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∗csaba@cs.elte.hu
†wera13@cs.elte.hu

Received 21 May 2010
Revised 1 September 2010

Communicated by R. McKenzie

We investigate the computational complexity of deciding whether or not a given poly-
nomial, presented as the sum of monomials, is identically 0 over a ring. It is proved that
if the factor by the Jacobson-radical is not commutative, then the problem is coNP-
complete.
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1. Introduction

A ring is a set equipped with three operations: the multiplication ·, the addi-
tion + and the additive inverse operation −. A term over a ring is an expression
t(x1, . . . , xn) built up from variables and the fundamental operation symbols in
the usual manner. In other words terms over rings are polynomials with integer
coefficients. A term t(x1, . . . , xn) over any ring R defines a so-called term-function
tR : Rn → R. A ring R satisfies an equation s(�x) ≈ t(�x) or R |= s ≈ t if the
corresponding term-functions sR and tR are the same functions.

The (term) equivalence problem for a ring R is the problem of deciding which
equations are satisfied by R. Over a given ring R the instance of the equivalence
problem is an equation s(�x) ≈ t(�x), and the goal is to decide whether it is satisfied
by R or not. If s(�x) �≈ t(�x), then there is a substitution form R where the two
term-functions sR and tR do not agree, so the equivalence problem is in coNP.

Early investigations into the equivalence problem for various finite algebraic
structures were carried out by computer scientists at Syracuse University where
the terminology the term equivalence problem was introduced. In particular they
considered finite commutative rings and finite lattices. In the early 1990s it was
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shown by Hunt and Stearns [7] that for a commutative ring R the equivalence
problem is in P if R is nilpotent and coNP-complete otherwise. Burris and Lawrence
[2] proved that the same holds for rings in general.

The formal definitions of terms and polynomials allow us to use iterated addition
and multiplication, for example, the expression (x1 + y1)(x2 + y2) · · · (xn + yn) is
a term over a ring. If we expand this term into a sum of monomials, we obtain
a sum of 2n many monomials of length n. The length of a term is crucial from
the computational point of view. Moreover, when a ring-term is presented, in most
cases it is given as a sum of monomials. If one restricts the terms that are allowed
as instances of the equivalence problem, e.g. to monomials or to sum of monomials,
then the complexity of the problem can change. This is the reason why Horváth,
Lawrence and Willard introduced the Σ version of the identity checking problem for
rings [6]. In the following we investigate a version of the equivalence problem where
the instance terms must be given as sums of monomials. Of course every term over
a ring can be written in such a form, but, as we saw, during the expansion its length
can grow exponentially.

The complexity of the problem changes, indeed, as it is shown in [4]: if R is
commutative, then the equivalence problem over R for sum of monomials is in
P . The proof is heavily based on the structure of commutative finite rings. They
reduce the equivalence problem for commutative rings to the same problem over
Galois-rings. The following conjecture is formulated.

Conjecture [4, 6]. Let R be a finite ring, and let J(R) denote its Jacobson-radical.
Then

(1) if R/J(R) is commutative, then the equivalence problem for sum of monomials
is in P ;

(2) the equivalence problem for sum of monomials is coNP-complete, otherwise.

In this paper we prove the second part of the conjecture.

Theorem 1. Let R be a finite ring, and let J(R) denote its Jacobson-radical. If
R/J(R) is not commutative, then the equivalence problem for sum of monomials is
coNP-complete.

For matrix rings the complexity of this version of the equivalence problem has
been determined; the equivalence problem for sum of monomials is in P , if the
matrix ring is commutative and coNP-complete otherwise. This result was shown
by Lawrence and Willard [6] for matrix rings whose group of units forms a non-
solvable group, and by Szabó and Vértesi [8, 9] for the remaining cases, M2(Z2)
and M2(Z3).

If we restrict the inputs of the equivalence problem to monomials, then in fact
we are working in the multiplicative semigroup of the ring R. In this paper we
characterize the complexity of the equivalence problem over matrix semigroups.
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Theorem 2. For a matrix semigroup (Mn(q), ·), the equivalence problem is in P if
the semigroup is commutative and coNP-complete otherwise.

For groups the characterization of the equivalence problem is far less complete.
In 2004 Burris and Lawrence [3] proved that if G is nilpotent or G � Dn, the
dihedral group for odd ns, then the equivalence problem for G is in P . Toward the
hard side Horváth et al. [5] proved that for a non-solvable group G the equivalence
problem is coNP-complete.

2. Preliminaries

Let Mn(q) denote the ring of n × n matrices over the q element field Fq, where
q = pβ for some prime p. The general linear group GLn(q) is the group of invertible
elements of Mn(q), and the special linear group SLn(q) is the subgroup containing
the elements of determinant 1. All normal subgroups of SLn(q) are contained in its
center, Z(SLn(q)), if n > 2 or q > 3. The projective linear group PSLn(q) is defined
as the factor of SLn(q) by Z(SLn(q)). If n > 2 or q > 3, then PSLn(q) is simple.

The proof of Theorem 2 is a reduction to the equivalence problem to its group
of units. For this first we will focus on properties of matrix groups, and then show
how our reduction works.

2.1. Verbal subgroups

First we will list here some definitions and easy observations about verbal subgroups
of groups and commutators from [5], extending them to GLn(q).

Let G be a finite group. Given a set T of group terms let

T (G) =
⋃
t∈T

Range(tG)

be the union of the ranges of the term functions tG. The subgroup generated by
T (G), which we denote by

T ∗(G) = 〈T (G)〉
is called a verbal subgroup of G. The subgroups {id} and G are verbal subgroups
of G. If these are the only verbal subgroups of G, then we say G is verbally sim-
ple. Every simple group is verbally simple as a verbal subgroup is always normal.
Moreover,

T ∗(G1 × G2) = T ∗(G1) × T ∗(G2).

Given two terms s(x1, . . . , xm) and t(x1, . . . , xn), we define the term st by

st(x1, . . . , xmn) = s(t(x1, . . . , xn), t(xn+1, . . . , x2n), . . . , t(xmn−n+1, . . . , xmn)).

For a finite group G let dG be the minimal positive integer such that for any set X

of generators of G we have

G =
⋃

0≤k≤dG

Xk.
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Given a term s(x1, . . . , xm) and an integer k define the term sk by

sk(x1, . . . , xmk) := s(x1, . . . , xm) · s(xm+1, . . . , x2m) · · ·︸ ︷︷ ︸
a product of k terms s(· · ·), with distinct variables

.

Note that s∗(G) = sdG(G) is the verbal subgroup generated by the image of s. The
commutator is a group term defined by c(x, y) = [x, y] = x−1y−1xy. For a ∈ G let
[a, G] = 〈{[a, g] : g ∈ G}〉. [a, G] is a normal subgroup of G. If G is a non-abelian
simple group, then

[a, G] =

{
{id} if a = id,

G if a �= id.

If n > 2 or q > 3, the commutator subgroup of GLn(q) is SLn(q) and

[a, GLn(q)] =

{
{id} if a ∈ Z(GLn(q)),

SLn(q) if a /∈ Z(GLn(q)).

Our starting point will be the following result from [5].

Lemma 3. For every graph Γ and for every positive integer k, there exists a group
term tΓ,k, such that the size of tΓ,k is polynomial in k and in the size of Γ, and
for every simple group G if k ≥ dG then G |= tΓ,k ≈ id if and only if Γ is not
|G|-colorable. Moreover, for every group H the image of tΓ,k is contained in the
commutator subgroup: tΓ,k(H) ≤ H ′. Furthermore, if Γ has at least nine edges,
then tΓ,k(H) is contained in the fourth commutator subgroup of H.

Now we are able to make the first step toward the reduction.

Lemma 4. Let p be a prime, q = pβ, q1 = pα1 , . . . , qm = pαm .

(1) Let n be a positive integer and let k = |PSLn(q)|. Then for every positive integer
d > dPSLn(q) and for every graph Γ containing at least nine edges, there exists
a group word s (over the group GLn(q)) such that

• GLn(q) |= sd ≈ id if Γ is not k-colorable or n = 2 and q = 2, 3;
• s(GLn(q)) = SLn(q) otherwise.

(2) Let GLn1(q1), . . . , GLnm(qm) be matrix groups. Suppose that n1 > 2 or q1 > 3,

and let k = max1≤i≤m{|PSLni(p
αi)|}. Then for every graph Γ there is a group

term s such that

• if Γ is not k-colorable, then GLni(qi) |= s ≈ id for every i;
• if Γ is k-colorable, then s(GLni(qi)) = SLni(qi) for some 1 ≤ i ≤ m.

Proof. (1) Let Γ be a graph and let s = tΓ,d be the term constructed in
Lemma 3 with G = PSLn(q). Assume first that n > 2 or q > 3, and Γ is k-
colorable. We claim that s∗(GLn(q)) = SLn(q). By Lemma 3 we have s∗(GLn(q)) ≤
GLn(q)′ = SLn(q). As PSLn(q) is simple, s∗(PSLn(q)) = PSLn(q), hence, as
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SLn(q)/Z(SLn(q)) = PSLn(q), the image of s over SLn(q) is not contained in the
center of SLn(q). As s∗(GLn(q)) is normal in GLn(q), we have s∗(GLn(q)) = SLn(q).
If n = 2 and q = 2 or 3, the solvable lengths of GL2(2) and GL2(3) are 2 and 4,
thus s satisfies the conditions of the lemma.

Now, for (2), let Γ be a graph and let s be the term constructed in (1)
with d = maxi dGLni

(qi). Now, s(GL2(2)) = 1 and s(GL2(3)) = 1. For every i,
where ni > 2 or qi > 3 we have s(GLni(qi)) = SLni(qi) if Γ is not |PSLni(qi)|-
colorable and s(GLni(qi)) = id otherwise. Let us assume that Γ is not k-colorable.
Then Γ is not l-colorable for any l ≤ k. Thus s∗(GLni(qi)) = {id} for every
1 ≤ i ≤ m. Now, assume that Γ is k-colorable. Then s∗(GLnj (qj)) = SLnj (qj)
whenever |PSLnj (pαj )| = k = max1≤i≤m{|PSLni(pαi)|}. Thus s = sd satisfies the
conditions.

2.2. Matrix semigroups

Next, for every matrix ring we present an integer N such that for all but a few
invertible matrices M the matrix MN is idempotent. For the sizes of the groups
GLm(q) and SLm(q) one has the following well-known formulas:

|GLm(pβ)| = (pβm − 1)(pβm − pβ) · · · (pβm − pβ(m−1))

= pβ(m(m−1)/2)(pβm − 1)(pβ(m−1) − 1) · · · (pβ − 1)

and

|SLm(pβ)| =
|GLm(pβ)|

pβ − 1
.

Our main lead will be the following theorem of Zsigmondy.

Theorem 5 (Zsigmondy [10]). Let a, k be integers both greater than 1. Then
except in the cases k = 2, a = 2γ − 1 and k = 6, a = 2, there is a prime r with the
following properties:

(1) r divides ak − 1;
(2) r does not divide ai − 1 whenever 0 < i < k;
(3) r does not divide k.

In particular, k is the order of a modulo r.

Lemma 6. Let Mn(q) be a matrix ring where n > 1. There is a positive integer
N such that for every A ∈ Mn(q) either AN is idempotent (a projection) or AN is
invertible in Mn(q). Moreover, there is at least one element in A ∈ SLn(q), such
that AN �= id.

Proof. Case 1. Let q = a and n = k be not among the exceptional cases of
Zsigmondy’s theorem. Let r be the prime from Zsigmondy’s theorem and t such
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that

rt | pα − 1 and rt+1 � pα − 1.

Moreover, let

N = α
|GLα(p)|

rt
.

Let A be an arbitrary matrix in Mn(q). For every m ≥ n the matrix Am acts
on W = Im Am as a linear transformation and the action is invertible. Thus if
dim W = l, then (Am)|GLl(q)| is a projection (idempotent). Obviously,

• α ≥ n and
• |GLl(q)| divides |GLn(q)| for every n > l, and
• (r, |GLl(q)|) = 1 for every n > l.

Hence, if l < n, then |GLl(q)| divides |GLn(q)|/rt. Thus for every matrix A ∈ Mn(q),
where A is not invertible, the matrix AN is idempotent. Finally, r divides |SLn(q)|,
because |SLn(q)| = |GLn(q)|/(q − 1). Thus by Cauchy’s theorem there is an element
B ∈ SLn(q) of order r. Clearly, BN �= id.

Case 2. Let p = 2γ − 1. Then N = 2(p − 1) works. Now, |GL1(p)| = p − 1
and |SL2(p)| = [(p2 − 1)(p2 − p)]/(p − 1). Every non-zero, not invertible matrix
A ∈ M2(p) is of rank 1. Thus A2(p−1) is a projection. If A is of order p (such an A

exists by Cauchy’s theorem), then A2(p−1) = Ap−2 �= id.

Case 3. Finally, let us consider the most unlucky case, where max{qni

i } = 26. The
following tables will be useful in our investigations:

The exponents of GLm(2β):

β m 1 2 3 4 5 6

1 1 6 84 420 26040 78120
2 3 30 1260
3 7 126

The exponents of SLm(2β).

β m 1 2 3 4 5 6

1 1 6 84 420 26040 78120
2 1 30 420
3 1 126

Let A be an arbitrary matrix in Mn(q). As in the previous two cases, for every
m ≥ n the matrix Am acts on W = Im Am as a linear transformation and the action
is invertible. Now, 11 ≥ n in each case, and it is relatively prime to the exponent of
each group. So we need a number K such that exp SLn(q) � K and exp GLl(q) |K
for every l < n, and then N = 11 K will do. For SL6(2) we can choose K = 26040,
for SL3(4) we can choose K = 30 and for SL2(8) we can choose K = 7.
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We are able to prove Theorem 2.

Proof of Theorem 2 . For M2(Z2) and M2(Z3) the theorem was proved in [8, 9].
Assume n > 2 or q > 3. We reduce the equivalence problem of Mn(F) to graph
k-coloring where k = |PSLn(q)|. Let Γ be a graph. By Lemma 4 there is a group
term s (of polynomial length in the size of Γ) such that s ≈ id over GLn(q) if
and only if Γ is not k-colorable and if s �≈ id then s(GLn(q)) = SLn(q). Let us
substitute x|GLn(q)|−1 for every occurrence of the inverse of the variable x to obtain
a semigroup word t. The terms t and s are equivalent over the (semi)group GLn(q).
The length of t is at most (|GLn(q)| − 1)-times the length of s, hence polynomial
in the size of Γ. Let N be the integer chosen in Lemma 6. We claim that t ≈ id
over the (semi)group GLn(q) if and only if t2N ≈ tN over the semigroup Mn(q).
For a non-invertible matrix A the identity AN = A2N holds by assumption, hence
t2N ≈ tN over Mn(q) if and only if t2N ≈ tN over GLn(q). If t ≈ id, then t2N ≈ tN

obviously holds. Let us assume that t �≈ id. Then t(GLn(q)) = SLn(q) and by
Lemma 6 there is an A ∈ SLn(q), such that AN �= id, hence t2N �≈ tN . Thus t ≈ id
if and only if Γ is k-colorable, and the equivalence problem for the semigroup Mn(q)
is coNP-complete.

Note that in the proof we used the coNP-completenes of the equivalence problem
for the monoid GLn(q). In case of a finite group the monoid and group versions
of the equivalence problem have the same complexity. In case of a group of size
n any occurrence of x−1 can be substituted by xn−1. The coNP-complete part of
Theorem 2 also follows from [1], where the so-called implicite group operator is
used to establish connection between identities over semigroups and identities over
their subgroups.

3. The Equivalence Problem for Rings

Lemma 7. Let Mn1(q1), . . . , Mnm(qm) be matrix rings, where qi = pαi for a
fixed prime p. Let α = max{niαi}. Then there exists a polynomial f(x) over the
p-element field Fp such that for every i and every non-invertible matrix A ∈ Mni(qi)
the equation f(A) = 0 holds. Moreover, f(id) = 0 holds. Furthermore, if njαj = α,

then there exists a matrix B ∈ SLnj (qj) such that f(B) ∈ GLnj (qj).

Proof. Consider a δ ∈ Fpα such that the degree of δ is α over Fp and the norm of
δ is 1 over Fqj . Such an element exists, e.g. if F∗

pα = 〈h〉, then δ = h1−qj will do.
Let m(x) be the minimal polynomial of δ over Fp. Let B ∈ Mnj(qj) be a matrix
with minimal polynomial m(x) over Fp. Since m splits over Fqj to a product of
αj-many polynomials of degree nj , the matrix B ∈ Mnj (qj) suffices if its minimal
polynomial over Fqj is one of the factors of m. Note that B ∈ SLnj (qj), because
detB is the norm of δ. Let g(x) be the least common multiple of all Fp-polynomials
of degree at most α which are irreducible over Fp, and let f(x) = g(x)/(m(x)).
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Now (m(x), f(x)) = 1, hence none of the eigenvalues of f(B) is 0. Therefore f(B) ∈
GLnj (qj).

Let A ∈ Mni(qi) for some i and let mA(x) �= m(x) be its minimal polynomial
over Fp. The degree of mA(x) is at most α, hence mA(x) | f(x) and f(A) = 0. In
particular if A is not invertible or A is the identity matrix then mA(x) �= m(x),
thus f(A) = 0 as we wanted.

Now we are able to prove of our main theorem.

Proof of Theorem 1. Let d denote the least integer such that J(R)d = 0 and let
R/J(R) = Mn1(q1) ⊕ Mn2(q2) ⊕ · · · ⊕ Mnl

(ql). Assume first that ni > 2 or qi > 3
for some i. By reindexing we may assume that n1 > 2 or q1 > 3. Let q1 = pα1 .
By reindexing we may assume that Mn1(q1), Mn2(q2), Mnm(qm) are those matrix
rings in the product, where qi = pαi for some αi. Let Γ be a graph with at least
nine edges, and let s be the term constructed in Lemma 4(2) for the graph Γ and
for the groups GLn1(q1), . . . , GLnm(qm). Let k = max1≤i≤m{|PSLni(pαi)|}. Let
f(x) be the polynomial from Lemma 7 for Mn1(q1), . . . , Mnm(qm) and let α =
max{niαi | i = 1, 2, . . . , m}. Finally, let P be the product of all primes pi not equal
to p, where there is a qi such that qi = pαi

i .
Then

(i) P · Mni(qi) =

{
Mni(qi) if qi = pαi ,

0 otherwise;

(ii) s(GLni(qi)) =

{
SLni(qi) if Γ is k-colorable and α = niαi,

id otherwise;
(iii) f(A) = 0 if α �= niαi;
(iv) if α = niαi, then f(A) ∈ SLni(qi) for some A ∈ SLni(qi).

Here, Px = x + x + · · · + x, the addition is iterated P times.
We reduce the graph k-coloring to the equivalence problem for sum of monomials

over R. For a graph Γ with at least nine edges, let us consider the polynomial
(P · f(s))d written as sum of monomials. We claim that R |= (P · f(s))d ≈ 0 if and
only if Γ is not k-colorable.

To this end, we prove that P · f(s) ≈ 0 over R/J(R) if and only if Γ is not
k-colorable. We check this identity coordinatewise. If qi �= pβ for some β, then
multiplying by P annihilates the ith coordinate. For q = pαi if Γ is not k-colorable,
then s(GLni(qi)) = id for every i and every other value of s is not invertible. Thus
f(s(Mni(qi))) = 0 for every i, which yields R |= (P · f(s))d ≈ 0.

If Γ is k-colorable, then s(GLni(qi)) = SLni(qi) for some i and thus
f(s(Mni(qi))) attains at least one invertible element from GLni(qi) for some i.
Hence P · f(s) attains an element C, which is invertible in coordinate i. Then
(P ·f(s))d attains Cd as value, which is invertible in coordinate i of R/J(R), there-
fore R |= (P · f(s))d ≈ 0 fails.
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The length of s is polynomial in the size of Γ. The length of f(x) and the integers
P, d depend only on R. Thus the length of the term is polynomial in the size of Γ,
when expanded as a sum of monomials.

Similarly, if max ni = 2 and max qi = 3, then we can polynomially reduce
the equivalence problem over the semigroup M2(3) to the equivalence problem for
sum of monomials over R. For any two semigroup polynomials f1, f2 over M2(3)
and for variables y, z occurring neither in f1 nor in f2 consider the polynomial
(2y(f1 − f2)z)d. We claim that M2(3) |= f1 ≈ f2 if and only if R |= (2y(f1 −
f2)z)d ≈ 0. If M2(3) |= f1 ≈ f2, then M2(3) |= 2y(f1 − f2)z ≈ 0 and M2(2) |=
2y(f1−f2)z. Thus R/J(R) |= 2y(f1−f2)z, and R |= (2y(f1−f2)z)d ≈ 0. Conversely,
if M2(3) |= f1 ≈ f2 fails, then f1 − f2 attains a non-zero value from M2(3). Thus
2y(f1−f2)z attains a matrix C ∈ M2(3) which has a non-zero eigenvalue. Therefore
(2y(f1 − f2)z)d attains a value in R which has Cd �= 0 in the M2(3) coordinate of
R/J(R), and R |= (2y(f1 − f2)z)d ≈ 0 fails. The length of (2y(f1 − f2)z)d is
polynomial in the length of f1 and f2, when expanded as sum of monomials, as d

depends only on R.
Finally, the case maxni = 2 and max qi = 2 can be handled similarly: for any

two semigroup polynomials f1, f2 over M2(2) and for variables y, z occurring neither
in f1 nor in f2 one needs to consider the polynomial (y(f1 − f2)z)d.
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[4] G. Horváth, The complexity of the equivalence problem over finite rings, Manuscript,
2010.
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