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ABSTRACT: In this paper we consider the Fake Santa game, in which in a group of

persons each person obtains a ballot with the name of another person, for which

they have to buy presents. In particular we look at the drawing of the ballots,

which is a permutation of the persons of the group subject to the only rule that

no person is allowed to draw his own card. In other words, the game amounts to

permutations without fixed points. In these notes we give recursive formulas for

the number of permutations of n persons without fixed points, we consider some

probabilities that naturally arise in the game and we give asymptotic formulas for

the number of permutations of n persons without fixed points.
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1 Introduction: the game

The Fake Santa game is played in the following way: Consider a group of n persons.

Each person writes a little ballot with its own name and falts the ballot. All ballots

are collected and shuffled, such that no one can see which ballot belongs to which

person. Then each person draws a ballot and has to buy presents secretly for the

person whose name was on the ballot. If a person draws himself, another round of

drawing ballots is necessry to ensure that nobody buys presents for himself.

We introduce the following notation: Sn is the group of permutations of n persons.

Σn is the subset of Sn consisting of the permutations such that no person has itself;

that is, Σn is the subset of groupelements of Sn without fixed points. The Fake

Santa game therefore amounts to a permutation without fixed points. We write zn

for the number of permutations of n persons without fixed points: zn = |Σn|. In

section 2 we give two recursive formulas to calculate zn. In section 3 we consider

asymptotic formulas for n → ∞. Using these estimates it is rather easy to obtain

estimates of the probabilites that nobody draws itself in the drawing of the ballots,

which is done in section 4.

We call a 2-cycle a permutation of two persons; we call a 3-cycle a cyclic permutation

of three persons, that is, person A has drawn person B, person B has drawn person

C and person C has drawn person A. In a similar fashion we define 4-cycles, 5-cycles

and so on. A 1-cycle sends a person to himself. Each permutation of n persons can

be written as a product of non-intersecting cycles; with non-intersecting we mean

that each person only appears in one cycle – it is easy to see that the group of n
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persons splits into a disjoint set of cycles of varying length. In this sense the Fake

Santa game amounts to a permutation of n persons whose decomposition into a

product of cycles contains no 1-cycles.

Looking at the group of persons that play the Fake Santa game, we can make a link

with partitions without ones: The group decomposes into disjoints cycles subject

to the rule that no cycles of length 1 are allowed. Consider a group of 10 persons,

than the Fake Santa game can cause a decomposition into cycles of the following

lengths: 10 = 10, which is the whole group is one cycle, 10 = 8 + 2, 10 = 7 + 3,

10 = 6+4, 10 = 6+2+2, 10 = 5+5, 10 = 5+3+2, 10 = 4+4+2, 10 = 4+3+3,

10 = 4 + 2 + 2+ 2, 10 = 3 + 3+ 2 + 2, 10 = 2+ 2 + 2 + 2 + 2. This exemplifies the

link with partitions without one’s, which will be used in section 5 to obtain a way

to calculate zn.

2 Recursive formulas

As above we consider a group of n persons. The group Sn has n! elements. These

elements can be partitioned

Sn =
⊎

k

Tn,k (1)

into disjoint sets Tn,k, where Tn,k is the set of permutations in Sn that have k fixed

points and permute the other n − k points (persons) without fixed points. There

are
(

n

k

)

=
(

n

n−k

)

ways to choose k fixed points from a set of n points. There are

zn−k permutations that leave k points fixed and permute n−k points without fixed

points. Hence we have the following formula:

n! =
n

∑

k=0

(

n

k

)

zk . (2)

From this formula we can obtain a recursive formula for the zn. Easy considerations

lead to z1 = 0 (there is no sense in playing Fake Santa with yourself) and z2 = 1

(the only thing two persons can do is exchange ballots) and from eqn.(2) for n = 0

we get z0 = 1. Then we can rewrite eqn.(2) as

zn = n!−

n−1
∑

k=0

(

n

k

)

zk . (3)

In this formula the z0-term corresponds to subtracting the identity element, which

has n fixed points. With the aid of formula (3) we obtain the following table:
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n zn zn/n!

1 0 0

2 1 0.5

3 2 0.333

4 9 0.375

5 44 0.367

6 265 0.368

7 1854 0.368

8 14833 0.368

9 133496 0.368

10 1334961 0.368

We now prove the following formula:

zn = nzn−1 + (−1)n . (4)

From the table above we see that (4) is satisfied for n ranging from 1 to 10. We now

proceed inductively. Assume formula (4) holds up to some positive integer n − 1.

We then show that (4) also holds for n. This then proves the formula for all n.

We calculate

n! =

n
∑

k=0

(

n

k

)

zk =

n−1
∑

k=1

(

n

k

)

zk + zn + 1

=

n−1
∑

k=1

(

n

k

)

kzk−1 +

n−1
∑

k=0

(−1)k + zn

=

n−1
∑

k=1

(

n− 1

k − 1

)

nzk−1 +

n
∑

k=0

(−1)k + zn − (−1)n

= n

n−2
∑

k=0

(

n− 1

k

)

zk + zn − (−1)n

= n((n− 1)!− zn−1) + zn − (−1)n

= n! + (zn − nzn−1 − (−1)n) ,

(5)

where we used the identity
(

n

k

)

k =
(

n−1

k−1

)

n to obtain the third line. From the end

result of the calculation we see that the final term in parenthesis has to vanish.

This proves eqn.(4).
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Equation (4) provides an easy way to calculate zn inductively. Also, it provides a

hint for the asymptotic behavior of zn, as the recursive rule for the zn resembles

that of n!, upto the term (−1)n which will be of less importance for large n and

zn. Hence we suspect that zn/n! tends to a number between 0 and 1, which we will

prove in the following section.

3 Asymptotics

Since zn is the number of elements of a subset of Sn, the fraction βn = zn/n! is

limited by 0 ≤ βn < 1. We divide equation (4) by n! and obtain:

βn = βn−1 +
(−1)n

n!
. (6)

As β0 = 1 this equation is solved by

βn =

n
∑

k=0

(−1)n

n!
. (7)

Hence in the limit as n → ∞ we obtain

βn −→
∞
∑

k=0

(−1)n

n!
= e−1 . (8)

The result that βn → 1/e means that for large n the permutations σ ∈ Sn that

have fixed points outnumber the permutations without fixed points by a factor of

approximately e− 1. Or in other words, for large n the permutations that have no

fixed points constitute approximately 37% of all permutations. From the table of

the previous section we see that convergence is rather fast and good estimates with

error margins of 1/1000 are obtained for n ≥ 6.

4 Probabilities

In this section we mainly consider groups of n persons with n large enough.

(I) What is the probability that in a group of n persons, no second round for the

drawing of the ballots is needed? The number of total permutations is n!, of which

only zn are good permutations for the Fake Santa game. Hence zn/n! is the prob-

ability no second round is needed. This probability can be read off from the table

of section 2. For n ≥ 6 a good estimate is 1/e which is approximately 37%.
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(II) What is the probability that at leat two persons simply exchange ballots in the

drawing? This amounts to finding the subset of all permutations without fixed

points with at least a 2-cycle. There are
(

n

2

)

ways to choose two persons. Then for

the rest there are zn−2 ways to permute the ballots. Hence the probability is:
(

n

2

)

zn−2

zn
∼

n!

(n− 2)!2

(n− 2)!

n!
=

1

2
, (9)

where we use zk ∼ k!/e.

(III) What is the probability that at least one 3-cycle appears? That is, how probable

is it, that there are three persons A, B and C in the group, such that A has drawn

the ballot of B and B has drawn the ballot of C and C has drawn the ballot of A?

Similar reasoning as above, except for taking into account that for three persons

there are 2 possible 3-cycles, leads to

2

(

n

3

)

zn−3

zn
∼ 2

n!

(n− 3)!6

(n− 3)!

n!
=

1

3
. (10)

(IV) More general, what is the probability that at least one k-cycle appears? Similar

reasoning as above, except for taking into account that for k persons there are

(k − 1)! possible k-cycles, leads to

(k − 1)!

(

n

k

)

zn−k

zn
∼ (k − 1)!

n!

(n− k)!k!

(n− k)!

n!
=

1

k
. (11)

(V) What is the probability that in a group of n persons an n-cycle occurs? In a

group of n persons there are (n−1)! possible n-cycle. Hence the required probability

is given by:
(n− 1)!

zn
∼

e

n
. (12)

5 Partitions without one’s

It is easy to convince oneself that a group of n people playing the Fake Santa game

decomposes into disjoint cycles: Every person has another person’s ballot; person

A1 has the ballot of person A2, who has the ballot of person A3 and so on. As the

group is finite, we obtain a finite chain A1, A2, . . . , Ak such that Ak has the ballot

of person A1.

Hence we can see the group as a sum n = n1 + n2 + . . .+ np for some p and where

the ni are natural numbers larger than 2, as no one has his own ballot. Hence there
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is a correspondence between the set of permutations without fixed points and the

partitions without one’s.

As there are (k−1)! possible k-cycles for a chosen subset of k persons, we can count

zn in the following way: First we find all partitions of n without one’s. Then we

find for each partition n = n1 + . . . + np the number of ways we can decompose n

into this partition. Then we multiply with (ni − 1)! for all ni in the partition. We

calculate z8 to clarify the method.

We have the following partitions of 8: 8 = 8, 8 = 6 + 2, 8 = 5 + 3, 8 = 4 + 4,

8 = 4 + 2 + 2, 8 = 3 + 3 + 2, 8 = 2 + 2 + 2 + 2.

There are 7! possible 8-cycles. Hence the partition 8 = 8 contributes 7! = 5040 to

the number z8.

There are
(

8

2

)

possible ways to choose 2 from 8. Hence the partition 8 = 6 + 2

contributes 5·!
(

8

2

)

= 3360 to z8.

In a similar way one finds that the partition 8 = 5+3 contributes 4! · 3! ·
(

8

3

)

= 2688

to z8.

There are 1

2

(

8

4

)

ways to decompose a group of 8 persons into two groups of 4 persons.

Hence the partition 8 = 4 + 4 contributes 1

2
· 3! · 3! ·

(

8

4

)

= 1260 to z8.

There are
(

8

4

)

ways to choose 4 persons from a group of 8 persons. There are 3 ways

to split the remaining 4 into two groups of 2. Hence the partition 8 = 4 + 2 + 2

contributes 3! ·
(

8

4

)

· 3 = 1260 to z8.

There are
(

8

2

)

ways to choose 2 persons out of 8. There are 1

2
· 5 · 4 ways to split the

remaining 6 into two groups of 3. This then gives a contribution of 1

2
·5 ·4 ·2 ·2 ·

(

8

2

)

=

1120 from the partition 8 = 3 + 3 + 2 to z8.

Finally, to split a group of 8 into 4 groups of 2, we can first choose one person free,

then we have 7 possible persons to add to the first person. Then we choose one

person free from the remaining 6 and have 5 possible persons to add to this person.

Then we can again choose one person free and have 3 options to add to this person

and thereby we have fixed the last pair. Hence the partition 8 = 2 + 2 + 2 + 2

contributes 7 · 5 · 3 = 105 to z8.

Adding all contributions we indeed obtain 14833 possible permutations of the ballots

for a group of 8 persons.
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