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The complexity of checking identities for finite matrix rings

Csaba Szabó and Vera Vértesi

Abstract. We complete the investigations into the word-problem for finite matrix rings.
Namely we prove that M2(Z3), the ring of 2 × 2 matrices over Z3, has a coNP-complete
term-equivalence (or identity checking) problem.

1. Introduction

In this paper we study the computational complexity of the term-equivalence
problem (shortly TERM-EQ) for the semigroup M2(Z3). The term-equivalence
problem over a finite algebra A (TERM-EQA) asks whether two given terms agree
for every substitution in the given algebra. For example, x6 and id are terms over
the group S3, and they are equivalent because the exponent of S3 is 6.

We shall use the standard notations for computational complexity, as P, NP,
coNP, etc.

It is already known [3] that for a commutative ring R the TERM-EQ problem is
in P if R is nilpotent and coNP-complete otherwise. Burris and Lawrence proved in
[2] that the same holds for rings in general. For example, for the ring Z2, the coNP-
completeness of TERM-EQZ2 is an easy consequence of the NP-completeness of
3-SAT. But the proof uses high powers of sums, and an expression of the form
(x + y)n is too long when expanded. This is the reason why Willard and Lawrence
introduced the Σ version of the problem: the instance when every polynomial is
a sum of monomials. The TERMΣ-EQ problem asks whether two terms that are
sums of monomials are equal at every substitution. The following is proved in [4].

Theorem 1. Let F be a finite field. If the invertible elements of R = Mn(F ) form
a non-solvable group, then TERMΣ-EQR is coNP-complete. That is, if n ≥ 3 or
|F | ≥ 4, then TERMΣ-EQR is coNP-complete.
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Problem 2 in [4] asks what happens for n = 2 and |F | = 2, 3. In [7] the following
is proved.

Theorem 2. TERM-EQ is coNP-complete for the semigroup M2(Z2).

This result implies the hardness of the TERM-EQ and TERMΣ-EQ problems for
the ring M2(Z2) as well. Indeed, if the TERM-EQ problem for the multiplicative
semigroup of a ring R is coNP-complete then it is hard to decide whether or not
two monomials are equivalent over the ring itself. Hence both the TERM-EQ and
the TERMΣ-EQ problems are hard over R.

So the only question that has remained open is the case M2(Z3). In this note
we settle this problem. Namely, we prove that the TERM-EQ is coNP-complete
for the semigroup M2(Z3).

The importance of TERM-EQ and other term related problems has increased in
computer science as well. Using ideas and tools from automata theory, a number of
algebraic characterizations of complexity problems have been found (for a general
reference see for example [5]). This leads to the study of problems whose com-
putational complexity is described by the properties of terms over an underlying
monoid. In [5] and [1] (and other papers) these problems are connected with the
so-called PROGRAM SATISFIABILITY problem and are solved for several classes
of monoids, such as abelian groups, monoids with irregular H-classes, commuta-
tive aperiodic monoids, etc. Popov and Volkov ([6]) gave the first example of a
semigroup with computationally hard term-equivalence problem. The size of their
semigroup is 21700. M2(Z3) is a reasonably small, natural semigroup to study.

2. The semigroup M2(Z3)

The semigroup of 2 by 2 matrices over the 3 element field is the union of the
group of invertible elements and the semigroup of singular matrices. They are
of size 48 and 33, respectively. We can characterize the matrices by their action
on the 1-dimensional subspaces of Z2

3 . Let ∼ be defined as follows: for a matrix
A ∈ M2(Z3) let A ∼ 2A. Now ∼ is an equivalence relation and A ∼ B if and only if
the matrices A and B induce the same transformation on the set of 1-dimensional
subspaces. By this property it is easy to see that ∼ is compatible with the matrix
multiplication, hence ∼ is a congruence of the semigroup M2(Z3). Let PM2(Z3) =
M2(Z3)/ ∼.

As it is easier to handle and understand, at first we will prove a theorem for
PM2(Z3) similar to the main result of the paper.

Theorem 3. TERM-EQ is coNP-complete for the semigroup PM2(Z3).



Vol. 51, 2004 Identity checking for matrix rings 441

Before proving Theorem 3 we give a similar description for PM2(Z3) as we did for
M2(Z2) in [7]. We split PM2(Z3) into two parts: the group of invertible elements
and the semigroup of singular elements.

Looking at the action of the invertible matrices on the 1-dimensional subspaces
of the vector space Z2

3 (there are 4 such), we can observe that the group of invertible
matrices is isomorphic to the 4-letter symmetric group, S4.

Every nonzero singular matrix has rank 1, hence it can be written in the form
v · uT for some u, v ∈ Z2

3 . Put

v1 =u2 =
(

1
0

)
, v2 =u1=

(
0
1

)
, v3 =u4 =

(
1
1

)
, v4 =u3 =

(
1
2

)
∈ Z2

3

Here ui is representing the unique line orthogonal to vi, thus uT
t vs = 0 if and

only if t = s. Every nonzero singular element of PM2(Z3) has a unique representant
of the form vsu

T
t . Let us denote this class by the symbol 〈s, t〉. As every class of

invertible matrices induces a natural right and left action on the representants of
the lines, they can be considered simply as permutations of the set {1, 2, 3, 4}. Now,
PM2(Z3) = S4

⋃{〈s, t〉 | 1 ≤ s, t ≤ 4}∪{0} and the multiplication can be described
in the following way: 0 · a = a · 0 = 0 for every a ∈ PM2(Z3) and

〈s, t〉π = 〈s, π(t)〉, π〈s, t〉 = 〈π−1(s), t〉, 〈s1, t1〉〈s2, t2〉 =

{
0 if t1 = s2

〈s1, t2〉 if t1 �= s2

.

For a longer product of elements we will need the following observation.

Lemma 4. Let aj = 〈sj , tj〉 for 1 ≤ j ≤ n and π1, π2 . . . , πn+1 ∈ S4. Then

(1) a2
j = a3

j ;
(2) a1π1a2 = 0 if and only if π(t1) = s2;
(3) π1a1π2a2 · · ·πnanπn+1 = 0 if and only if there exists 1 < k ≤ n such that

ak−1πkak = 0 (i.e. πk(tk−1) = sk).
(4) If π1a1π2a2 · · ·πnanπn+1 �= 0, then

π1a1π2a2 · · ·πnanπn+1 = 〈π−1
1 (s1), πn+1(tn)〉.

Let

D = {(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}
be the set of products of two disjoint transpositions and

T = {(1, 2, 3), (1, 3, 2), (1, 2, 4), (1, 4, 2), (1, 3, 4), (1, 4, 3), (2, 3, 4), (2, 4, 3)}
be the set of 3-cycles in S4. The commutator subgroup of S4 is A4 and A4 =
{id} ∪ D ∪ T . We list a few properties of S4.
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Lemma 5. Let u, v, y, a ∈ S4 and put w = [y, uv−1] = y−1(uv−1)−1y(uv−1) for
y ∈ S4. Then the following hold:

(1) a12 = id;
(2) w ∈ A4, the commutator subgroup of S4;
(3) w6 = id;
(4) w3 stabilizes 1 if and only if w ∈ id ∪ T .
(5) For u, v ∈ S4 there exists an e ∈ S4 such that [e, uv−1] ∈ D if and only if

uv−1 �= id, that is, if and only if u �= v.
(6) If w ∈ D, then the subgroup generated by {u, v, y} is transitive on {1, 2, 3, 4}.
(7) If w ∈ D, then the set {abc | a, b, c ∈ {u, v, y}} is transitive on {1, 2, 3, 4}.
Lemma 6. Let u, v, y ∈ S4 and w as in Lemma 5, and let b be a non-invertible
element of PM2(Z3). If w3 �= id, then (

∏
cr∈{y,u,v}(bc1c2c3))b = 0.

Proof. Let b = 〈s, t〉. By (4) of Lemma 5, w ∈ D and by (7) of Lemma 5, there is
a product of the form c1c2c3 mapping t to s. Hence by Lemma 4 the product is
equal to 0. �

We are ready to prove Theorem 3.

Proof of Theorem 3. We reduce graph 24-colorability (a problem which is known
to be coNP-complete) to the term equivalence problem. Let Γ = (V, E) be an
arbitrary simple graph with no loops, V = {v1, . . . , vn} and E = {e1, . . . , em}. To
every edge and vertex we assign a variable denoted by the same letter. We shall
exhibit two terms, p and q, such that the graph Γ is 24 colorable if and only if p is
not equivalent to q.

Let

P =
∏

ei∈E

(xw3
i )12,

Q =
∏

ei∈E

(xw6
i )12.

Here wi = e11
i vlv

11
k eivkv11

l , where vl and vk denote the endpoints of ei in an arbi-
trary order. Note that if ei, vl, vk ∈ S4 then wi = e−1

i vlv
−1
k eivkv−1

l = [ei, vkv−1
l ].

The order of the edges in the products can be arbitrarily chosen.
For any two edges of ei and ej of Γ define

Hi,j =
∏

cr∈{ei,vl,vk}
(wjc1c2c3wj)12,

where vl, vk denote the endpoints of the edge ei. Note that by Lemma 6, if wi ∈ D

and wj ∈ PM2(Z3) \ S4, then Hi,j = 0, and if wi ∈ D and wl ∈ S4, then Hi,l = id.
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Define
H =

∏
ei,ej∈E

Hi,j .

Finally, let

p = PPPxH,

q = PQPxH.

We will distinguish some cases as can be seen in Table 1.

x = 〈s, t〉
x ∈ S4 s �= t s = t

∀wj ∈ S4 Case 1 Case 4a Case 4b
∃wi ∈ D Case 2∃wj /∈ S4 ∀wi ∈ PM2(Z3) \ D Case 3

Table 1. The four different cases

In the following we will show that, except for the Case 4b, p is always equivalent
to q.

Case 1: When all variables are in S4. If all variables are from S4, then
(xwr

i )12 = id for every edge and (wjgwj)12 = id for every pair of edges; hence both
terms are equal to x.

Case 2: When there exists wj /∈ S4 and there is an i such that wi ∈ D.
Substituting b = wj , u and v for the endpoints of ei, and e = ei in Lemma 6, we
obtain Hi,j = 0 and then H = 0, so p = q = 0.

Case 3: When there exists wj /∈ S4 and besides wi ∈ PM2(Z3) \ D for
every ei ∈ E. Now, we only have to see that if wi ∈ T ∪ {id} then w3

i = id. So
either wi ∈ T ∪ {id} or wi /∈ S4, and we have w6

i = w3
i by Lemma 4; hence the two

terms are equal.
Case 4: When wi ∈ S4 for every i ∈ E and x = 〈s, t〉.

(1) First, let x = 〈s, t〉, where s �= t. In this case by item 3 of Lemma 5 we obtain

q = Px · id · x · · · id · xPxH = PPxH = PPPxH = p.

(2) Finally, without loss of generality, we may assume that x = 〈1, 1〉. Now,
p = PPPx and q = PQPx and — because of item 3 of Lemma 5 — Q =
〈1, 1〉≥2 = 0; hence q = 0. Thus p �= q if and only if there is a substitution
making p = PPPx �= 0.

By Lemma 4, that holds if and only if xw3
1xw3

2x . . . w3
kx �= 0. By item 4 of

Lemma 5, this takes place if and only if none of the w3
i -s stabilizes 1, which
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is equivalent to wi /∈ T ∪ id. Recall that wi = e−1
i vjv

−1
k eivkv−1

j = [ei, vkv−1
j ],

where ei is the edge variable and vk and vj are the elements assigned to the
endpoints of ei. According to item 5 of Lemma 5, we can choose an ei ∈ S4

such that wi /∈ T ∪ id if and only if vk �= vj . Hence p is not identically 0 if and
only if the group elements assigned to neighboring vertices are distinct; hence
if and only if Γ is 24-colorable.

�

Finally, we are able to prove the main result of the paper.

Theorem 7. TERM-EQ is coNP-complete for the semigroup M2(Z3).

Proof. The train of thought is very similar to the case PM2(Z3). Let

P =
∏
i∈E

(xw3
i )24,

Q =
∏
i∈E

(xw6
i )24.

and

p = PPPPxH,

q = PQQPxH.

The only difference is that instead of equivalence classes we have to consider the
elements of M2(Z3). We have to distinguish A and 2A; that is, occasionally a
constant factor “2” may appear. This is why we had to change the exponents in
the terms, but this does not mean any essential change in the proof.

�

As an immediate consequence of Theorem 7 we have:

Corollary 8. TERM-EQ and TERMΣ-EQ are coNP-complete for the ring M2(Z3).

At last, according to Theorems 1 and 2 we get:

Corollary 9. Let R = Mn(F ) be a finite matrix ring. TERMΣ-EQR is in P if
n = 1, and coNP-complete otherwise.
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