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my high school and undergraduate years, and shaped my mathematical viewpoint. I

am also grateful to Róbert Sződi.
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1. Introduction

Although contact geometry was born in the late 19th century in the work of Sophus

Lie, its 3–dimensional version has just recently started to develop rapidly, with the

discovery of convex surface theory and by recognizing its role in other parts of topology.

For example Property P for knots —a possible first step for resolving the Poincaré

conjecture— was proved using contact 3–manifolds (Kronheimer-Mrowka [29]). Also,

the fact that Heegaard Floer homology determines the Seifert genus of a knot was first

proved with the help of contact 3–manifolds (Ozsváth-Szabó [38]). Being the natural

boundaries of Stein domains, the use of contact 3–manifolds resulted in a topological

description of Stein-manifolds. A contact structure on an oriented 3–manifold is a

totally non-integrable plane field. In other words it is a plane distribution that is not

everywhere tangent to any open embedded surface. Any 3–manifold admits a contact

structure (Martinet [33]). It is more subtle to understand the set of all different contact

structures on a given 3–manifold. One way to understand them is by examining lower

dimension submanifolds that respect the structure in some way. The 1–dimensional

such submanifolds are Legendrian and transverse knots.

Invariants that are fruitfully used to distinguish contact structures and Legendrian

and transverse knots come from Heegaard Floer homology. Heegaard Floer homologies,

(Ozsváth-Szabó, [40, 41, 43]) the recently-discovered invariants for 3- and 4-manifolds,

come from an application of Lagrangian Floer homology to spaces associated to Hee-

gaard diagrams. Although this theory is conjecturally isomorphic to Seiberg-Witten

theory, it is more topological and combinatorial in its flavor and thus easier to work

with in certain contexts. These homologies admit generalizations and refinements for

knots (Ozsváth-Szabó [39] and Rasmussen [46]) and links (Ozsváth-Szabó [44]) in 3–

manifolds and for non-closed 3–manifolds with certain boundary conditions (Juhász

[26]), called sutured Floer homology. The tools used to define the link-version were

later applied to define a completely combinatorial version of knot Floer homology in

the 3–sphere. In Heegaard Floer homology contact invariants were defined for contact

3–manifolds without (Ozsváth-Szabó [42]) or with (Honda-Kazez-Matic [24]) boundary.

These invariants had many applications, the most recent is a new proof for the fact that

a contact 3–manifold having Giroux torsion cannot be Stein-fillable (Ghiggini-Honda-

Van Horn-Morris [20]).
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There are two ways for a one dimensional submanifold to respects the contact struc-

ture. Its tangents can entirely lie in the plane distribution, in which case the knot is

called Legendrian knot, or if the tangents are transverse to the planes, then the knot is

called a transverse knot. The question underlying contact knot theory is simple: when

are two Legendrian or transferse knots the same, i.e., isotopic through Legendrian or

transversal knots? This question was first explicitly stated in [1] and also appears in

Kirby’s problem list [28].

Legendrian and transverse knot theory has been shaped by advances in convex sur-

face theory [16] (showing that different looking objects are actually equivalent) and by

the introduction of various invariants of these knots — proving that different looking

objects are, in fact, different. Examples of such invariants are provided by Chekanov’s

differential graded algebras and contact homology [4, 8]. More recently, Heegaard Floer

homology provided various sets of invariants: for knots in the standard contact 3–sphere

the combinatorial construction of knot Floer homology through grid diagrams [35, 45],

for null–homologous knots in general contact 3–manifolds the Legendrian invariant of

[30] and for general Legendrian knots the sutured invariant of the knot complement

[24]. In this dissertation we study these invariants to get a better understanding of

Legendrian and transverse knots.

This dissertation is organized as follows. In Section 2 we give a brief overview of the

different versions of Heegaard Floer homologies we will use. Section 3 is an introduction

to contact 3–manifolds, including basic definitions and facts about Legendrian and

transverse knots, convex surface theory, open book decompositions, partial open book

decompositions and bypass attachments. Then in Section 4 we connect the previous

two Sections and define invariants for Legendrian and transverse knots in Heegaard

Floer homology, in Section 5 we prove a relation between two of the invariants defined.

Using this relation we derive new properties of the Legendrian invariant. In Section 6

we obtain a connected-sum formula for the combinatorial invariant and as a corollary

we give a construction of infinitely many transversely non-simple knot types.
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2. Heegaard Floer theories

Heegaard Floer homologies are invariants for 3–manifolds and knots in 3–manifolds.

The original theories for closed 3–manifolds ĤF, HF−, HF+ and HFred were defined by

Ozsváth and Szabó, and then were generalized for null-homologous knots (ĤFK and

HFK−) by Ozsváth and Szabó [44] and independently by Rasmussen [46]. A related

theory SFH was introduced by Juhász [26] for 3–manifolds with certain boundary condi-

tions. All these theories arise from Lagrangian Floer theories associated to a Heegaard

decompositions of the 3–manifold. In the sequel we will give a brief description for these

theories. For a more complete treatment the reader is referred to [41, 40, 43, 39, 26]. In

Subsection 2.1 and 2.2 we give the preliminaries that are necessary for the definition of

Heegaard Floer homologies, and in Subsection 2.3 we will describe the original Heegaard

Floer theories. In Subsection 2.4 we define the refinement of Heegaard Floer homologies

for knots, then in Subsection 2.5 we introduce multiply pointed Heegaard diagrams and

generalize the previous theories to these settings. Multiply pointed Heegaard diagrams

are the major tools to define a combinatorial version of knot Floer homology in the 3–

sphere, this will be described in Subsection 2.6. Then Subsection 2.7 deals with sutured

Floer homology which is a common generalization of the -̂theories.

2.1. Heegaard decompositions and Heegaard diagrams. A genus g handlebody

U is a 3–manifold with boundary diffeomorphic to the neighborhood of a bouquet of

g circles. The boundary of a genus g handlebody is a surface Σ of genus g. A Hee-

gaard decomposition of a 3–manifold Y is a decomposition of Y to two handlebodies:

Y = Uα∪ΣUβ. Here Σ is oriented as the boundary of Uα. For example S3 has a Heegaard

decomposition to two 3–balls. For another example let S3 = S3
1 = {|(z1, z2)| = 1} ⊂ C2,

then Uα = {|z1| ≤ |z2|} ∩ S3 and Uβ = {|z2| ≤ |z1|} ∩ S3 gives a Heegaard decom-

position of genus 1, the gluing map T 2 = ∂Uα → T 2 = ∂Uβ brings the meridian of

∂Uα to a longitude of ∂Uβ. 3–manifolds with genus 1 Heegaard splittings are called

lens spaces. Any 3–manifold admits a Heegaard decomposition. Indeed, smooth mani-

folds admit triangulations, and the neighborhood of the 1–skeleton and its complement

(which is a neighborhood of the dual 1-skeleton) provides a Heegaard decomposition.

The introduction of a new edge in the triangulation increases the genus of the Heegaard

decomposition by one, this is called stabilization of the Heegaard decomposition. Hee-

gaard decompositions can be described by two sets of curves on Σ as follows. A properly
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embedded disc D in a handlebody U whose boundary γ is homologically nontrivial on Σ

is called a compressing disc. Choose g disjoint compressing discs in U that cut U up to a

ball, and denote their boundaries by γ = {γ1, . . . , γg}. The curves {γ1, . . . , γg} are dis-

joint, and are independent in H1(Σ;Z). Conversely a set of disjoint curves {γ1, . . . , γg}
on Σ that are independent in H1(Σ;Z) describe a handlebody; attaching thickened discs

to the thickened surface Σ along the γ–curves, we obtain a 3–manifold with boundary

Σ ∪ S2, and there is a unique way to fill in the sphere with a ball. Note that this g-

tuple of boundaries of compressing discs is not unique; if we isotope the γ–curves they

will still describe the same handlebody. The handlebody also remains unchanged if we

change the set γ = {γ1, γ2 . . . , γg} to γ ′ = {γ1 + γ2, γ2, . . . , γg}, where γ1 + γ2 is a curve

that bounds a pair of pants with γ1 and γ2 disjoint from {γ3, . . . , γg} (see Figure 1).

γ1 γ2

γ1 + γ2

Figure 1. Handleslide.

This operation is called handleslide. Given a Heegaard decomposition Y = Uα∪Σ Uβ,

then as above we can choose compressing discs α = {α1, . . . , αg} and β = {β1, . . . , βg}
on Σ for both handlebodies Uα and Uβ. The data (Σ,α,β) completely describes Y , and

it is called a Heegaard diagram for Y . For example the genus 1 Heegaard decomposition

of S3 has a Heegaard diagram (T 2, α, β), where T 2 = {|z1| = |z2| = 1} and the curves

are α = {|z1| = z2 = 1} and β = {z1 = |z2| = 1} depicted on Figure 2.

We have already seen, that isotoping and handlesliding amongst the α or β–curves

does not change the described 3–manifold. Stabilizing the Heegaard decomposition

can be described in terms of the Heegaard diagram as follows. Let (T 2, α, β) denote the

Heegaard diagram of S3 of Figure 2, then changing (Σ,α,β) to (Σ#T 2, α∪{α},β∪{β})
corresponds to connect summing Y with S3, thus we still get a Heegaard diagram for Y .

The above described three moves are called Heegaard moves, and they form a complete

set of moves:
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α

β

Figure 2. Genus 1 Heegaard diagram for S3.

Theorem 2.1. [47, 49, 41] Any two Heegaard diagrams (Σ1,α1,β1) and (Σ2,α2,β2)

of Y have stabilizations that are related by Heegaard moves. ¤

In the sequel it will be useful to fix a basepoint w in the complement of the curves in

Σ. The data (Σ,α, β, w) is called a pointed Heegaard diagram. Whenever basepoints

are present we require the Heegaard moves to be disjoint from them. Thus the isotopies

cannot cross the basepoint, and the pair of pants of the handle slide cannot contain

the basepoint and during the stabilization the connected sum is taken away from the

basepoint. These restricted moves are called pointed Heegaard moves, and they are also

sufficient:

Theorem 2.2. [47, 49, 41] Any two pointed Heegaard diagrams (Σ1,α1,β1, w1) and

(Σ2,α2,β2, w2) of Y have stabilizations that are related by pointed Heegaard moves. ¤

The above theorems are proved using Morse theoretic arguments. Morse theory is a

good way to think of Heegaard decompositions, so here follows a brief description of

Morse theory and the way it defines Heegaard diagrams (for more details see [34]). Also

this viewpoint allows us to generalize Heegaard Floer theories as it will be described in

Subsections 2.3 and 2.5. A Morse function is a smooth map f : Y → R with isolated

non-degenerate critical points. In a non-degenerate critical point the Hessian is a bilin-

ear form with no nullity. The dimension of the maximal subspace where the Hessian is

negative definite is called the index of the critical point. The gradient flow line of the

Morse function has singularities exactly in the critical points, and the index of a critical

point is the dimension of its descending manifold ; the set of points flowing up to the crit-

ical point. Thus an index λ critical point corresponds to the gluing of a 3–dimensional

λ–handle. A Morse function is self-indexing if the index λ critical points lie on level λ. In

the case of a closed 3–manifold a self-indexing Morse function is a function f : Y → [0, 3]
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such that f(index λ critical points) = {λ} (0 ≤ λ ≤ 3). Any smooth manifold admits a

Morse function. Moreover closed manifolds admit Morse functions with only one mini-

mum and maximum. Hereafter we will assume that f : Y → [0, 3] is a self indexing Morse

function with a unique maximum and a unique minimum. The level set f−1(3
2
) = Σ

is a genus g surface where g = #{index 1 critical points} = #{index 2 critical points}.
The surface Σ is the Heegaard surface for the decomposition to two handlebodies

Uα = f−1[0, 3
2
] and Uβ = f−1[3

2
, 3]. A Heegaard diagram corresponding to this Hee-

gaard decomposition can be given as follows. The ascending manifold of an index 1

critical point intersects Σ in a connected 1 dimensional submanifold. The g index 1

critical point thus define g disjoint simple closed curves: α = {α1, . . . , αg} Similarly the

intersection of the descending manifolds of the index 2 critical points define the curves

β = {β1, . . . , βg} on the surface Σ. With the above notations the diagram (Σ, α,β) is a

Heegaard diagram for Y . A basepoint w on Σ gives a gradient flowline connecting the

minimum to the maximum.

Theorem 2.2 gives us a way to define 3–manifold invariants using Heegaard diagrams.

An invariant of (pointed) Heegaard diagrams that is invariant under (pointed) Heegaard

moves, is a 3–manifold invariant. This is the idea Ozsváth and Szabó followed to define

Heegaard Floer homologies.

2.2. Symmetric product, holomorphic discs. In the sequel it will be useful to

understand certain structures associated to a pointed Heegaard diagram (Σ, α,β, w).

The gth symmetric product of Σ is: Symg(Σ) = Σ×g/Sg, where Sg is the symmetric

group on g letters acting by permuting the coordinates. Although Sg does not act

freely on the product, the symmetric product turns out to be a smooth 2g dimensional

manifold, moreover it inherits a complex structure from a complex structure on Σ. The

α and β–curves define totally real tori Tα = α1 × · · · × αg and Tβ = β1 × · · · × βg ⊆
Symg(Σ) and the basepoint defines the divisor Vw = {w}×Symg−1(Σ) disjoint from the

tori. If the α and β–curves are transversal in Σ, then the tori Tα and Tβ intersect each

other transversally too. Thus the intersection is a compact 0 dimensional manifold. The

Heegaard Floer chain complex will be generated by these intersection points Tα ∩ Tβ.

In other words the generators are g-tuples of points of Σ, such that there is exactly one

point on each α and β curve.

The boundary map is defined using holomorphic discs. Consider the disc D = {|z| ≤
1} ⊆ C. Divide its boundary to two arcs eα = ∂D ∩ {Re(z) ≥ 0} and eβ = ∂D ∩
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{Re(z) ≤ 0}. For two intersection points x,y ∈ Symg(Σ) the set π2(x,y) consists of

homotopy classes of maps φ : D → Symg(Σ) such that φ(−i) = x, φ(i) = y, φ(eα) ⊆
Tα and φ(eβ) ⊆ Tβ. (See Figure 3 for a schematic picture.) Note that there is no

−i

i

eαeβ

Tα

Tβ

Symg(Σ)

x

y

Figure 3. A Whitney disc.

multiplication on π2(x,y) unless x = y. To understand the boundary maps better we

consider their “shadow” on Σ. For any point z on Σ define the divisor Vz = {z} ×
Symg−1(Σ) and for a map φ ∈ π2(x,y) let nz(φ) = #{Vz ∩ φ(D)}. Choose a point

zi in each component Di of Σ − ∪α − ∪β then the domain of a map φ ∈ π2(x,y)

is D(φ) =
∑

nzi
(φ)Di. This is independent of the choice of the zi’s and the chosen

representation of the homotopy class. Its boundary ∂D consist of subarcs of the α-

and β–curves connecting the tuples x to y on the α–curves and y to x on the β–

curves. A domain satisfying the latter conditions is said to connect x to y. Note that

if the homotopy class φ contains a holomorphic representative, then nz(φ) ≥ 0 for any

z ∈ Σ. The difference of two domains connecting x to y is a domain whose boundary

contain full α and β–curves. Such domains are called periodic domains. A Heegaard

diagram is weakly admissible if all nontrivial periodic domains have components with

both positive and negative coefficient. Weak admissibility ensures the finiteness of

homotopy classes with holomorphic representatives connecting x to y. Every Heegaard

diagram is isotopic to a weakly admissible one. In the sequel without explicitly stating

we will always assume that Heegaard diagrams at issue are weakly admissible. For a

fixed homotopy class φ ∈ π2(x,y) consider the moduli space of holomorphic discs M(φ)

representing φ. Note that in order to guarantee the smoothness of M(φ) one needs to
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perturb the inherited complex structure on Symg(Σ). This is where Lagrangian Floer

homology comes into the picture, and in this dissertation we will only use the results

coming from this theory, without introducing any of the tools (See [17, 18] for details).

The dimension of M(φ) is called the Maslov index of φ, and is denoted by µ(φ). Note

that D is conform equivalent to the strip [−1, 1] × R with eα and eβ being mapped

to {1} × R and {−1} × R, thus translations provide an R-action on the moduli space

M(φ).

2.3. Heegaard Floer homology. Suppose that Y is a smooth oriented 3–manifold,

and (Σ, α,β, w) is a Heegaard diagram for Y . Consider the module CF−(Σ, α,β, w)

over the polynomial algebra Z2[U ] freely generated by the intersection points of the

totally real submanifolds Tα = α1 × · · · × αg and Tβ = β1 × · · · × βg of Symg(Σ). This

module is endowed with the differential

∂−x =
∑

y∈Tα∩Tβ

∑

φ∈π2(x,y)
µ(φ)=1

∣∣∣∣
M(φ)

R

∣∣∣∣ Unw(φ)y

The relative Maslov-grading of two intersection points x,y ∈ Tα ∩ Tβ is defined by

M(x) −M(y) = µ(φ) − 2nw(φ), where φ ∈ π2(x,y) is any homotopy class from x to

y. We extend this relative grading to the whole module by M(Uax) = M(x)− 2a. The

differential ∂− lowers the grading by 1. By examining the boundary of 1 dimensional

moduli spaces of holomorphic discs it is proved:

Theorem 2.3 (Ozsváth-Szabó, [41]). (CF−, ∂−) is a chain-complex, i.e. (∂−)2 = 0. ¤

Thus we can take its homology HF−(Σ,α,β, w). As it was shown in [41], the homo-

topy type of the chain complex is invariant under pointed Heegaard moves, and thus

give an invariant for Y .

Theorem 2.4 (Ozsváth-Szabó, [41]). Let Y be a closed oriented 3–manifold. Consider

the Heegaard diagrams (Σ1,α1, β1, w1) and (Σ2,α2,β2, w2) for Y . Then the complexes

CF−(Σ1, α1,β1, w1) and CF−(Σ2, α2,β2, w2) are chain-homotopy equivalent as Z2[U ]-

modules. In particular HF−(Σ1, α1,β1, w1) and HF−(Σ2,α2,β2, w2) are isomorphic.

A simpler version of the above invariant is gotten by setting U = 0. In other words,

the chain complex ĈF is generated by Tα ∩Tβ over Z2, and the boundary map is given
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by:

∂̂x =
∑

y∈Tα∩Tβ

∑

φ∈π2(x,y)
µ(φ)=1
nz(φ)=0

∣∣∣∣
M(φ)

R

∣∣∣∣y

This defines a chain-complex, and as a consequence of Theorem 2.4, its chain homo-

topy type and thus its homology only depends on the 3–manifold Y :

Theorem 2.5 (Ozsváth-Szabó, [41]). Let Y be a closed oriented 3–manifold. Con-

sider the Heegaard diagrams (Σ1,α1,β1, w1) and (Σ2, α2,β2, w2) for Y . Then the com-

plexes ĈF (Σ1, α1,β1, w1) and ĈF (Σ2, α2,β2, w2) are chain-homotopy equivalent as Z2-

vectorspaces. In particular ĤF (Σ1,α1,β1, w1) and ĤF (Σ2,α2,β2, w2) are isomorphic.

2.4. Knot Floer homology. Here we outline the basic definitions of knot Floer ho-

mologies, originally defined by Ozsváth and Szabó [44] and independently by Rasmussen

[46]. Let K be an oriented null homologous knot in a 3–manifold Y . Fix a Morse func-

tion K → [0, 3] with a unique minimum at level 0 and a unique maximum at level 3.

This function can be extended to a self-indexing Morse function for the entire manifold

with no additional minima and maxima. Then K intersects the Heegaard surface Σ in

exactly two points. The positive intersection point is called z, the negative one is w.

Thus we get a Heegaard diagram (Σ,α,β, w, z) with two basepoints. Conversely, if a

Heegaard diagram with two basepoints is given, then we can recover the 3–manifold and

the knot in it as follows. By connecting the basepoints w and z in the complement of

the α–curves and z to w in the complement of the β–curves we get two arcs on Σ, the

former one can be pushed into Uα and the latter one to Uβ, to form an embedded knot

K in Y . (See Figure 4 for a Heegaard diagram associated to the right handed trefoil

knot in S3.) Thanks to the new basepoint, the same chain complex (CF−, ∂−) now ad-

mits an additional relative grading A called the Alexander grading. For two intersection

points x,y ∈ Symg(Σ) the Alexander grading difference is A(x)−A(y) = nz(φ)−nw(φ),

where φ ∈ π2(x,y). This is independent of φ provided that K was null homologous.

The homology of the graded complex (CFK− = CF−, ∂−0 ) with

∂−0 x =
∑

y∈Tα∩Tβ

∑

φ∈π2(x,y)
µ(φ)=1
nz(φ)=0

∣∣∣∣
M(φ)

R

∣∣∣∣ Unw(φ)y
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α

β

z

w
z

w

Heegaard diagram The knot

Figure 4. Heegaard diagram of the right handed trefoil knot.

is an invariant of the pair (Y, K). As before, a simpler version ĤFK can also be defined

by setting U = 0 in the previous equation.

Theorem 2.6 (Ozsváth-Szabó, [39]). Let K be a null homologous knot in a closed ori-

ented 3–manifold Y . Consider the Heegaard diagrams (Σ1, α1,β1, w1, z1) and (Σ2,α2, β2, w2, z2)

for the pair (Y, K). Then the complexes CFK−(Σ1,α1,β1, w1, z1) and CFK−(Σ2,α2,β2, w2, z2)

are chain-homotopy equivalent as Z2[U ]-modules. In particular HFK−(Σ1,α1,β1, w1, z1)

and HFK−(Σ2,α2,β2, w2, z2) are isomorphic. Similar statement holds for the ĤFK the-

ories.

2.5. Heegaard Floer homologies with multiple basepoints. A more general de-

scription of knot Floer homology, using multiple basepoints is used to define the com-

binatorial version of knot Floer homology in S3. (See Subsection ??.) Here we briefly

outline the definition, and then restrict ourselves to knots only in S3, as this will be

the context we will need later. Consider a knot K in an oriented, closed 3–manifold

Y . There is a self-indexing Morse function with k minima and k maxima such that

K is made out of 2k flow lines connecting all the index zero and index three criti-

cal points. Such a Morse function gives rise to a Heegaard diagram (Σ,α, β,w, z) for

(Y,K) in the following way. Let Σ = f−1(3
2
) be a genus g surface. The α–curves

α = {α1, . . . , αg+k−1} are defined to be the circles of Σ whose points flow down to the

index one critical points. Similarly β = {β1, . . . , βg+k−1} are the curves with points

flowing up to the index two critical points. Finally let z = {z1, . . . , zk} be the positive

intersection points and w = {w1, . . . , wk} be the negative intersection points of K with

Σ.
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Consider the module CF−(Σ,α,β,w) over the polynomial algebra Z2[U1, . . . , Uk]

freely generated by the intersection points of the totally real submanifolds Tα = α1 ×
· · · ×αg+k−1 and Tβ = β1× · · · × βg+k−1 of Symg+k−1(Σ). This module is endowed with

the differential

∂−x =
∑

y∈Tα∩Tβ

∑

φ∈π2(x,y)
µ(φ)=1

∣∣∣∣
M(φ)

R

∣∣∣∣ U
nw1 (φ)
1 · · ·Unwk

(φ)

k y

Let

(1)
(
ĈF(Σ,α,β,w), ∂̂

)
=

(
CF−(Σ, α,β,w)

(U1 = 0)
,
[
∂−

])
.

The chain-homotopy type of the above complexes are invariants of Y in the following

sense:

Theorem 2.7. (Ozsváth-Szabó, [44]) Let Y be a closed oriented 3–manifold. Consider

the Heegaard diagrams (Σ1, α1,β1,w1) and (Σ2,α2,β2,w2) for Y with |w1| = k1 and

|w2| = k2. Assuming k1 ≥ k2 the complexes CF−(Σ1, α1,β1,w1) and CF−(Σ2,α2,β2,w2)

are chain-homotopy equivalent as Z2[U1, . . . , Uk1 ]-modules. Here the latter complex is

endowed with the Z2[U1, . . . , Uk1 ]-module structure by defining the action of Uk2 , . . . , Uk1

to be identical. Similar statement holds for the ĈF-theory, moreover the chain-homotopy

equivalences form a commutative diagram with the factorization map of (1). ¤

Hereafter we assume that our underlying 3–manifold is the 3–sphere. Note that in

this case the homology of CF−(Σ,α,β,w) is HF−(S3) = Z2[U ]. The relative Maslov-

grading of two intersection points x,y ∈ Tα ∩Tβ is defined by M(x)−M(y) = µ(φ)−
2
∑

nwi
(φ), where φ ∈ π2(x,y) is any homotopy class from x to y. Since knots in S3 are

nullhomologous this grading is independent of the chosen homotopy class. We extend

this relative grading to the whole module by M(Ua1
1 · · ·Uak

k x) = M(x)−2(a1+ · · ·+ak).

For S3, the grading can be lifted to an absolute grading by fixing the grading of the

generator of HF−(S3) = Z2[U ] at 0.

Note that so far we made no reference to the basepoints z. The relative Alexander

grading is defined by A(x)−A(y) =
∑

nzi
(φ)−∑

nwi
(φ), where again φ can be chosen

to be any homotopy class in π2(x,y). This relative grading can be uniquely lifted to

an absolute Alexander grading which satisfies
∑

TA(x) = ∆K(T )(1 − T )n−1 (mod 2),
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where ∆K(T ) is the symmetrized Alexander polynomial. We can extend the Alexander

grading to the module by A(Ua1
1 · · ·Uak

k x) = A(x) − (a1 + · · · + ak). As the local

multiplicities of pseudo-holomorphic discs are non-negative, we obtain filtered chain

complexes CFK−(Σ,α, β,w, z) and ĈFK(Σ,α, β,w, z), that are invariants of the knot:

Theorem 2.8. (Ozsváth–Szabó, [44]) Let K be an oriented knot. Consider the Heegaard

diagrams (Σ1,α1,β1,w1, z1) and (Σ2,α2, β2,w2, z2) for K with |w1| = |z1| = k1 and

|w2| = |z2| = k2. Assuming k1 ≥ k2 the filtered complexes CFK−(Σ1,α1,β1,w1, z1)

and CFK−(Σ2,α2,β2,w2, z2) are filtered chain-homotopy equivalent as Z2[U1, . . . , Uk1 ]-

modules. Here the latter complex is endowed with the Z2[U1, . . . , Uk1 ]-module structure

by defining the action of Uk2 , . . . , Uk1 to be identical. Similar statement holds for the

ĈFK-theory, moreover the chain homotopy equivalences form a commutative diagram

with the factorization map of (1). ¤

As it is easier to work with, we usually consider the associated graded objects of

the filtered chain complexes and denote their homologies by HFK−. In particular

HFK−(Σ,α, β,w, z) is the homology of the complex (CFK−(Σ,α,β,w, z), ∂−0 ), where

∂−0 x =
∑

y∈Tα∩Tβ

∑

φ∈π2(x,y)
nz1 (φ)+···+nzk

(φ)=0

µ(φ)=1

∣∣∣∣
M(φ)

R

∣∣∣∣ U
nw1 (φ)
1 · · ·Unwk

(φ)

k y.

The Ui’s for different i act chain-homotopically, so on the homology level all Ui act

identically. This observation endows HFK−(Σ,α,β,w, z) with a Z2[U ]-structure, by

defining the U action to be the action of any of the Ui’s. Then Theorem 2.8 translates:

Theorem 2.9. (Ozsváth–Szabó, [44]) Let K be an oriented knot. Consider the Hee-

gaard diagrams (Σ1,α1, β1,w1, z1) and (Σ2, α2,β2,w2, z2) for K. Then the knot Floer

homologies HFK−(Σ1,α1,β1,w1, z1) and HFK−(Σ2,α2,β2,w2, z2) are isomorphic as

Z2[U ]-modules. Similar statement holds for the ĤFK-theory, moreover the isomorphisms

form a commutative diagram with the factorization map of (1). ¤

Knot Floer homology satisfies a Künneth-type formula for connected sums:

Theorem 2.10. (Ozsváth–Szabó, [44]) Let K1 and K2 be oriented knots in S3 described

by the Heegaard diagrams (Σ1,α1,β1,w1, z1) and (Σ2,α2,β2,w2, z2). Let w ∈ w1 and

z ∈ z2. Then
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(1) (Σ1#Σ2, α1 ∪α2,β1 ∪ β2, (w1 − w) ∪w2, z1 ∪ (z2 − z)) is a Heegaard diagram

for K1#K2. Here the connected sum Σ1#Σ2 is taken in the regions containing

w ∈ Σ1 and z ∈ Σ2;

Let |w1| = |z1| = k1 and |w2| = |z2| = k2. Both complexes CFK−(Σ1,α1,β1,w1, z1)

and CFK−(Σ2,α2,β2,w2, z2) are Z2[U1, . . . , Uk1 , V1, . . . , Vk2 ]-modules with the elements

U1, . . . , Uk1 acting trivially on the latter and V1, . . . , Vk2 acting trivially on the former

complex. With these conventions in place we have

(2) CFK− (Σ1,α1, β1,w1, z1)⊗U1=V1 CFK− (Σ2, α2,β2,w2, z2) is filtered chain ho-

motopy equivalent to

CFK− (Σ1#Σ2,α1 ∪α2, β1 ∪ β2, (w1 − w) ∪w2, z1 ∪ (z2 − z)) ;

(3) HFK−(K1#K2) is isomorphic to HFK−(K1)⊗HFK−(K2) and this isomorphism

can be given by x1 ⊗ x2 7→ (x1,x2) on the generators.

Similar statement holds for the ĈFK-theory, moreover the chain homotopy equiva-

lences form a commutative diagram with the factorization map of (1). ¤

2.6. Combinatorial knot Floer homology and grid diagrams. As it was observed

in [32, 31], knot Floer homology admits a completely combinatorial description via grid

diagrams. A grid diagram G is a k × k square grid placed on the plane with some of

its cells decorated with an X or an O and containing exactly one X and O in each

of its rows and columns. Such a diagram naturally defines an oriented link projection

by connecting the O’s to the X’s in each row and the X’s to the O’s in the columns

and letting the vertical line to overpass at the intersection points. For simplicity we

will assume that the corresponding link is a knot K. There are certain moves of the

grid diagram that do not change the (topological) knot type [45]. These are cyclic

permutation of the rows or columns, commutation of two consecutive rows (columns)

such that the X and the O from one row (column) does not separate the X and the O

from the other row (column) and (de)stabilization which is defined as follows. A square

in the grid containing an X (O) can be subdivided into four squares by introducing a

new vertical and a new horizontal line dividing the row and the column that contains

that square. By replacing the X (O) by one O (X) and two X’s (O’s) in the diagonal

of the new four squares and placing the two O’s (X’s) in the subdivided row and

column appropriately, we get a new grid diagram which is called the stabilization of
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the original one. The inverse of stabilization is destabilization. There are eight types

of (de)stabilization: O : SW , O : SE, O : NW , O : NE, X : SW , X : SE, X : NW and

X : NE, where the first coordinate indicates which symbol we started with and the

second shows the placement of the unique new symbol. A stabilization of type X :NW

is depicted on Figure 5.

Placing the grid on a torus by identifying the opposite edges of the square grid

we obtain a Heegaard diagram with multiple basepoints for (S3, K). Here the w’s

correspond to the O’s, the z’s to the X’s, and the α–curves to the horizontal lines and

the β–curves to the vertical lines. As each region of this Heegaard diagram is a square,

it is“nice” in the sense defined in [48]. Thus boundary maps can be given by rectangles.

This observation led to a completely combinatorial description of knot Floer homology

[32, 31] in the 3–sphere.

2.7. Sutured Floer homology. A sutured 3–manifold is a pair (Y, γ) where Y is a

compact, oriented 3–manifold with boundary and γ ⊂ ∂Y is a disjoint set of embedded

tori and annuli. Every component of R(γ) = ∂Y − γ is oriented, and R+ (resp. R−)

is the union of those components where the normal vector points out (resp. in) Y .

The sutured manifold is called balanced if all sutures are annular, Y has no closed

components, every boundary component admits a suture and χ(R+) = χ(R−) on every

component of Y . As is customary, annular sutures are symbolized by the homologically

nontrivial simple closed curves they contain, the collection of which is denoted by Γ.

Without confusion, the term “suture” will also refer to these homologically nontrivial

curves, and sometimes to their union Γ. The suture Γ is oriented as the boundary of

R+ ⊂ ∂Y . We will consider only balanced sutured manifolds.

Figure 5. Stabilization of type X :NW



18

Heegaard diagrams can be generalized to this context as follows. Any balanced su-

tured 3-manifold admits a self-indexing Morse-function f : Y → [−1, 4] with f−1(−1) =

R−, f−1(4) = R+, f−1(3
2
)∩ ∂Y = Γ and f being the height function for a trivialization

of γ = ν(Γ) = Γ × I → I. A Morse-function on Y gives rise to a balanced Heegaard

diagram, (Σ,α,β) for Y in the usual manner. Σ = f−1(3
2
) is a surface with no closed

components and with boundary Γ. Then the α–curves are the ones that are flowing

down to the index 1 critical points at infinity, while the β–curves are the ones to which

the index 2 critical points are flowing up to with the flow of a gradient-like vector field.

Note that both the α–curves and the β–curves are homologically independent and dis-

joint. Also as (Y, Γ) is balanced, we have |α| = |β| =: k. As it is proved by Juhász, a

balanced Heegaard diagram corresponds to a balanced sutured 3–manifold if and only

if |α| = |β| and the maps π0(∂Σ) → π0(Σ−α) and π0(∂Σ) → π0(Σ−β) are surjective.

For a given set of curves γ = {γ1, . . . , γk} on Σ denote by Σ[γ] the surface obtained by

surgery on Σ along γ.

The previous scheme applies verbatim (without even the choice of base points). Con-

sider the module SFC(Σ,α,β) freely generated over Z2 by the intersection points of

the totally real submanifolds Tα = α1 × · · · × αk and Tβ = β1 × · · · × βk of Symk(Σ).

This module is endowed with the differential:

∂x =
∑

y∈Tα∩Tβ

∑

φ∈π2(x,y)

φ∩Γ×Symk(Σ)=∅
µ(φ)=1

∣∣∣∣
M(φ)

R

∣∣∣∣y

Weak admissibility ensures the above sum to be finite. Denote the homology of the

complex by SFH(Σ,α,β).

Rβ = R+

−Rα = R
−

Uβ

−Uα

Σ
Γ

Figure 6. Schematic picture for a balanced sutured 3-manifold
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Theorem 2.11 (Juhász, [26]). Suppose that (Σ1,α1,β1) and (Σ2, α2,β2) are balanced

Heegaard diagrams for the same balanced sutured 3-manifold (Y, Γ). Then there is an

induced Z2-module isomorphism for the corresponding sutured Floer homologies:

Ψ : SFH(Σ1,α1, β1),→ SFH(Σ2,α2, β2).

¤

The above defined invariant is the sutured Floer homology SFH(Y, Γ). This theory

is a common generalization of the ĤF and ĤFK theories. Indeed, if (Σ,α, β, w) is a

pointed Heegaard diagram for a 3–manifold, then by deleting a small neighborhood

ν(w) of w from Σ, we obtain a balanced sutured Heegaard diagram (Σ − ν(w), α,β)

for Y − B3 with a one component suture Γ on its boundary S2. The definitions of the

corresponding Heegaard theories are literally the same, thus ĤF(Y ) is isomorphic to

SFH(Y − B3, Γ). The same principle generalizes for knots too, which we will describe

from another perspective. If Σ has exactly two boundary components and Σ denotes

the capped of closed surface, and if the number of attaching curves k equals to the

genus of Σ and the curves are homologically independent in Σ, then the corresponding

sutured 3–manifold has toric boundary with a 2–component suture, and by placing two

marked points on the caps we get an identification

Φ: SFH(Y, Γ) → ĤFK(YΓ, K ′),

where YΓ is the result of Dehn filling of Y with slope given by a component of Γ and

K ′ is the core of the glued–up solid torus.
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3. Contact 3–manifolds

Here we give a brief overview of the necessary definitions and notions of contact

topology. For a more complete treatment the reader is referred to [13, 36]. A contact

structure ξ on an oriented 3–manifold Y is a totally non-integrable plane field. In other

words it is a plane distribution that is not tangent to a surface on any open subset of

Y . A plane field can locally be given as the kernel of a 1–form α ∈ Ω1(Y ), then the

Frobenius Theorem translates to these settings; the plane field is integrable if and only

if α∧dα vanishes. If α∧dα is nowhere 0, then ξ = ker α is non-integrable. The contact

structure is cooriented if ξ can be globally given as ker α. The plane field ξ is called

positive, if the 3–form α ∧ dα provides a volume-form for the oriented 3–manifold Y .

In the following we will only deal with positive cooriented contact structures, and will

simply refer to them as contact structures. Two contact 3–manifolds (Y1, ξ1) and (Y2, ξ2)

are contactomorphic if there is a diffeomorphism f : Y1 → Y2 with f∗(ξ1) = ξ2. Two

contact structures ξ1 and ξ2 on the same 3–manifold Y are said to be isotopic if there is

a contactomorphism f : (Y, ξ1) → (Y, ξ2) isotopic to the identity. The standard contact

structure ξst on R3 (or on S3) is given as the kernel of the 1–form αst = dz + xdy. A

visualization of the contact plane fields is given on Figure 7. Contact structures are

z  

x

y

Figure 7. The standard contact structure on S3. (Figure courtesy of S.

Schönenberger.)

determined in the neighborhood of compact sets:
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Theorem 3.1 (Moser’s method). Let Z be a compact subspace of a closed oriented

3–manifold Y . Suppose, that there are two contact structures ξ1 and ξ2 given on Y that

coincide when restricted to Z. Then there is a neighborhood U of Z such that ξ1|U and

ξ2|U are isotopic contact structures relative Z.

In particular every contact 3–manifold locally looks like this standard one. Using

cylindrical coordinates another contact structure on R3 (or on S3) can be defined as

ξOT = ker(cos rdz + r sin rdϑ). (See Figure 8.) Both ξst and ξOT rotate in a clockwise

Figure 8. An overtwisted contact structure ξOT on S3. (Figure courtesy

of S. Schönenberger.)

manner as we move along the z axis, but while ξst only makes one twist ξOT makes

several. This latter property of a contact structure is called overtwistedness. A precise

definition of it goes as follows. An overtwisted disc is a disc with the contact planes

being tangent to it along its boundary. For example the disc D2 = {(0, θ, r) : r ≤ π}
in (S3, ξOT) is an overtwisted disc. Contact structures containing overtwisted discs

are called overtwisted contact structures, the ones with no overtwisted discs are tight

contact structures. By a fundamental theorem of Eliashberg [5] on a given 3–manifold

the isotopy classes of overtwisted contact structures can be classified in terms of only

homotopical properties; two contact structures are isotopic if the corresponding plane

fields are homotopic. The classification of tight contact structures is more stubble and

have only been determined for a few 3–manifolds; S3, lens spaces, circle bundles, torus

bundles and some special Seifert fibred 3-manifolds. Another class of contact structures

can be given on T 2× I. The contact structure ξn on T 2× [0, 1] = R/Z×R/Z× [0, 1] =
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{(x, y, z)} is defined by ξn = ker(cos(2πnz)dx−sin(2πnz)dy). A (not necessarily closed)

contact 3–manifold (Y, ξ) has Giroux torsion τ(Y, ξ) ≥ n if it contains an embedded

submanifold T 2× I with the property that (T 2× I, ξ|T 2×I) is contactomorphic to (T 2×
[0, 1], ξn). Overtwisted contact structures have Giroux torsion τ = ∞.

The classification of tight contact structures led to the examination of its submanifolds

that somehow respect the contact structure. We will first describe special 1 dimensional

and then 1 codimensional submanifolds.

3.1. Legendrian and transverse knots. There are two distinguished knot types in

a contact structure (Y, ξ). A knot L in a closed, contact 3–manifold (Y, ξ) is Legendrian

if the tangent vectors of the knot are contained by the contact 2–plane field ξ. The

knot T is transverse, if the (nonzero) tangent vectors are nowhere contained by ξ.

The coorientation of ξ endows transverse knots with an orientation. An application

of Moser’s method for Legendrian and transverse knots provides that these knots have

standard neighborhoods.

By pushing off a Legendrian knot L in a direction transverse to ξ we obtain a trans-

verse knot, the transverse push off of L. The push off inherits an orientation from L

and we require this orientation to agree with the natural transverse orientation. As it

can be seen from the sample local picture, a transverse knot T has Legendrian knots

in its neighborhood, these knots are the Legendrian approximations of T . The trans-

verse push off of a Legendrian approximation of T is T itself. As it will be explained

later, transverse knots can be described as the equivalence classes of their Legendrian

approximations.

Two Legendrian (transverse) knots are Legendrian (transverse) isotopic if they are

isotopic through Legendrian (transverse) knots. Similarly to the smooth case these iso-

topies can be extended to the ambient 3–manifold. This equivalence relation is finer

than the one given by smooth isotopy. One way to see that is by introducing new invari-

ants. There are two classical invariants for null-homologous Legendrian knots defined

as follows. By pushing off the knot in a transverse direction we obtain the Thurston-

Bennequin framing of the Legendrian knot. Comparing this to the Seifert framing we

get the Thurston-Bennequin number tb(L). The rotation number rot(L) is the winding

number of TL with respect to a trivialization of the contact planes along L that ex-

tends to a Seifert surface. By pushing off the transverse knot T in a direction of a vector

field in the contact planes that extends to a nonzero vector field to a Seifert-surface of
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T we get T ′. The self-linking number sl(T ) is the linking of T with its push-off T ′.

An easy way to construct non-Legendrian (non-transverse) isotopic Legendrian knots

is the stabilization of the knot. This is a local operation, thus it is sufficient to de-

scribe it only in the standard contact 3–sphere which we will do in the next Subsection.

Once the Legendrian knot is oriented there are two types of stabilizations: positive

and negative producing L+ and L− from L. These operations change the invariants:

tb(L±) = tb(L) − 1 and rot(L±) = rot(L) ∓ 1. For transverse knots there is only one

stabilization corresponding to the positive stabilization of the Legendrian knots in its

neighborhood. Stabilization gives a nice relation between Legendrian approximations

of a transverse knot T giving rise to an alternate description of transverse isotopy. Two

transverse knots are transversely isotopic if and only if their Legendrian approximations

have common negative stabilizations. This allows us to mainly deal with Legendrian

knots. The self-linking number of a transverse knot T can be deduced from the classical

invariants of its Legendrian approximation L: sl(L) = tb(L)−r(L). Note that this value

is independent of the chosen Legendrian approximation. Sometimes the classical invari-

ants are enough to tell Legendrian (transverse) realizations of a knot-type apart; a knot

is called Legendrian simple (or transversely simple) if any two Legendrian (transverse)

realizations of it with equal Thurston-Bennequin and rotation (self-linking) number(s)

are isotopic through Legendrian (transverse) knots.

3.2. Knots in the standard contact space and front projections. Recall that a

Legendrian knot L in R3 (or in S3 = R3∪{∞}) endowed with the standard contact form

dz + xdy is an oriented knot along which the form dz + xdy vanishes identically. Thus

Legendrian knots are determined by their front projection to the yz-plane; a generic

projection is smooth in all but finitely many cusp points, has no vertical tangents and at

each crossing the strand with smaller slope is in the front. By changing the parts with

vertical tangents to cusps and adding zig-zags, a generic smooth projection of a knot

can be arranged to be of the above type. Thus any knot can be placed in Legendrian

position. (Figure 24 depicts a Legendrian realization of the righthanded trefoil knot.)

But this can be done in many different ways up to Legendrian isotopy. For example,

by adding extra zig-zags in the front projection we obtain a different Legendrian repre-

sentative. Figure 10 depicts the operation of adding a downward (upward) cusp. This

method is called positive (negative) stabilization, see Figure 10.
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Figure 9. Righthanded trefoil knot

+

−

Figure 10. Positive and negative stabilization.

As in the smooth case, Legendrian isotopy can be understood in terms of the front

projection; two front projections correspond to Legendrian isotopic Legendrian knots if

they are related by a finite sequence of Legendrian Reidemeister moves of Figure 11.

Figure 11. Legendrian Reidemeister moves

The connected sum of knots were defined by using an arc connecting them. The

ambiguity of the connected sum operation is even more apparent in to Legendrian
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case, as a fixed connecting arc can have many Legendrian representatives. Similarly

to the smooth case in the standard contact 3–sphere there is a way around it. As it

is described in [15] we can think of the two knots, as sitting in two disjoint standard

contact 3–spheres, and we can connect sum the two spheres using a small ball in which

the Legendrian arcs are standard. Figure 12 depicts the effect of the above process in

the front projection.

3.3. Convex surface theory. On a generic (not necessarily closed) surface Σ in a

contact structure (Y, ξ) the linefield ξ∩TΣ defines a singular foliation of Σ with isolated

elliptic or hyperbolic singularities. In a nonsingular point the foliation can be oriented

as follows. Pick a normal vector n coorienting ξ in TΣ, then the vector v ∈ ξ ∩ TΣ

orients the foliation if (v, n) forms a positive basis of TΣ. The sign of a singular

point is positive if the orientation of TΣ and ξ coincide and negative otherwise. With

this choice of orientation positive elliptic points become sources and negative elliptic

points become sinks. The above described singular foliation is called the characteristic

foliation of the surface Σ and is denoted by FΣ. The characteristic foliation determines

the contact structure on the surface, thus by Moser’s method it also determines it in

the neighborhood of the surface. As an example, study the characteristic foliation on

the overtwisted disc D2 = {(0, θ, r) : r ≤ π} in (S3, ξOT). As it is shown on the left

hand side of Figure 13, it has singularities along its boundary and in the origin. To

put it into generic position we can slightly push its middle up fixing only its boundary.

The obtained characteristic foliation is as shown on the right hand side of Figure 13 has

only one elliptic singular point.

As it was observed by Giroux [21] for a special but still dense class of surfaces called

convex surfaces even less structure -a multicurve- is enough to describe the contact

L1 L2 L1 L2

L1

L2

L1

L2

or

Figure 12. Connected sum of two Legendrian knots.
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Figure 13. Characteristic foliation on an overtwisted disc.

structure in a neighborhood of the surface. So it is easy to glue contact structures

along convex surfaces, thus this will be the boundary condition for contact 3–manifolds

with boundary. A contact vector field v on a contact 3–manifold is a vector field whose

flow preserves the contact structure. A surface Σ is convex, if there is a contact vector

field (positively) transverse to it. In the case when Σ is not closed we also require its

boundary to be Legendrian. Giroux’s theorem [21] states that any closed surface is

C∞-close to a convex surface, and according to Kanda [7] a surface with Legendrian

boundary can also be C∞–perturbed fixing the boundary to a convex surface provided

all of its boundary components have negative Thurston-Bennequin numbers. The set

ΓΣ = {x : v ∈ ξ} defines a multicurve (a properly embedded 1-manifold) in Σ whose

isotopy-class is independent of the chosen contact vector field. The dividing curve Γ

divides Σ into two parts Σ+ = {x : α(v) > 0} and Σ+ = {x : α(v) < 0}. By Giroux [21]

the isotopy class of Γ determines the contact structure in a neighborhood of the convex

surface. If the surface S is a Seifert surface for a Legendrian knot L, than the definition

of the rotation number translates to r(L) = χ(S+)−χ(S−). If the Legendrian knot has

negative Thurston-Bennequin number then it can be read off from the dividing curves as

tb(L) = −1
2
|ΓS ∩L|. The dividing curve of the overtwisted disc D2 = {(0, θ, r) : r ≤ 1}

in (S3, ξOT) is a closed curve around the elliptic point.

3.4. Bypass attachment. If we isotope a convex surface Σ in a contact 3-manifold,

then the isotopy class of the dividing curve does not change as long as the contact vector

field is transverse to Σ. The change the isotopy class ΓΣ experiences once the contact

vector field fails to be transverse to Σ is called bypass attachment. For a complete

discussion of bypass attachments see [23]. Let (Y, ∂Y, ξ) be a contact 3–manifold with

convex boundary. Suppose that we are given a Legendrian arc c ⊂ ∂Y that starts and



27

ends on the dividing set Γ∂Y and intersects Γ∂Y in one additional point. Attaching a

bypass along c is — roughly speaking — the attachment of the neighborhood of a “half

overtwisted disc”. This is a disc D with boundary ∂D = c ∪ d, where ∂D ∩ ∂Y = c,

and the dividing curve on D consists of a single arc with both of its endpoints on c.

The resulting manifold is diffeomorphic to Y with contact structure ξc, and the dividing

curve Γ is changed in the neighborhood of c to Γc as it is shown on Figure 14.

bypass

attachment

c

Γ Γ
c

Figure 14. Bypass attachment.

It was already known [6], that there is a unique tight contact 3-ball. Using convex

surface theory, classification of tight contact structures was done on certain 3–manifolds.

Basic slices are the building blocks for contact structures on T 2 × I.

We give a short description of basic slices defined by Honda [23]. Suppose that ξ is

a contact structure on T 2 × [0, 1] with convex boundary with two–component dividing

curves on each of its boundary components. The dividing curves are homotopically

nontrivial and parallel curves. Fix a trivialization for T 2 as R2/Z2 and let si denote

the slope of the dividing curves on T 2 × {i} (i ∈ {0, 1}). The contact 3–manifold

(T 2× [0, 1], ξ) is called minimally twisting if every convex torus parallel to the boundary

has slope s in [s1, s0]. (Here by [s1, s0] we mean [s1,∞] ∪ [−∞, s0] if s1 ≥ s0.) A basic

slice is a minimally twisting tight contact structure (T 2×[0, 1], ξ), with convex boundary

and with two dividing curves on each T 2 × {i} and boundary slopes s0 and s1 forming

an integral basis for Z2. For fixed boundary conditions (up to isotopy) there are two

basic slices distinguished by their relative Euler class, which differ only by their sign.

Note that there is no canonical positive or negative choice.

One way to obtain a basic slice is by gluing a bypass to an I–invariant neighborhood

of a convex T 2 with two dividing curves. For a given slope of the attaching curve there
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are two ways of attaching a bypass corresponding to the two different basic slices, cf.

Figure 17. Any basic slice can be obtained by this construction.

Suppose that (T 2× [0, 1], ξ0) and (T 2× [1, 2], ξ1) are basic slices with boundary slopes

si on T 2 × {i} (i ∈ {0, 1, 2}). As the dividing curves match up on T 2 × {1}, we can

glue them together to obtain (T 2× [0, 2], ξ = ξ0 ∪ ξ1). If in addition we require that the

shortest representatives of s0 and s2 give an integral basis for Z2 and [s0, s1]∪ [s1, s2] 6=
[−∞,∞], then (T 2 × [0, 2], ξ) is minimally twisting. It is either overtwisted or a single

basic slice depending on whether the basic slices (T 2 × [0, 1], ξ0) and (T 2 × [1, 2], ξ1)

have the same or opposite signs. Note, that “having the same sign” makes sense in this

setting, once we require the trivialization of ξ0 and ξ1 to agree over T 2 × {1}.

3.5. Open book decompositions. Giroux [22] found a one-to-one correspondence be-

tween isotopy classes of contact structures and open book decompositions up to positive

stabilization/destabilization on a closed oriented 3-manifold. An open book decompo-

sition of a 3–manifold Y is a fibration of Y − B over S1, where B is a 1–dimensional

submanifold such that the boundary of each fiber S̊ is B. In this context the closure of

the fiber S is called a page and the 1-manifold B is called the binding of the open book.

The fibration can be descried by its monodromy g : S → S. From a pair (S, g) the

3–manifold Y can be rebuilt as Y = S× [−1, 1]/ ∼, where ∼ is defined as (x, t) ∼ (x, t′)

for x ∈ ∂S and t, t′ ∈ [−1, 1], and (x,−1) ∼ (g(x), 1). This pair (S, g) is an abstract

open book defining Y . Open book decompositions not only describe 3–manifolds but

a contact structure can be naturally associated to them as follows. The 3–manifold Y

decomposes to two handlebodies Uβ = S× [−1
2
, 1

2
] and Uα = S× ([1

2
, 1]∪ [−1,−1

2
]). Us-

ing convex surface theory Torisu showed [50] that on the handlebodies Uα and Uβ there

is a unique tight contact structure with dividing curves ∂S. Gluing these tight contact

structures together we obtain a contact structure ξ on Y . In the above case (S, g) is

said to support the contact structure ξ. For example S3 has an open book decomposi-

tion with binding B = {(x, 0, 0)} and pages Sθ = {(x, sin θ, cos θ)}. The corresponding

abstract open book has disc pages (S = D2) and trivial monodromy. The two handle-

bodies are balls with the unique tight contact structure, and after gluing them together

we obtain the standard contact 3–sphere. The proof that any closed contact 3–manifold

(Y, ξ) has an open book decomposition supporting it uses contact cell-decompositions.

A contact cell-decomposition of a contact 3–manifold is a cell decomposition, whose

1–skeleton is a Legendrian graph, 2–discs are convex with tb = −1 boundaries, and the
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3–cells are standard contact 3-balls. Now the neighborhood of the 1–skeleton can be

written as ν(sk1) = S × [0, 1]/ ∼, where S = (−∂(ν(sk1)))+, and as the remaining part

is a neighborhood of the dual Legendrian graph with the same boundary, we can write

it as Y − ν(sk1) = S × [0, 1]/ ∼. The monodromy g can be read off from the gluing

of the two handlebodies, giving an abstract open book decomposition (S, g) supporting

(Y, ξ). Introducing a new edge in the 1-skeleton changes the abstract open book in

a well understood way, which we call the positive stabilization of the open book. A

positive stabilization of an open book supports the same contact structure. Giroux’s

observation [22] is that the converse statement is true: two abstract open books support

isotopic contact structures if and only if they have common positive stabilizations.

3.6. 3–manifolds with boundary and partial open book decompositions. Par-

tial open books are generalizations of open books for 3–manifolds with convex boundary.

This notion was introduced by Honda, Kazez and Matić in [24], see also [10, 11].

Definition 3.2. An abstract partial open book is a triple (S, P, h) where S is a connected

surface with boundary, P is a proper subsurface of S which is a union of 1–handles

attached to S − P , and h : P → S is an embedding that restricts to the identity near

the boundary ∂P ∩ ∂S.

A partial open book defines a 3–manifold Y with boundary as follows. First construct

the handlebody S × [−1, 0]/ ∼ and the compression–body P × [0, 1]/ ∼, where (x, t) ∼
(x, t′) for x ∈ ∂S and t, t′ ∈ [−1, 1]. (Note that on P × [0, 1] we just contract the

points with first coordinate in ∂P ∩ ∂S.) Then glue them together with the maps

P ×{0} ↪→ S×{0} and h : P ×{1} → S×{−1}. A schematic picture for Y is given by

Figure 15. The resulting 3–manifold naturally carries the structure of a balanced sutured

manifold: take Γ = ∂S − ∂P×{−1
2
}∪−(∂P − ∂S)×{1

2
} ⊂ ∂Y . Now R+ = S − P×{0},

R− = S − h(P )× {−1}, consequently χ(R+) = χ(R−) follows at once.

Both the handlebody S × [−1, 0]/ ∼ and the compression–body P × [0, 1]/ ∼ admit

unique tight contact structures with convex boundary and dividing set ∂S (and ∂P ,

resp), cf. [11, 50]. As the dividing sets match up, we can glue these contact structures

to obtain a contact structure ξ on Y with dividing curve Γ on the convex boundary ∂Y .

In this sense a partial open book decomposition determines a contact structure with

convex boundary.
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The partial open book decomposition naturally induces a balanced Heegaard decom-

position of Y with the compression bodies Uα = P × [1
2
, 1] ∪ S × [−1,−1

2
] and Uβ =

S×[−1
2
, 0]∪P×[0, 1

2
], divided by the Heegaard surface Σ = ∂Uα = S×{−1

2
}∪−P×{1

2
}.

Consistently with the sutured 3–manifold structure, the boundary of Uα (and Uβ, resp.)

consists of the union of Σ (resp. −Σ), R− (resp. R+) and a collar neighborhood for Γ;

furthermore Γ = ∂Σ(= ∂R+ = −∂R−). Note that the dividing curve on ∂Y induced

by the partial open book decomposition, and the sutures of the sutured decomposition

coincide and both is denoted by Γ.

0

1 = −1

1

2−

1

2

=

h

R
−

R+

Uα

Uβ

Γ

PS

Figure 15. Schematic picture of a partial open book decomposition.

Every contact 3–manifold with convex boundary (Y, ξ) admits a partial open book

decomposition that is compatible with ξ in the above sense, cf. [24]. To see this,

consider a contact cell–decomposition for Y whose 1–skeleton C is a direct product near

the boundary ∂Y and intersects the boundary on the dividing curves. As Legendrian

arcs have standard neighborhood, there is a small neighborhood ν(C) of C with convex

boundary and with a dividing curves of two components. The dividing curve separates

−∂ν(C) into a positive and a negative part (−∂ν(C))+ and (−∂ν(C))−. Setting P =

(−∂ν(C))+ the neighborhood ν(C) can be written as P × [0, 1]/ ∼. As C was the

1–skeleton of a contact cell decomposition, Y − ν(C) is product disc–decomposable:

it is divided by the 2–cells (that are discs with tb = −1) to a union of tight contact

3–balls. Thus for S = ∂(Y − ν(C))+ the handlebody Y − ν(C) can be written as

Y − ν(C) = S × [−1, 0]/ ∼, and P = (−∂(ν(C)))+ ⊆ (∂(Y − ν(C)))+ = S. Note that
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by construction ξ|Y−ν(C) is tight, its boundary ∂(Y − ν(C)) is convex, and the dividing

set Γ∂(Y−ν(C)) is isotopic to ∂S × {0}.
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4. Invariants for Legendrian and transverse knots

Heegaard Floer homology provided various sets of invariants: for knots in the stan-

dard contact 3–sphere the combinatorial construction of knot Floer homology through

grid diagrams [35, 45], for null–homologous knots in general contact 3–manifolds the

Legendrian invariant of [30] and for general Legendrian knots the sutured invariant of

the knot complement [24]. One aim of this dissertation is to set up a relation between

these last two invariants.

4.1. Legendrian and transverse invariants on grid diagrams. Consider a grid

diagram G. It describes not only a knot projection but also a front projection of a

Legendrian realization of its mirror m(K), as follows. Rotate the grid diagram by 45◦

clockwise, reverse the over- and under crossings and turn the corners into cusps or

smooth them as appropriate. Legendrian Reidemeister moves correspond to certain

grid moves giving the following result:

Proposition 4.1. (Ozsváth–Szabó–Thurston, [45]) Two grid diagrams represent the

same Legendrian knot if and only if they can be connected by a sequence of cyclic per-

mutation, commutation, and (de)stabilization of types X : NW , X : SE, O : NW and

O :SE. ¤

Moreover stabilizations of type X :NE or O :SW of the grid diagram correspond to

negative stabilization of the knot, yielding

Proposition 4.2. (Ozsváth–Szabó–Thurston, [45]) Two grid diagram represent the

same transverse knot if and only if they can be connected by a sequence of cyclic permu-

tation, commutation, and (de)stabilization of types X :NW , X :SE, X :NE, O :NW ,

O :SE and O :SW . ¤

Consider a grid diagram G for a Legendrian knot L of knot type K. Pick the upper

right corner of every cell containing an X. This gives a generator of CFK−(m(K))

denoted by x+(G). Since positive rectangles starting at x+(G) must intersect some X,

the element x+(G) is a cycle defining an element λ+(G) in HFK−(m(K)). Similarly

one can define x−(G) and λ−(G) by taking the lower left corners of the cells containing

X’s. These elements are proved to be independent of the grid moves that preserve the

Legendrian knot type, giving an invariant of the Legendrian knot L:
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Theorem 4.3. (Ozsváth–Szabó–Thurston, [45]) Consider two grid diagrams G1 and G2

defining the same oriented Legendrian knot. Then there is a quasi-isomorphism of the

graded chain complexes CFK− taking x+(G1) to x+(G2) and x−(G1) to x−(G2). ¤

One can understand the transformation of x+(G) and x−(G) under positive and

negative stabilization:

Theorem 4.4. (Ozsváth–Szabó–Thurston, [45]) Let L be an oriented Legendrian knot,

denote by L+ its positive and by L− its negative stabilization. Then

(1) There is a quasi-isomorphism of the corresponding graded complexes taking x+(L)

to x+(L+) and Ux−(L) to x−(L+);

(2) There is a quasi-isomorphism of the corresponding graded complexes taking Ux+(L)

to x+(L−) and x−(L) to x−(L−).

¤

It follows from [14] that the Legendrian knots with transversely isotopic positive

push offs admit common negative stabilizations. This principle provides a well defined

invariant for transverse knots: if L is a Legendrian approximation of T then define

θ(T ) = λ+(L).

Theorem 4.5. (Ozsváth–Szabó–Thurston, [45]) For any two grid diagrams G1 and G2

of Legendrian approximations of the transverse knot T there is a quasi-isomorphism of

the corresponding graded chain complexes inducing a map on the homologies that takes

θ(G1) to θ(G2). ¤

4.2. The contact invariant for 3–manifolds with boundary. Suppose that (Y, ξ) is

a contact 3–manifold with convex boundary, and consider a partial open book compati-

ble with ξ. Let {b1, . . . , bk} be disjoint arcs forming a basis for H1(P, ∂S∩∂P ). The disks

swept out by the bi’s in the Uβ handlebody have boundaries βi = bi × {1
2
} ∪ bi × {−1

2
}.

Isotope each bi to an arc ai that intersects it transversely in a single point, and whose

endpoints are moved in the direction given by the boundary orientation of−P . In the Uα

handlebody ai sweeps out a disk with boundary αi = ai×{1
2
}∪h(ai)×{−1

2
}, providing

a Heegaard diagram (Σ,α,β) for (Y, Γ). The single intersection point y = (ai ∩ bi) on

P ×{1
2
} can be shown to represent a cycle in SFC(−Σ,α,β), thus it defines an element

EH(Y, ξ) in SFH(−Y,−Γ). (Notice the reversal of orientation of the Heegaard surface

Σ.) As has been proven by Honda, Kazez and Matić [24], this element is independent
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of the choices made throughout its definition and gives the invariant EH(Y, ξ) of the

contact structure (Y, ξ). In the special case when the contact 3–manifold with convex

boundary is given as the complement of a standard neighborhood of a Legendrian knot

in a closed contact 3–manifold (Y, ξ), the resulting element will be denoted by EH(L).

Note that by the Legendrian Neighborhood Theorem, in this case Γ consists of two

parallel simple closed curves in ∂(Y − ν(L)).

4.3. Legendrian and transverse invariants in arbitrary 3–manifolds. Consider

an oriented, null–homologous Legendrian knot in the closed contact 3–manifold (Y, ξ).

There is an open book decomposition of Y compatible with ξ containing L homologically

essentially on one of its pages S = S × {1
2
}. Consider a properly embedded arc b1 in

S intersecting L exactly once. The disk b1 × [0, 1] is a meridional disk for L. Orient b1

so that the boundary orientation of ∂(b1 × [0, 1]) = −b1 × {0} ∪ b1 × {1} agrees with

the natural orientation of the meridian for L. (Such an oriented arc b1 will be called

a half–meridian of L.) With these conventions the orientation of S coincides with the

orientation induced by (b1, L). Our setup here will be slightly different from the one

used in [30], but the resulting Heegaard diagram and the element specified in it will be

actually the same already on the chain–level.

Pick a basis {b1, . . . , bg} of H1(S, ∂S) such that b1 is a half–meridian of L. Isotope

all the bi’s to ai’s as before and place the basepoint z in the “big” region that is not

swept out by the isotopies of the bi, and put w between b1 and a1. This can be done

in two essentially different ways, and exactly one of them corresponds to the chosen

orientation of L. If b1 is oriented as described above, w should be placed close to the

tail of b1, cf. Figure 16. The single intersection point (ai ∩ bi) on S × {1
2
} ⊂ −Σ is an

a1b1

wz

−S

L

Figure 16. The placement of the basepoints.

element in ĈFK(−Σ,α,β, z, w) and the choice of z assures that it is a cycle, hence it

defines an element L̂(L) in ĤFK(−Y, L). As it was shown in [30], the homology class

L̂(L) is an invariant of the oriented Legendrian knot L ⊂ (Y, ξ).
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5. Relation between the invariants

In this section we will set up a relation between the last two invariants. To set

the stage, recall that the Legendrian invariant L̂(L) of the null–homologous Legen-

drian knot L ⊂ (Y, ξ) defined in [30] takes its value in the knot Floer homology group

ĤFK(−Y, L). (The theory admits a version where the invariants are in the more refined

group HFK−(−Y, L), but since the corresponding sutured theory is not developed yet,

we will deal only with the ĤFK–version.) A relation between sutured Floer homol-

ogy and knot Floer homology obviously follows from their definitions: suppose that

(Y −ν(L), Γ) is the sutured 3–manifold with toric boundary we get by deleting a neigh-

borhood of the (not necessarily Legendrian) knot L and Γ has two (parallel) components.

Then there is an obvious isomorphism

Ψ: SFH(Y − ν(L), Γ) → ĤFK(YΓ, L′)

where YΓ is the Dehn filling of Y − ν(L) (and L′ is the core of the Dehn filling) with

slope given by the sutures Γ. In general, YΓ differs from Y (and therefore L′ differs

from L). By attaching a specific contact T 2 × [0, 1] (a basic slice) to Y − ν(L), the

composition of the map

Φ: SFH(−(Y − ν(L)),−Γ) → SFH(−(Y − ν(L)), Γ′)

of [25] induced by this attachment and the above map Ψ (applied to the suture Γ′ with

components isotopic to the meridian of the knot) gives a map

F : SFH(−(Y − ν(L)),−Γ) → ĤFK(−Y, L)

for which we show the following:

Theorem 5.1. Fix an orientation on the Legendrian knot L and consider one of the

basic slices with boundary slopes given by the dividing set of ∂(Y − ν(L)) on T 2 × {0}
and by the meridian of L on T 2 × {1}. Then the map F defined above maps EH(L) to

L̂(L).

A more precise formulation of the theorem will be given in Section ?? after basic

slices and orientations have been discussed. A straightforward consequence of the above

relation is the following
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Corollary 5.2. If the complement of a null–homologous Legendrian knot has positive

Giroux torsion then L̂(L) vanishes.

Remark 5.3. The same corollary has been found recently by D. S. Vela–Vick [51] using

slightly different arguments.

To put this result in perspective, we recall that a knot type in the standard contact

3–sphere is called Legendrian simple if two Legendrian knots of the given knot type and

identical Thurston–Bennequin and rotation numbers (for definitions of these invariants

see [14]) are Legendrian isotopic. The same notion generalizes to an arbitrary ambient

contact 3–manifold (Y, ξ), with a caveat in the case when ξ is overtwisted: in that case

Legendrian knots fall into two categories, depending on whether the knot complement

is overtwisted (in which case the knot is called loose) or — although ξ is overtwisted

— the knot complement is tight (in which case the knot is non–loose or exceptional, cf.

[9]). Obviously a loose and a non–loose knot cannot be isotopic, hence in overtwisted

contact 3–manifolds besides the equality of the Thurston–Bennequin and rotation num-

bers we also require the equality of the looseness of the two knots in defining simplicity.

Non–simple non–loose knots in a variety of overtwisted contact structures have been

found in [30]. There is, however, a simple way of constructing non–simple non–loose

knots [12]: suppose that the knot complement contains an incompressible torus (e.g.,

the knot type is a satellite in S3) and introduce Giroux torsion along the torus. Since

this procedure does not change the homotopy type of the 2–plane field, and ξ is over-

twisted by assumption (and overtwisted structures are classified by their homotopy

type), after a suitable choice of the knot and the torus we get a Legendrian knot in the

same contact 3–manifold with different tight complement. (The verification that the

complement remains tight, and that the implementations of different Giroux torsions

result in different structures requires delicate arguments [12].) This method, in fact, can

produce infinitely many different Legendrian non–loose knots with the same numerical

invariants in these knot types [12]. We say that L ⊂ (Y, ξ) is strongly non–loose if ξ

is overtwisted and the knot complement is tight with vanishing Giroux torsion. The

knot type is strongly non–simple if there are two strongly non–loose, smoothly isotopic

knots with equal numerical invariants which are not Legendrian isotopic. The same

simplicity/non–simplicity definition (with the strong adjective) carries through verba-

tim for transverse knots (where the role of the numerical invariants is played by the
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self–linking number of the transverse knot). In this sense, the result of [30] translates

to

Corollary 5.4. The knot types of [30, Theorem 1.7 and Corollary 1.8] are strongly

non–simple.

Proof. The distinction of the Legendrian knots Li in [30] went by determining the

Legendrian invariants L̂(Li), and since both were nonzero, Corollary 5.2 implies that

the knots Li are strongly non–loose, concluding the proof. ¤

Notice that in [45] the combinatorial theory provided two invariants of L (denoted

by λ̂±(L)), while in [30] the invariant L̂(L) depended on an orientation of L — there-

fore an unoriented Legendrian knot admitted two invariants L̂(L) and L̂(−L) after an

arbitrary orientation of L was fixed. On the other hand, the sutured theory provides

a unique element for L. The discrepancy is resolved by the observation that the map

on sutured Floer homology induced by the basic slice attachment is well–defined only

up to a choice: with the given boundary slopes there are two basic slices, and using

one transforms EH(L) into L̂(L), while with the other choice the result will be L̂(−L)

(after an orientation on L is fixed). In order to clarify signs, we reprove a special case

of [30, Theorem 7.2] (only in the ĤFK–theory) regarding the effect of stabilization of L

on L̂ and show

Theorem 5.5. Let L be an oriented null–homologous Legendrian knot. If L− (and L+)

denotes its negative (resp. positive) stabilization, then L̂(L−) = L̂(L) and L̂(L+) = 0.

Notice that the invariance of L̂ under negative stabilization means that, in fact, it

is an invariant of the transverse isotopy class of the positive transverse push–off of the

Legendrian knot L. By this definition the extensions of Corollaries 5.2 and 5.4 to the

transverse case are easy exercises. For further results regarding transverse knots using

these invariants see [35, 37]. In fact, in [37] the distinction of various Legendrian and

transverse Eliashberg–Chekanov (aka twist) knots and 2–bridge knots was carried out

by computing their L̂–invariants. As a corollary, Theorem 5.1 readily implies

Corollary 5.6. The complement of the Eliashberg–Chekanov knot En (which is the 2–

bridge knot of type 2n+1
2

) for odd n admits at least dn
4
e different tight contact structures

(distinguished by the sutured invariant) with convex boundary and dividing set Γ of two

components with slope 1. ¤
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Performing contact (−1)–surgery along a Legendrian knot L gives a well–defined

contact structure ξ−1 on the surgered 3–manifold Y−1. The core L′ of the glued–back

solid torus is a Legendrian knot in (Y−1, ξ−1). Suppose that L′ is null–homologous in

Y−1. Using the sutured invariant we deduce

Theorem 5.7. Under the circumstance described above L̂(L) 6= 0 implies L̂(L′) 6= 0.

5.1. Proof of Theorem 5.1. Let L be a Legendrian knot in a closed contact 3–

manifold (Y, ξ). The two invariants EH(L) = EH(Y − ν(L), ξ|Y−ν(L)) ∈ SFH(−(Y −
ν(L)),−Γ∂(Y−ν(L))) and L̂(L) ∈ ĤFK(−Y, L) introduced above lie in two different

groups, but if we change the suture on ∂(Y − ν(L)) to two meridians −m ∪ m of

L, the sutured Floer homology SFH(−(Y − ν(L)),−m ∪ m) can be identified with

ĤFK(−Y, L). This modification of the suture can be achieved by attaching a basic slice

to the sutured 3–manifold Y −ν(L), and according to [25] there is a map corresponding

to this attachment. More generally:

Theorem 5.8 (Honda–Kazez–Matić, [25], cf. also [19]). Suppose (Y ′, Γ′) is a balanced

sutured submanifold of the balanced sutured 3-manifold (Y, Γ) and all components of

Y − int(Y ′) intersect ∂Y . Let ξ be a contact structure on Y − int(Y ′) so that ∂Y ∪ ∂Y ′

is convex with respect to ξ and with dividing set Γ ∪ Γ′. Then there is a natural linear

map

Φξ : SFH(−Y ′,−Γ′) → SFH(−Y,−Γ),

induced by ξ. Moreover, if Y ′ is endowed with the contact structure ξ′ such that Γ(Y ′,ξ′) =

Γ′ then

Φξ(EH(Y ′, ξ′)) = EH(Y, ξ′ ∪ ξ).

¤

We will apply this theorem in the special case when ∂Y ′ and ∂Y are both 2–tori,

Y − intY ′ = T 2 × [0, 1] and the contact structure on the difference is a basic slice. The

dividing set is given on ∂(T 2× [0, 1]) by the dividing set of ∂Y (on T 2×{0}) and by the

meridians of L (on T 2×{1}); there are two basic slices with the given boundary slopes.

Notice that the attachment of the basic slice is actually equivalent to the attachment

of a single bypass.

Trivialize ∂(Y − ν(L)) with the meridian m and the contact framing l, hence the

dividing curves have slope∞. The new dividing curve after attaching a bypass along any
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arc with slope between −1 and 0 has slope 0. Up to isotopy there are only two different

attachments (of opposite sign) depicted on Figure 17; these are the two different bypass

attachments corresponding to the two different basic slices. These attaching curves

together with the arcs of the dividing curves form an oriented curve on ∂(Y − ν(L)),

one of them represents m the other one represents −m. Denote the former one by c.

Theorem 5.9. The map

Φc : SFH(−(Y − ν(L)),−Γ∂(Y−ν(L))) → SFH(−(Y − ν(L)),−m ∪m)

induced by the basic slice attachment along c maps EH(L) to the class which is identified

with L̂(L) under the identification

Ψ: SFH(−(Y − ν(L)),−m ∪m) → ĤFK(−Y, L).

R+ R
−

c

R
−

R
−

R+ R+

m

Figure 17. Bypass attachments to obtain meridians.

Proof. Let (S, g) be an open book for (Y, ξ) that contains L homologically essentially

on one of its pages. Set P = S− νS(L) (where νS(L) denotes the tubular neighborhood

of L in S) and h = g|P . We claim that the partial open book (S, P, h) describes

(Y −ν(L), ξ|Y−ν(L)). Indeed, topologically the 3–manifold corresponding to this abstract

partial open book is (S × [−1, 0]/ ∼) ∪ (P × [0, 1]/ ∼), which is equal to

(S × [−1, 1]/ ∼)− (νS(L)× [0, 1]) = Y − ν(L).

The contact structure on S × [−1, 0]/ ∼ is the same, while on P × [0, 1]/ ∼ (which is

a subset of S × [0, 1]/ ∼) it is obviously tight. If we round the corners we get that the

dividing curve is Γ∂(Y−ν(L)), so the dividing curve on P × [0, 1]/ ∼ must be ∂P .

Take a basis {b1, . . . , bk} of S subordinated to L, such that b1 is the half–meridian of

L. Then the left hand side of Figure 18 depicts the corresponding Heegaard diagram

(−Σ, {α1, . . . , αk}, {β1, . . . , βk}, w, z) for (−Y, L). Here Σ = S × {1
2
} ∪ −S × {−1

2
}
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and the intersection point x = (ai ∩ bi)
k
i=1 represents the Legendrian invariant L̂(L) in

ĤFK(−Y, L). The basis for H1(P, ∂S ∩ ∂P ) is {b2, . . . , bk} while the Heegaard surface

is −Σ̃ = P × {1
2
} ∪ −S × {−1

2
}. The corresponding Heegaard diagram for (−(Y −

ν(L)),−Γ∂(Y−ν(L))) is (−Σ̃, {α2, . . . , αk}, {β2, . . . , βk}) which is depicted on the right

hand side of Figure 18. By definition y = (ai ∩ bi)
k
i=2 represents the contact invariant

EH(L) ∈ SFH(−(Y − ν(L)),−Γ∂(Y−ν(L))).

L
a1

S × {1

2
}−S × {−1

2
} P × {1

2
}−S × {−1

2
}

Heegaard diagram for Y Heegaard diagram for Y −N(L)

Figure 18. Heegaard diagrams corresponding to the (partial) open books.

Attaching a bypass along c changes the partial open book to (S ′, P ′, h′), where (with

the notations described in Subsection 3.4) we have S ′ = S ∪ (1–handle) and P ′ =

P ∪ ν(a+). Note that a+ represents half of the meridian on (∂(ν(L)))+ ⊂ S, thus we

can orient it. The 1–handle is attached to S along ∂S in the neighborhood of the head

of a+ so that both of its feet are in the positive direction away from the head of a+

with respect to the orientation of ∂S, cf. Figure 19. The monodromy remains the same

restricted to P (i.e. h′|P = h) and as it was observed in Section 3.4, h′(a+) = a− and a−
splits as the core of the 1–handle and as a−∩S which is isotopic to c−. Note that c− is a

half–meridian of the knot L, thus the image of it on S×{−1
2
} is isotopic to g(a1). Now

we are ready to describe the Heegaard diagram (−(Σ′, {α, α′2 . . . , α′k}, {β, β′2, . . . , β
′
k}))

obtained from the partial open book (S ′, P ′, h′) in the usual manner. The Heegaard

surface −Σ′ is equal to P ′×{1
2
}∪−S ′×{−1

2
}, and the curves β′ = b+×{1

2
}∪b+×{−1

2
}

and α′ = a+ × {1
2
} ∪ a− × {−1

2
}, where b+ is the usual perturbation of a+ on P ′. Σ′ is

obtained by gluing two surfaces together, each of which is diffeomorphic to S−ν(point).

Indeed, the hole on the S ′–side comes from the 1–handle attachment. P ′ is just a union

of the 1–handles of S, thus the missing 2–handle gives us the other hole. This surface
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Σ′ is thus diffeomorphic to Σ− ν(z)− ν(w), where we think of ν(z) being deleted from

the S ′–side and ν(w) from the P ′–side. Under this identification b+ (and thus a+) is

isotopic to b1 on P ′, hence β′ = b+ × {1
2
} ∪ b+ × {−1

2
} and β1 are isotopic on Σ′.

Recall that h′(a+) on S ′ × {−1
2
} was isotopic to the union of g(a1) and the core of the

1–handle. So α′ is isotopic to α1 on Σ − ν(z). The core part of h′(a+) makes α′ and

β′ to go around the hole ν(w) from different sides, thus α′ is isotopic to α1 on Σ′. In

conclusion, the Heegaard diagram (−Σ′, {α′, α2, . . . , αk}, {β′, β2, . . . , βk}) is isotopic to

(−(Σ−ν(z∪w)), {α1, . . . , αk}, {β1, . . . , βk}). The contact invariant EH(L) is mapped to

the contact invariant EH(Y − ν(L),−m∪m) under the map induced by the basic slice

attachment, and thus it represents the Legendrian invariant in ĈFK(−Σ,α, β, z, w),

which proves the statement. ¤

a1

b1

−S
′ × {−1

2
} P

′ × {1

2
}

Figure 19. Heegaard diagram corresponding to (S ′, P ′, h′).

Proof of Theorem 5.1. With the identifications above, the proof of Theorem 5.1 is now

complete. ¤

5.2. Some properties of L(L). Next we turn to the proof of the remaining statements.

Proof of Theorem 5.5. Take a standard contact neighborhood ν(L) of L and stabilize

L inside it. Then L± has a standard contact neighborhood ν(L±) ⊂ ν(L). As it is

explained in [16], the contact manifold (ν(L)− ν(L±), ξ|ν(L)−ν(L±)) is a basic slice, i.e.,

Y − ν(L±) is obtained from Y − ν(L) by a bypass attachment. We can view Y − ν(L)

as the result of a bypass attachment to the boundary of Y − ν(L±) from the back. As
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usual, the two basic slices with the above boundary conditions have opposite relative

Euler classes. To figure out which one corresponds to the positive and which one to

the negative stabilization we first examine a model case. (For a related discussion see

[16].) Suppose that tb(L) < 0 and take a Seifert surface S for L, giving rise to the

Seifert surface Sp (resp. Sm) for L+ (resp. L−). These surfaces are oriented such that

their boundary orientations give the orientations for the knot. Since tb(L) < 0 we can

assume that S is in convex position. We have tb(L±) = tb(L) − 1, thus the dividing

curve hits the boundary of the Seifert surface S in 2|tb(L) − 1| points. In the collar

neighborhood of the boundary (diffeomorphic to S1 × I), the dividing curves of S are

the line segments k 2π
2|tb(L)| × I where 0 ≤ k < 2|tb(L)|. Once again, by the negativity of

tb(L) the bypass attachment corresponds to the gluing of an annulus to the boundary

of S with dividing curves k 2π
2|tb(L)| × I (0 ≤ k < 2|tb(L)|) and a boundary parallel

curve that is disjoint from the others. This boundary parallel curve bounds a domain,

cf. Figure 20. The rotation numbers are rot(L±) = rot(L) ± 1, thus by the formula

rot(S) = χ(S+) − χ(S−) we get that the extra domain on Sp (on Sm, resp.) is in the

positive (resp. negative) region. Using edge rounding we get that the attaching curve

corresponding to the positive (resp. negative) stabilization must end in the positive

(resp. negative) region with respect to the orientation of the knot. The left hand side

of Figure 21 depicts the arc p (and n, resp.) along which the bypass has to be attached

(from the back) to obtain Y − ν(L).

L L
±

S

S
±

Figure 20. Neighborhood of a Legendrian knot and its stabilization.

Both the stabilization and the bypass attachment are local operations, thus the above

described phenomenon remains true for any Legendrian knot (without the assumption
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tb(L) < 0). The arcs p and n have the same slope, but they end in regions of different

sign. Consider the middle diagram of Figure 21 for the general picture for T 2, trivialized

by the meridian m and the Thurston–Bennequin framing l.

By Theorem 5.8 the map corresponding to the bypass attachment maps EH(L) to

EH(L±). To get L̂(L±) we need to attach another bypass, so that the new dividing

curves are meridians, hence this second bypass is attached along the arc c.

In the case of positive stabilization, the manifold (Y − ν(L+), (ξ|Y−ν(L+))
c) = (Y −

ν(L), (ξ|Y−ν(L))
p−1c) is overtwisted. Indeed, performing the positive stabilization first

one can indicate both bypasses in one picture, one attached from the back: p−1 drawn

by dashed line on Figure 21 and c from the front. These curves are parallel, thus the

corresponding bypasses (“half overtwisted disks”) form an overtwisted disk in (Y −
ν(L), (ξ|Y−ν(L))

p−1c). It is known that the sutured invariant of an overtwisted structure

vanishes [24, Corollary 4.3.], therefore so does L̂(L+).

In the case of negative stabilization, the contact structure (T 2×I, ξn−1c) is universally

tight. This can be seen by first passing to ∂(Y − ν(L)) (cf. the right hand side of

Figure 21) and then noting that the two bypasses attached there are of the same sign,

so they do not induce an overtwisted disk. The union of the two basic slices is minimally

twisting, and in this case the range of slopes is [0,∞] = [0, 1] ∪ [1,∞]. Therefore the

result is still a basic slice, thus the composition of the two bypass attachments along

n and c is equivalent to a single bypass attachment along c. This immediately implies

L̂(L) = L̂(L−), concluding the proof. ¤

Next we turn to the proof of the statement concerning the vanishing of the Legendrian

invariant in the presence of Giroux torsion. We start by recalling Giroux torsion.

Definition 5.10. The contact structure ξn on T 2 × [0, 1] = R/Z × R/Z × [0, 1] =

{(x, y, z))} is defined by ξn = ker(cos(2πnz)dx − sin(2πnz)dy). A (not necessarily

closed) contact 3–manifold (Y, ξ) has Giroux torsion τ(Y, ξ) ≥ n if it contains an em-

bedded submanifold T 2 × I with the property that (T 2 × I, ξ|T 2×I) is contactomorphic

to (T 2 × [0, 1], ξn).

Proof of Corollary 5.2. The proof is a simple adaptation of the proof for the closed

case given by Ghiggini, Honda, and Van Horn-Morris [20]. As (Y − ν(L), ξY−ν(L)) has

positive Giroux torsion, there is a submanifold T 2 × I, such that ξ|T 2×I = ξn for some

n > 0. It was shown in [20] that EH(T 2 × I, ξn) = 0.
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∂(Y − ν(L±)) ∂(Y − ν(L±)) ∂(Y − ν(L))

n−1

p−1

−m −m−m

Figure 21. Attaching curves for the bypasses corresponding to the sta-

bilizations. The dashed line indicates that the bypass is attached from the

back. On the left–hand picture s denotes the Seifert framing of the knot,

while on the two right–hand pictures l is given by the contact framing of

the Legendrian knot.

The application of Theorem 5.8 for the contact 3–manifold pair (Y −ν(L), T 2× [0, 1])

provides a map

SFH(−(T 2 × I),−Γ∂(T 2×I)) → SFH(−(Y − ν(L)),−ΓY−ν(L)))

mapping the contact element EH(T 2 × I, ξn) = 0 to the contact element EH(L) =

EH(Y −ν(L), ξ|Y−ν(L)). This implies that EH(L) = 0, hence in the light of Theorem 5.1

we get that L̂(L) = 0, concluding the proof. ¤

Proof of Theorem 5.7. As in the proof of Theorem 5.1, we attach a bypass along the

arc e of Figure 22 and change the dividing curve on the torus boundary to Γe
∂(Y−ν(L))

of slope −1. There are two choices for such arcs, but again the orientation of L assigns

the one depicted on Figure 22.

This bypass attachment gives rise to a map

Φe : SFH(−(Y − ν(L)),−Γ∂(Y−ν(L))) → SFH(−(Y − ν(L)),−Γe
∂(Y−ν(L))).

By filling the boundary with a solid torus, the latter homology is identified with

ĤFK(−Y−1, L
′). Denote the composition of the above maps by

G : SFH(−(Y − ν(L)),−Γ∂(Y−ν(L))) → ĤFK(−Y−1, L
′).

We claim that the homomorphism G maps EH(L) to L̂(L′). Indeed, consider an open

book (S, h) adapted to (Y, ξ, L). The same open book is adapted to (Y−1, ξ−1, L
′),
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c

+− −

l

e

−m

Figure 22. Attaching curves for the bypasses on ∂(Y − ν(L)) to obtain

dividing curves of slope 1.

with the only difference in the monodromy: the monodromy h′ for the latter triple is

multiplied by a right–handed Dehn twist along L, cf. [36, page 133]. Using the notations

introduced in the beginning of this Section, the map G corresponds to changing the

partial open book (S, P = S − νS(L), h|P ) to (S ′, P ′, h′′) corresponding to the bypass

attachment. The image of the half–meridian a+ under h′′ is h(a+) multiplied by a

right–handed Dehn twist along L. Therefore G(EH(L)) = L̂(L′).

After attaching the bypass along e, we can apply another bypass attachment along

c of Figure 22 to obtain the meridian as dividing curve. We have already seen in the

proof of Theorem 5.5 that the composition of these two bypasses is a basic slice, thus

we have the commutative diagram

SFH(−(Y − ν(L)),−Γ∂(Y−ν(L)))

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY SFH(−(Y − ν(L)),−Γe
∂(Y−ν(L))) = ĤFK(−Y−1, L

′)//

²²
SFH(−(Y −ν(L)),−m∪m) = ĤFK(−Y, L)

The maps in the above triangle map the contact invariants as

EH(L) //

%%JJJJJJJJJJ
L̂(L′)

zzuuuuuuuuu

L̂(L) 6= 0

therefore L̂(L′) does not vanish, concluding the proof. ¤
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6. Transverse simplicity

Multiply pointed Heegaard diagrams turned out to be extremely useful in the case

of knots as well, and led to the discovery of a combinatorial version of knot Floer

homologies through grid diagrams [32, 31]. This version provided a natural way to

define invariants λ+ and λ− of Legendrian and θ for transverse knots in the three-

sphere [45]. In this section we prove a connected sum formula for these invariants in

knot Floer homology:

Theorem 6.1. Let L1 and L2 be (oriented) Legendrian knots. Then there is an iso-

morphism

HFK−(m(L1))⊗Z2[U ] HFK−(m(L2)) → HFK−(m(L1#L2))

which maps λ+(L1) ⊗ λ+(L2) to λ+(L1#L2). Similar statement holds for the λ−-

invariant.

Corollary 6.2. Let L1 and L2 be (oriented) Legendrian knots. Then there is an iso-

morphism

ĤFK(m(L1))⊗Z2 ĤFK(m(L2)) → ĤFK(m(L1#L2))

which maps λ̂+(L1) ⊗ λ̂+(L2) to λ̂+(L1#L2). Similar statement holds for the λ̂−-

invariant. ¤

Similar results hold for the θ-invariant of transverse knots:

Corollary 6.3. Let T1 and T2 be transverse knots. Then there are isomorphisms

HFK−(m(T1))⊗Z2[U ] HFK−(m(T2)) → HFK−(m(T1#T2))

and

ĤFK(m(T1))⊗Z2 ĤFK(m(T2)) → ĤFK(m(T1#T2))

which map θ(T1)⊗ θ(T2) to θ(T1#T2) and θ̂(T1)⊗ θ̂(T2) to θ̂(T1#T2), respectively. ¤

As an application of the above result we prove:

Theorem 6.4. There exist infinitely many transversely non-simple knots.

Similar statement follows from the main result of [15], see also [27] and [2]. Even

though the statement is about the combinatorial version during the proof we use the
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holomorphic interpretation of Heegaard Floer homology. In these versions the Legen-

drian invariant can be thought of in two different ways, depending on the version of

Floer homology we work with. The one introduced in Subsection 4.3 is in the combina-

torial Heegaard Floer homology. Once the grid is placed on the torus we get a Heegaard

diagram and thus there is a natural identification of the combinatorial Heegaard Floer

complex with the holomorphic Heegaard Floer complex [31]. Under this identification

the previously defined invariant has a counterpart in the original, holomorphic Heegaard

Floer homology. We will use the same notation for both. In the next Subsection we

introduce yet another invariant for Legendrian knots.

6.1. Legendrian invariant on spherical Heegaard diagrams. A k×k grid diagram

G of a Legendrian knot L of topological type K can also be placed on the 2-sphere in

the following way. Let S2 = {(x, y, z) ∈ R3 : |(x, y, z)| = 1} and define the circles

α̃ = {α̃1, . . . , α̃k−1} as the intersection of S2 with the planes Ai = {(x, y, z) ∈ R3 :

z = i
k
− 1

2
} (i = 1, . . . , k − 1); similarly define β̃ = {β̃1, . . . , β̃k−1} as the intersection

of S2 with the planes Bi = {(x, y, z) ∈ R3 : x = i
k
− 1

2
} (i = 1, . . . , k − 1). Call

F = {(x, y, z) ∈ R3 : |(x, y, z)| = 1, y ≥ 0} the front hemisphere, and R = {(x, y, z) ∈
R3 : |(x, y, z)| = 1, y ≤ 0} the rear hemisphere. Then there is a grid on both the front

and on the rear hemisphere. We place the X’s and the O’s on the front hemisphere

in the way they were placed on the original grid G. After identifying the O’s with

w̃ = {w̃1, . . . , w̃k} and the X’s with z̃ = {z̃1, . . . , z̃k} this defines a Heegaard diagram

(S2, α̃, β̃, w̃, z̃) with multiple basepoints for (S3, K). A spherical grid diagram for the

trefoil knot is shown by Figure 24.

Let L be a Legendrian knot in S3. To define the spherical Legendrian invariant λS
+(L)

we will use a grid diagram that have an X in its upper right corner. This can always

be arranged by cyclic permutation, but in the following we will need a slightly stronger

property:

Lemma 6.5. For any Legendrian knot there exists a grid diagram representing it which

contains an X in its upper right corner and an O in its lower left corner.

Proof. Consider any grid diagram describing the Legendrian knot L. As it is illustrated

on Figure 23, we can obtain a suitable diagram as follows. First do a stabilization of

type X :NE and then do a stabilization of type O :NE on the newly obtained O. Lastly,

by cyclic permutation we can place the lower X introduced in the first stabilization to
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the upper right corner of the diagram. Notice that the O on the upper right of this X

will be automatically placed to the lower left corner. According to Proposition 4.1 the

Legendrian type of the knot is fixed under these moves, thus the statement follows.

cyclic

permutation

X :NE O :NE

Figure 23. Grid moves

¤

Suppose, that G is a grid diagram having an X in its upper right corner. Form a

spherical grid diagram as above. Define xS
+(L) as the generator of CFK−(S2, α̃, β̃, w̃, z̃)

consisting of those intersection points on the front hemisphere that occupy the upper

right corner of each region marked with an X. Note that the X in the upper right

corner has no such corner. On Figure 24 the element xS
+ is indicated for the trefoil

knot. Similarly to the toroidal case we have:

α1

α2

α3

α4

β1

β2
β3

β4

α1

α2

α3

α4

β1

β2
β3

β4

front hemisphere rear hemisphere

Figure 24. Spherical grid diagram for the trefoil knot

Lemma 6.6. The element xS
+(L) is a cycle in (S2, α̃, β̃, w̃, z̃).

Proof. We will show that for any y there is no positive disc ψ ∈ π2(x
S
+,y) with µ(ψ) = 1.

As the diagram CFK−(S2, α̃, β̃, w̃, z̃) is “nice” in the sense of [48] the elements xS
+ and
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y differ either in one coordinate and D(ψ) is a bigon or they differ in two coordinates

and D(ψ) is a rectangle. In any case, D(ψ) contains an X which means it is not counted

in the boundary map. ¤

The homology class of xS
+, denoted by λS

+(G), turns out to be an invariant of L (i.e.

it is independent of the choice of the grid diagram, and the way it is placed on the

sphere). This can be proved directly through grid moves, but instead we show:

Theorem 6.7. Consider a grid diagram for the Legendrian knot L in S3 having an X in

its upper right corner. Then there is a filtered quasi-isomorphism ψ : CFK−(T 2,α, β,w, z) →
CFK−(S2, α̃, β̃, w̃, z̃) of the corresponding toroidal and spherical Heegaard diagrams

which maps x+(L) to xS
+(L).

In the proof we will need the notion of Heegaard triples, which we will briefly de-

scribe here. (For a complete discussion see [41].) Consider a pointed Heegaard triple

(Σ,α, β,γ, z). The pairs (Σ,α,β, z), (Σ,β, γ, z) and (Σ,α,γ, z) define the three-

manifolds Yαβ, Yγβ and Yαγ, respectively. There is a map from CF−(Σ,α, β, z) ⊗
CF−(Σ, β,γ, z) to CF−(Σ, α,γ, z) given on a generator x⊗ y by

∑

v∈Tα∩Tγ

∑

u∈π2(x,y,v)
nz(u)=0
µ(u)=0

|M(u)|v

where π2(x,y,v) is the set of homotopy classes of triangles connecting x, y to v; maps

from a triangle to Symg+k−1(Σ) sending the edges of the triangle to Tα,Tβ and Tγ,

M(u) is the moduli space of pseudo-holomorphic representatives of the homotopy class

u. This gives a well-defined map on the homologies HF−. When γ can be obtained from

β by Heegaard moves then the manifold Yβγ is #gS1×S2 and HF−(#gS1×S2) is a free

Z2[U ]-module generated by 2g-elements. Denote its top-generator by Θ−
βγ. The same

definition gives a map on the filtered chain complexes CFK−. The map CFK−(Yαβ) →
CFK−(Yαγ) sending x to the image of x⊗Θ−

βγ defines a quasi-isomorphism of the chain

complexes.

Proof of theorem 6.7. From a toroidal grid diagram one can obtain a spherical one by

first sliding every β-curve over β1 to obtain β′ and sliding every α-curve over α1 to

obtain α′, and then destabilize the diagram at α1 and β1. Thus we will construct the
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quasi-isomorphism by the composition ψ = ψdestab ◦ ψα ◦ ψβ, where

ψβ =
∑

y∈Tα∩Tβ′

∑

u∈π2(x+(L),Θ−,y)
nz(u)=0
µ(u)=0

|M(u)|y

where Θ− ∈ Tβ ∩Tβ′ is the top generator of HF−(T 2, β,β′, z) = HF−(S1 × S2) and ψα

defined similarly. Note that in the case of the sliding there is also a “closest point” map

denoted by ′ for the sliding of the β–curves and by ′′ for the sliding of the α–curves.

We claim:

Lemma 6.8. ψβ(x+) = x′+.

Lemma 6.9. ψα(x′+) = (x′+)′′.

Here we just include the proof of Lemma 6.8; Lemma 6.9 follows similarly.

Proof of Lemma 6.8. Figure 25 shows a weakly admissible diagram for the slides of the

β–curves.

β1 β2 β3 β4 β5

α1

α2

α3

α4

α5

β′

1
β′

2

β′

3

β′

4

β′

5

Figure 25. Handleslides

Claim 1. The Heegaard triple (T 2,α,β, β′, z) of Figure 25 is weakly admissible.



51

Proof. Let Pβiβ′iβ1
(i > 1) denote the domain bounded by βi, β′i and β1 and containing

no basepoint. Similarly Pβ1β′1 denotes the domain bounded by β1 and β′1 and containing

no basepoint. These domains form a basis for the periodic domains of (T 2,β,β′, z)

and as all have domains with both positive and negative coefficients we can see that

(T 2, β,β′, z) is weakly admissible. Consider a triply periodic domain P . If there is

no α-curve in its boundary, then it is a periodic domain of (T 2,β,β′, z), and by the

previous observation we are done. So P must contain an α-curve in its boundary. To

ensure it does not contain an X, there must be some vertical curve, either from β or

β′, in the boundary. At the intersection point of the horizontal and vertical lines the

domain must change sign, concluding the argument. ¤

The grey area in Figure 25 indicates a domain of a canonical triangle u0 connecting

x+(L),Θ− and x′+(L); by the Riemann mapping theorem there is exactly one map with

that domain. We claim that this is the only map that is encountered in ψβ. For this,

let u ∈ π2(x+(L), Θ−,y) be a holomorphic triangle with µ(u) = 0 and nz(u) = 0.

Claim 2. There exists a periodic domain Pββ′ of (T 2, β,β′, z) such that ∂(D(u) −
D(u0)−Pββ′)|β = ∅. Thus (D(u)−D(u0)−Pββ′) is a domain in (T 2,α,β′, z), repre-

senting an element v in π2(x
′
+,y) with Maslov index µ(v) = µ(u)−µ(u0)−µ(Pββ′) = 0.

Proof. As nz(u) = 0 and x′+(L) is in the upper right corner of the X’s, the domain of

any triangle must contain D(u0). Consequently ∂D(u)|βi
is an arc containing the small

part D(u0)∩ βi and some copies of the whole βi. By subtracting D(u0) and sufficiently

many copies of the periodic domains Pβiβ′iβ1
we obtain a domain with no boundary

component on βi. Doing the same process for every i > 1 and then by subtracting some

Pβ1β′1 we can eliminate every βi from the boundary. ¤

Claim 3. There is no positive disc in π2(x
′
+,y).

Proof. This follows similarly to Lemma 6.6. ¤

Claim 4. None of the regions of (T 2,α,β′, z) can be covered completely with the periodic

domains of (T 2,β,β′, z) and D(u0).

Proof. The periodic domains are the linear combinations of {Pβi,β′i,β1
}k

i=2 ∪ {Pβ1,β′1,},
and those cannot cover the domains of (T 2,α,β′, z). ¤
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Putting these together, we have that D(u)−D(u0)−Pββ′ has a negative coefficient,

which gives a negative coefficient in D(u) as well, contradicting the fact that u was

holomorphic. This proves Lemma 6.8. ¤

Note that by assuming that there is an X in the upper right corner of the grid

diagram we assured that the intersection point x+ contains α1 ∩ β1, and that point

remained unchanged during the whole process. Thus by destabilizing at α1 and β1 we

get Theorem 6.7. ¤

front hemisphere rear hemisphere

Figure 26. Connected Sum

Proof of Theorem 6.1. Consider two Legendrian knots L1 and L2 of topological types

K1 and K2. Note that once we obtain the result for λS
+ we are done. Indeed, passing

from the toroidal diagram to the spherical one, the invariants λ+(L1) and λ+(L2) are

mapped to λS
+(L1) and λS

+(L2), respectively. Knowing that λS
+(L1)⊗λS

+(L2) is mapped

to λS
+(L1#L2) and passing back to the toroidal diagram, there is an isomorphism that

maps this to λ+(L1#L2). So the combination of these arguments prove Theorem 6.1.

Consider the grid diagrams G1 and G2 corresponding to L1 and L2 admitting the con-

ditions of Lemma 6.5. These grids define the spherical grid diagrams (S2,α1,β1,w1, z1)

and (S2,α2,β2,w2, z2). Let z ∈ z1, w ∈ w2 be the basepoints corresponding to the X

in the upper right corner of the first diagram and the O in the lower left corner of the

second diagram. Form the connected sum of (S2,α1, β1,w1, z1) and (S2,α2,β2,w2, z2)

at the regions containing z and w to obtain a Heegaard diagram with multiple base-

points (S2, α1 ∪α2, β1 ∪β2,w1 ∪ (w2 − {w}), (z1 − {z} ∪ z2)) of (S3, L1#L2). By 2.10
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the map

ψconnsum : HFK−(S2, α1,β1,w1, z1)⊗ HFK−(S2,α2,β2,w2, z2) →
HFK−(S2, α1 ∪α2,β1 ∪ β2,w1 ∪ (w2 − {w}), (z1 − {z}) ∪ z2)

defined on the generators as x1 ⊗ x2 7→ (x1,x2) is an isomorphism. Thus the image of

λS
+(L1)⊗ λS

+(L2) is (λS
+(L1), λ

S
+(L2)).

Figure 26 shows the resulting Heegaard diagram. From this diagram of the connected

sum one can easily obtain a spherical grid diagram by isotoping every curve in α1 to

intersect the curves in β2 and every curve in α2 to intersect the curves in β1 as shown

on Figure 27. Indeed, the resulting diagram is a grid obtained by patching G1 and G2

together in the upper right X of G1 and the lower left O of G2 and deleting the X and

O at issue. Now by connecting the X in the lower row of G2 to the O in the upper

row of G1, and proceeding similarly in the columns we get that the grid corresponds to

the front projection of L1#L2. Again, a quasi-isomorphism ψisot is given with the help

of holomorphic triangles. A similar argument as in the proof of Lemma 6.8 shows that

under the isomorphism induced by ψisot on the homologies, the element (λS
+(L1), λ

S
+(L2))

is mapped to λS
+(L1#L2).

front hemisphere rear hemisphere

Figure 27. Isotoping to obtain a grid diagram

¤

6.2. Proof of Theorem 6.4. One way of distinguishing transverse knots in a given

knot type is to prove that their θ̂-invariants are different. This, however, cannot be
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done straightforwardly as the vector space ĤFK does not canonically correspond to a

knot. So in order to prove that two elements are different, we have to show that there

is no isomorphism of ĤFK carrying one to the other. More explicitly, it is enough to

see that there is no such isomorphism induced by a sequence of Heegaard moves. For

instance, if we show that one element is 0, while the other is not, we can be certain that

they are different. This is used in the proof of Theorem 6.4.

Proof of Theorem 6.4. Ng, Ozsváth and Thurston [35] showed that the knot type 10132

contains transversely non-isotopic representatives L1 and L2 with equal self-linking num-

ber. They proved that θ̂(L1) is zero in ĤFK(m(10132)) while θ̂(L2) is not. In the

following we will prove that the knot types #n10132 are transversely non-simple. By

the uniqueness of prime decomposition of knots [3], these are indeed different knot

types. Thus this list provides infinitely many examples of transversely non-simple

knots. The two transversely non isotopic representatives of #n10132 are #nL2 and

L1#(#n−1L2). Using the formula sl(L′1#L′2) = sl(L′1) + sl(L′2) + 1 for the self-linking

numbers we have sl(#nL2) = nsl(L2) + (n − 1) = sl(L1) + (n − 1)sl(L2) + (n −
1) = sl(L1#(#n−1L2)). We use Corollary 6.2 to distinguish the transverse isotopy

types of #nL2 and L1#(#n−1L2). There is an isomorphism from ĤFK(m(10132)) ⊗
ĤFK(#n−1m(10132)) to ĤFK(#nm(10132)) mapping θ̂(L1)⊗θ̂(#n−1L2)) = 0 to θ̂(L1#(#n−1L2)),

thus it is zero. Similarly, there is an isomorphism mapping θ̂(L2)⊗ θ̂(#n−1L2)) 6= 0 to

θ̂(L2#(#n−1L2)), thus by induction on n it does not vanish.

¤
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