERMΣ-EQR is coNP-complete. That is, if n ≥ 3 or |F | ≥ 4,
then TERMΣ-EQMn(F ) is coNP-complete.

They ask what happens for n = 2 and |F | = 2, 3 (see Problem 2 in [5]). We
examine this question in Section 4.

The group case is only partially solved. An unpublished result of Lawrence and
Burris is the following:

Theorem 2. Let G be a group. If G is nilpotent, then TERM-EQG is in P. If G
is non-solvable, then TERM-EQG is coNP-complete.

The answer for semigroups is less complete. In [1] the authors show for a special
class of aperiodic monoids that the POL-EQ problem is tractable. In [7] the authors
prove that

Theorem 3. POL-EQMn(F ) and POL-SATMn(F ) are coNP-complete.

It is also shown that

Theorem 4. Let S be a combinatorial 0-simple semigroup. Then POL-EQS,
POL-SATS, TERM-EQS, and TERM-SATS are in P.

In [6] V. Yu. Popov and M. V. Volkov exhibit a semigroup of size ≤ 21700 with a
coNP-complete TERM-EQ problem. Later Kisieliewicz in [4] presented an example
of size a few hundred. In this paper we investigate the word-problem for the matrix
semigroup M2(Z2). We prove in Section 4 that

Theorem 5. TERM-EQ is coNP-complete for the semigroup M2(Z2).

This result not only provides a 16 element example of a semigroup with coNP-
complete word problem that is significantly smaller than the previously known
examples, but also, as an easy corollary we get that the TERMΣ-EQ is coNP-
complete for the matrix ring as well. Moreover, following the idea of the proof we
exhibit an example of a semigroup of size 13 with a coNP-complete word problem.

3. Combinatorial completely 0-simple semigroups

We give a description of combinatorial completely 0-simple semigroups. Let
M be a 0-1 matrix such that each row and column contains at least one 1 entry.
We define S = SM , the completely 0-simple semigroup belonging to the regular
matrix M . Let Λ and I denote the index set for the rows and columns of M . The
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underlying set of S consists of all pairs of the form 〈i, λ〉 where i ∈ I, and λ ∈ Λ,
along with 0. An associative multiplication is given by the following rule:

〈i, λ〉〈j, µ〉 =
{
〈i, µ〉 if M(λ, j) = 1,
0 otherwise.

Note, that for a ∈ SM , a2 = a or 0 according to the matrix M , and for every
case a2 = a3 = a4 = . . . .

Example 6. Let

A =

0 1 1
1 0 1
1 1 0

 ,

where Λ = I = {1, 2, 3}. Then 〈1, 2〉〈3, 1〉 = 〈1, 1〉 as A(2, 3) = 1 and 〈1, 2〉〈2, 1〉 = 0
as A(2, 2) = 0. In SA the product 〈i, λ〉〈j, µ〉 = 0 if and only if λ = j.

Note that the completely 0-simple semigroups are also called Rees-matrix semi-
groups. We continue with an observation:

Lemma 7. Let S = SM be a combinatorial Rees-matrix semigroup with elements
a1, . . . , an ∈ S, where aj = 〈ij , λj〉 for 1 ≤ j ≤ n.

(1) a1 · · · an = 0 if and only if there exists a k, 1 < k ≤ n, such that ak−1ak = 0.
(2) If a1 · · · an 6= 0, then a1 · · · an = 〈i1, λ1〉 · · · 〈in, λn〉 = 〈i1, λn〉.

4. The semigroup M2(Z2)

We split the semigroup M2(Z2) into two parts: the group of invertible matrices
and the multiplicative semigroup of the 10 singular matrices.

The group of invertible matrices is isomorphic to the symmetric group S3. An
isomorphism is given by simply the action of the matrix on the 3 nonzero vectors

of the vectorspace Z2
2 :
(

0
1

)
,
(

1
0

)
,
(

1
1

)
:(

1 0
0 1

)
→ id

(
1 1
0 1

)
→ (1, 3)

(
1 0
1 1

)
→ (2, 3)

(
1 1
1 0

)
→ (1, 2, 3)

(
0 1
1 1

)
→ (1, 3, 2)

(
0 1
1 0

)
→ (1, 2).

The semigroup of singular matrices (L) is isomorphic to the combinatorial 0-
simple semigroup SA, where A was defined in Example 6. Indeed, let v1 = u2 =(

1
0

)
, v2 = u1 =

(
0
1

)
, v3 = u3 =

(
1
1

)
∈ Z2

2 .

Let us define the map φ from the semigroup of singular matrices in M2(Z2) to
SA in the following way:

φ(vi · uTλ ) = 〈i, λ〉 and φ
((

0 0
0 0

))
= 0.

Here, uTλ · vj =
{

0 if λ = j
1 if λ 6= j.

Hence

(vi · uTλ ) · (vj · uTµ ) = vi · (uTλ · vj) · uTµ =

{
vi · uTµ if uTλ · vj = 1,

0 if uTλ · vj = 0.
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This verifies that φ is an isomorphism between the multiplicative semigroup
of singular matrices of M2(Z2) and SA. These two isomorphisms extend a map
between M2(Z2) and S3 ∪ SA that is an isomorphism where the multiplication
between the elements of S3 and SA is defined as follows. For π ∈ S3 and 〈i, j〉 ∈ SA
let

〈i, λ〉π = 〈i, π(λ)〉 and π〈i, λ〉 = 〈π−1(i), λ〉.
It is easy to see that

Lemma 8. Let m1, . . . ,mn ∈M2(Z2) = S3 ∪ SA, 〈i, λ〉, 〈j, µ〉 ∈ SA and π ∈ S3.
(1) m1 · · ·mn ∈ SA if and only if there exists a k for which mk ∈ SA, i.e. a

product is in SA if and only if at least one of the factors is in SA.
(2) 〈i, λ〉π〈j, µ〉 = 0 if and only if π(λ) = j.

We shall need the analogue of Lemma 7.

Lemma 9. Let a1, . . . , an ∈ SA where aj = 〈ij , λj〉 for 1 ≤ j ≤ n and π1, π2, . . . ,
πn+1 ∈ S3. Then

(1) π1a1π2a2 · · ·πnanπn+1 = 0 if and only if there exists k, 1 < k ≤ n, such
that ak−1πkak = 0 (i.e. πk(λk−1) = ik).

(2) If π1a1π2a2 · · ·πnanπn+1 6= 0, then

π1a1π2a2 · · ·πnanπn+1 = 〈π−1
1 (i1), πn+1(λn)〉.

Now, we prove Theorem 5.

Proof of Theorem 5. For every simple graph we exhibit two terms over M2(Z2),
whose lengths are polynomial in the size of the graph, such that the graph is not
6-colorable if and only if the two terms are equivalent. Thus, we reduce the graph
6-coloring problem into TERM-EQM2(Z2). Let Γ = Γ(V,E) be a simple graph
(with no loops and double edges). Notice that any possible isolated vertex can be
ignored, so we can assume that the graph does not contain isolated vertices. For
every vertex j ∈ V we introduce a vertex-variable vj and for every edge i ∈ E we
introduce an edge-variable ei. We define a few terms. Let

P =
∏
i∈E

(xw4
i )6,

Q =
∏
i∈E

(xw3
i )6,

H =
∏

(i,j)∈E2

(wiwjwiw2
jw

2
i )6.

Here
wi = e5

i vjv
5
keivkv

5
j ,

where i is the edge connecting the vertices j and k. The arguments will neither
depend on the order of vj and vk in the definition of wi nor on the order in which
the product defining H is arranged. The products P and Q are running through
the edges of Γ in the same order. Finally, let

p = PPPxH,

q = PQPxH.

We claim that p ≡ q if and only if Γ is not 6-colorable.
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For this, first we analyze the expression wi = e5
i vjv

5
keivkv

5
j . If the variables

ei, vj , vk are all from the group S3, then wi = e−1
i vjv

−1
k eivkv

−1
j = [ei, vkv−1

j ], that
is, the commutator of the group elements ei and vkv

−1
j . In S3 the commutator

subgroup is A3 = {id, (1, 2, 3), (1, 3, 2)}. Since the centre of S3 is trivial, we have
the following.

Lemma 10. Fix i = {j, k} ∈ E. Let us assume vj , vk, ei, a ∈ S3 and put wi =
[ei, vkv−1

j ]. Then

(1) a6 = id;
(2) wi ∈ A3, the commutator subgroup of S3;
(3) w3

i = id;
(4) w4

i = wi;
(5) wi stabilizes 1 if and only if wi = id.
(6) For u, v ∈ S3 there is an e ∈ S3 such that w = [e, uv−1] 6= id, if and only if

uv−1 6= id, that is, if and only if u 6= v.
(7) If wi ∈ S3 \ {id}, then the set {wi, w2

i , id} is transitive on {1, 2, 3}.
(8) If wi ∈ S3 \ {id}, and s ∈ SA, then swisw

2
i s

2 = 0.

Note that there exists at least one edge or vertex variable taking a value from
SA if and only if there exists at least one word wi such that the value of wi is in
SA.

We will distinguish some cases that are described in Table 1.

Table 1. The four different cases

〈i, λ〉 = x ∈ SAx ∈ S3 i 6= λ i = λ

∃wi ∈ S3 \ {id}
Case 2
p = q = 0∃wj ∈ SA

wi /∈ SA ⇒ wi = id
Case 3

P = Q hence p = q

∀wj ∈ S3
Case 1

p = q = x

Case 4a
q = P 2x =
P 3x = p

Case 4b
6-coloring

In the following we will show that except for Case 4b p is always equivalent to q.
Case 1: When all variables are in S3. If all variables are from S3, then (xwki )6 =
id for every edge and (wiwjwiw2

jw
2
i )6 = id for every pair of edges, hence both terms

are equal to x.
Case 2: When there exists wj ∈ SA and there is an i such that wi ∈ S3\{id}.
The last item of Lemma 10 says the following: If there is an edge j, such that
wj ∈ S3 \ {id} and at least one wj ∈ SA, then H = 0, and so p = q = 0.
Case 3: When there exists wj ∈ SA and besides wi ∈ SA ∪ {id} for every
i ∈ E. In both cases w4

i = w3
i = w2

i , hence the two terms are equal.
Case 4: When wi ∈ S3 for every i ∈ E and x ∈ SA.

a) First, let x = 〈i, λ〉, where i 6= λ. In this case by item 3 of Lemma 10 H3 = id
and so either P = 0 or both sides are equal to x, hence the equation is obvious.
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b) Finally, without loss of generality, we may assume that x = 〈1, 1〉. Now, p =
PPPx and q = PQPx and — because of item 3 of Lemma 10 —Q = 〈1, 1〉k = 0,
where k ≥ 2, hence q = 0. Thus p 6= q if and only if there is a substitu-
tion, where p = PPPx 6= 0, by item 4 of Lemma 10 that holds if and only if
xw1xw2x · · ·wkx 6= 0. By Lemmas 8 and 9 we get that it is true if and only
if none of the wi-s stabilize 1, which is by item 5 of Lemma 10 equivalent to
wi 6= id. Recall that wi = e−1

i vjv
−1
k eivkv

−1
j = [ei, vkv−1

j ], where ei is the edge
variable and vk and vj are the elements assigned to the endpoints of ei. Ac-
cording to item 6 of Lemma 10 we can choose an ei ∈ S3 such that wi 6= id if
and only if vk 6= vj , that is, if and only if the group elements assigned to the
neighbor vertices are distinct, that is, if and only if Γ is 6-colorable.

�
Corollary 11. TERM-EQ and TERMΣ-EQ are coNP-complete for the ring
M2(Z2).

Theorem 12. There exists a 13 element semigroup T for which the TERM-EQ
problem is coNP-complete.

Proof. Namely, let T = A3 ∪ SA be a subsemigroup of M2(Z2). The proof is based
on the same idea as the case of M2(Z2): for an arbitrary simple graph Γ with no
isolated vertices we define the same polynomials as we did in the case of M2(Z2)
with the difference that here we let wi = vjv

−1
k . We will prove that p 6≡ q if and

only if Γ is 3-colorable. We can claim a similar statement to Lemma 10.

Lemma 13. Let us assume that wi ∈ A3.
(1) w3

i = id;
(2) w4

i = wi;
(3) wi stabilizes 1 if and only if wi = id, i.e. vj 6= vk.
(4) If wi ∈ A3 \ {id}, then the set {wi, w2

i , id} is transitive on {1, 2, 3}.
(5) If wi ∈ A3 \ {id}, and s ∈ SA, then swisw

2
i s

2 = 0.

Accordingly, we can distinguish the same cases and in these cases except for Case
4b the proof is word-by-word the same as for M2(Z2). For Case 4b again we may
assume without loss of generality that x = 〈1, 1〉. Here by item 1 of Lemma 13,
q = 0. p = PPPx 6= q = 0 holds if and only if xw1xw2x · · ·wkx 6= 0. This is true if
and only if none of the wi-s stabilize 1, which is by item 3 of Lemma 13 equivalent
to vj 6= vk, that is, if and only if the group elements assigned to the neighboring
vertices are distinct, that is, if and only if Γ is 3-colorable.

�

5. Further remarks

At this point the following two problems arise.

Problem 1. Find the smallest semigroup for which the TERM-EQ is coNP-
complete.

Problem 2. Find the computational complexity of TERM-EQ for the semigroup
Mn(F ).

However, it is not clear from the final version of the paper. During the proof we
had the following interesting problem, which is the generalization of EQN∗ in some
sense.
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Problem 3. Given two sets of words {w1, w2, . . . , wn} and {v1, v2, . . . , vm} over
G ≤ Sk, the symmetric group acting on the set Ω = {1, 2, . . . , k}. For an eval-
uation of the variables and for l ∈ Ω let Il = {w1(l), w2(l), . . . , wn(l)} and Jl =
{v1(l), v2(l), . . . , vm(l)}. Find the complexity of the question whether the set-
equation system I1 = J1, I2 = J2, . . . , Ik = Jk holds for every evaluation.

If n = m = 1, then we get the word-problem for the fixed permutation group.
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