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Abstract

Rainbows are fascinating optical phenomena and the mathematics and physics
behind them is vast and rich. With ray optics much aspects of rainbows can be
understood, but for a deeper understanding Mie theory is needed. Mie theory provides
a framework to discuss the scattering of light from small sphere-like particles. To give
those that are interested an easier way to an understanding of the basic equations of
Mie theory, this note was written.

1 Introduction

Ray optics provide a good framework to discuss several optical phenomena, including the
primary and secondary arcs of rainbows. Some other aspects of rainbows – the interfer-
ence fringes for example – might be already well discussed with wave front analysis. To
generally solve the problem and discuss some less known properties of rainbows and glory
phenomena, a thorough discussion of Maxwell equations is needed. This is precisely what
Mie theory does. Mie theory can then be applied to discuss scattering of light on small
water droplets, which causes rainbows and glory phenomena, but also other atmospheric
optical phenomena such as scattering of light from dust.

Mie theory provides a set of basic equations for the scattered electromagnetic field, which
can easily be implemented on a computer. Simulations might then provide good insights
in how light is scattered from small spheres and how the scattering depends on the color
of light, i.e., on the frequency.

These notes were written as a result of trying to understand how the basic equations of
Mie theory come can be derived. Many different conventions for special functions are used
throughout the literature, but even the Maxwell equations can be written in different unit
systems. In order to have one set of valid equations and knowing which conventions are
used, the author wanted to verify each step in deriving the basic Mie equations.

The basic problem is the following: A plane wave of electromagnetic radiation in air (or
vacuum) hits on a small dielectric sphere of radius a, e.g. made of water. We want to find
the scattered radiation. To treat the problem, we use a coordinate system with its origin
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at the center of the droplet. By spherical symmetry we use spherical coordinates, with
origin at the center of the water droplet:

x = r cos(ϕ) sin(ϑ) , y = r sin(ϕ) sin(ϑ) , z = r cos(ϑ) . (1)

The unit basis vectors in cartesian coordinates are denoted ex, ey and ez; the unit basis
vectors in spherical coordinates are denoted er, eϑ and eϕ.

To tackle the basic problem, a solution to the Maxwell equations needs to be found. Find-
ing a solution that describes radiation can be made more managable by introducing some
vector spherical harmonics, that is, vector fields satisfying Helmholtz equation. They are
the vector analogues of the spherical harmonic functions Y m

l that arise in many areas,
such as quantum mechanics, potential problems in electromagnetism, 3D computer graph-
ics, electronic configurations, magnetic fields on planets, cosmic microwave background
radiation, . . . The vector spherical harmonics are used in many interesting fields such as
fluid dynamics, electrodynamics magneto-hydrdynamics. For example the magnetic fields
in stars have an impact on their development; the magnetic field can well be described
by vector spherical harmonics. Care has to be taken in directly using vector spherical
harmonics, since several different definitions exist. The definitions are to be adapted to
the application of interest. In this note we define some vector spherical harmonics that
are adapted to electromagnetic radiation of some well-defined frequency.

The note is organized as follows: In section 2 we give the basic equations that are to
be solved, that is, we give the Maxwell equations. In section 3 we give some standard
mathematic machinery that enables us to bring the Maxwell equations into a managable
form and reduce them to second-order differential equations in one variabel. In section 4 we
then introduce the vector spherical harmonics and relate them to the Maxwell equations.
Up to this point no explicit expansions in vector spherical harmonics has been made.
In order to do so, more properties of spherical Bessel functions and associated Legendre
functions are needed, which will be given in 5. In section 6 we give an expansion of
the incoming plane waves in terms of vector spherical harmonics, and in section 7 we
use the interface conditions at the boundary of the water droplet to obtain expansion in
vector spherical harmonics for the electromagnetic field inside the droplet and for outgoing
electromagnetic field; these expansions are the fundamental equations of Mie theory. In
section 8 we discuss some various directions one can take with these fundamental equations
and a few other aspects. Finally, in section 9 the reader finds a list with the commonly
used symbols in this text; we however do not give coefficients of expansions in this glossary
as they are used only within one section.

Historically, the solutions that we try to present in this note, were first derived by Gustav
Mie in work Beiträge zur Optik trüber Medien, speziell kolloidaler Met-

allösungen that appeared in Annalen der Physik, 330 (3). Half a century later, Hendrik
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C. van de Hulst wrote a book1 also discussing Mie theory. A more recent treatment is
written by Craig F. Bohren and Donald R. Huffmann2, again half a century later. In this
note, we can merely present some details of only a small part of the derivation of the basic
equations of Mie theory. We hope we can encourage the reader to fill in the details, find
out, what more is known about the subject, and consult the original literature and other
historic works on the subject.

We hope to have made no calculation errors or typos. If anyone finds some mistakes,

please write an email to westradennis at gmail dot com.

2 Maxwell equations

We use the macroscopic version of Maxwell equations

∇ ·D = ρ , ∇ ·B = 0

∇×E = − ∂

∂t
B , ∇×H = J+

∂

∂t
D

(2)

together with the constitutive relations D = ǫE and B = µH. For the scattering of light
on water droplets, we can assume ρ = 0 and J = 0.

We wish to find solutions for the following problem: An incoming plane wave of the form
E = ~exEeikz−iωt hits a water droplet; calculate the scattered radiation. By superimposing
such plane waves one can get an understanding of the more daily life problem of sunlight
hitting raindrops in the atmosphere.

We choose as variables E andH and elimenate the time dependence by writingE(x, y, z, t) =
E(x, y, z)e−iωt and H(x, y, z, t) = H(x, y, z)e−iωt. The material properties are inside µ and
ǫ, which we assume to take the value µ2 and ǫ2 inside a sphere of radius a – the droplet
– and the value µ1 and ǫ1 outside this sphere – in the air. The equations that are to be
solved then become

∇ · E = 0 , ∇ ·H = 0

∇×E = iωµH , ∇×H = −iωǫE . (3)

Combining these equations one finds that E and H have to satisfy the vector Helmholtz
equations

(△ + k2)E = (△ + k2)H = 0 (4)

where k2 = ǫµω2 and △ = ∇ · ∇.

11957: Van de Hulst, Light scattering by small particles. New York: John Wiley and

Sons. ISBN 9780486139753
22010: Bohren and Huffmann, Absorption and scattering of light by small particles. New

York: Wiley-Interscience. ISBN 3-527-40664-6.
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3 Mathematical preamble

In this sectin we will repeat some standard mathematical machinery, which the experienced
reader might want to skip. We will discuss the differential operators curl, grad and div
in spherical coordinates and indicate how solutions to the (scalar) Helmholtz equation are
found using separation of variables. In order not to obscure the main line of reasoning,
which involves determining the scattering of light from a water droplet, we postpone a
deeper discussion of the spherical Bessel functions and associated Legendre functions to
section 5.

If f is a differentiable function, the gradient of f is given in spherical coordinates by

gradf = ∇f =
∂f

∂r
er +

1

r

∂f

∂ϑ
eϑ +

1

r sinϑ

∂f

∂ϕ
eϕ . (5)

The divergence of a differentiable vector fieldX = Xr
er+X

ϑ
eϑ+X

ϕ
eϕ is given in spherical

coordinates by

divX = ∇ ·X =
1

r2
∂r(r

2Xr) +
1

r sinϑ
∂ϑ(sin(ϑ)X

ϑ) +
1

r sinϑ
∂ϕX

ϕ . (6)

The curl of a differentiable vector field X is a vector field ∇ ×X whose components are
given in spherical coordinates by

(∇×X)r =
1

r sinϑ

(

∂ϑ(sin(ϑ)X
ϕ)− ∂ϕX

ϑ
)

(∇×X)ϑ =
1

r sinϑ
∂ϕX

r − 1

r
∂r(rX

ϕ)

(∇×X)ϕ =
1

r

(

∂r(rX
ϑ)− ∂ϑX

r
)

(7)

The Laplacian △f = ∇2f = div gradf of a smooth function f is then found to be

△f =
1

r2
∂r(r

2∂rf) +
1

r2 sinϑ
∂ϑ(sin(ϑ)∂ϑf) +

1

r2 sin2 ϑ
∂2ϕf . (8)

To solve the Helmholtz equation (△ + k2)f for a smooth function we use separation of
variables and set f(r, ϑ, ϕ) = R(r)Θ(ϑ)Φ(ϕ) and plug this into the Helmholtz equation in
spherical coordinates and find

1

r2R
∂r(r

2∂rR) +
1

r2 sin(ϑ)Θ
∂ϑ(sin(ϑ)∂ϑΘ) +

1

r2 sin2(ϑ)Φ
∂2ϕΦ+ k2 = 0 . (9)
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If we multiply this equation with r2 sin2(ϑ) we see that one term, involving ∂2ϕΦ, depends
on ϕ and on no other variables. The other terms do not depend on ϕ. Hence there must
be a (perhaps complex) constant, which we already write as −m2, such that

∂2ϕΦ = −m2Φ (10)

and
1

r2R
∂r(r

2∂rR) +
1

r2 sin(ϑ)Θ
∂ϑ(sin(ϑ)∂ϑΘ)− m2

r2 sin2(ϑ)
+ k2 = 0 . (11)

Now we can perform a similar trick and find there must be some constant C, such that

∂r(r
2∂rR) + (k2r2 − C)R = 0

and
1

sin(ϑ)
∂ϑ(sin(ϑ)∂ϑΘ)− m2Θ

sin2(ϑ)
+ CΘ = 0 . (12)

The Φ-equation is now easily solved for: we can take Φ(ϕ) = e±imϕ. Indeed, only if the
separation constant is of the form −m2 we have periodic solutions. For the constant C
some more work is required, but can be found in most mathematical literature3. The
constant C needs to be of the form l(l+1) for some nonnegative integer l and m can take
values ranging from −l to +l.

For the radial equation we put x = kr and find the equation

(x2R′)′ + (x2 − l(l + 1))R = 0 , (13)

whose solutions are the spherical Bessel functions wl(x), which come in two forms: the
regular one, written jl(x), and the irregular one, written yl(x).

For the angular equation we put ξ = cos ϑ and find that Θ satisfies the equation

((1− ξ2)Θ′)′ +
(

l(l + 1)− m2

1− ξ2

)

Θ = 0 , (14)

which has as regular solutions the associated Legendre functions Plm.

Any solutionf to the Helmholtz equation that is at most irregular at the origin can be
expanded in terms of the functions eimϕPlm(cos ϑ)jl(kr) and e

imϕPlm(cos ϑ)yl(kr). Since
the special functions, the associated Legendre functions and the spherical Bessel functions,
play a prominent role in the sequel, we discuss some more properties of these in section 5.

We often encounter sets of orthogonal functions on some compact space, in particular
on [−1; 1], [0, 2π] and on the sphere S2. With orthogonal we will mean orthogonal with

3See for example: Jon Mathews and Robert Lee Walker, Mathematical methods of physics, Benjamin

1973.
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respect to an inner product of the form 〈f |g〉 =
∫

f∗g, that is, with respect to integration
over the compact space. Since the spaces under consideration are compact, we will only
find countable sets of orthogonal functions, in which case the use of the Kronecker delta
δα,β is ubiquitous: δα,β = 1 if α = β and δα,β = 0 if α 6= β. With this notation, a set of
orthogonal functions is characterized by

〈fα|fβ〉 =
∫

f∗αfβ = Nαδα,β , (15)

and if Nα = 1, the set is an orthonormal set.

4 Vector spherical harmonics

We first consider the construction of a solution to the vector Helmholtz equation on the
basis of a function f satisfying the Helmholtz equation (△ + k2)f = 0. The basic idea is
to associate to f two kinds of vector fields, which we denote by L and K. We write r for
the radial vector field;

r = (x, y, z) = rer . (16)

Then we define

L = ∇× (rf) = ∇f × r , K =
1

k
∇× L . (17)

It is then easily checked that we have

(△+ k2)L = (△ + k2)K = 0 , ∇ · L = ∇ ·K = 0 , (18)

and ∇× L = kK and ∇×K = kL. These identities are precisely those that the Maxwell
equations dictate for E and H.

Any complex function f satisfying the Helmholtz equation can be expanded in terms
of the basis functions Plm(cos ϑ)jl(kr)e

imϕ and Plm(cos ϑ)yl(kr)e
imϕ, where Plm are the

associated Legendre functions, jl and yl the spherical Bessel functions. In the following
section 5 we discuss these functions in more detail. The labels l and m take the following
values: l = 0, 1, 2, 3, . . . and for a given l the label m takes the integer values from −l to
+l. We will however choose to split eimϕ in its real and imaginary part so that m takes
nonnegative values: 0 ≤ m ≤ l.

For the moment it is irrelevant whether we take jl, yl or even hl = jl+ iyl for the spherical
Bessel function, and therefore we write wl for a spherical Bessel function, be it jl, yl or
hl. Later, when we get to write down the expansions, we need to make a choice whether
wl = jl or wl = yl or wl = hl. The argument of the spherical Bessel functions will be of the
form kr, where k is the wave vector, which depends on the medium. Later we will often
simply write x = kr, as long as no confusion is possible.
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Then we define

Llm = ∇×
(

rPlm(cos ϑ)wl(kr) cos(mϕ)
)

,

L
′

lm = ∇×
(

rPlm(cos ϑ)wl(kr) sin(mϕ)
)

,
(19)

and

Klm =
1

k
∇× Llm , K

′

lm =
1

k
∇× L

′

lm . (20)

Using the expression (7) we find

Llm = −mPlm(cos ϑ)

sinϑ
sin(mϕ)wl(kr)eϑ − dPlm(cos ϑ)

dϑ
cos(mϕ)wl(kr)eϕ

L
′

lm =
mPlm(cos ϑ)

sinϑ
cos(mϕ)wl(kr)eϑ − dPlm(cos θ)

dϑ
sin(mϕ)wl(kr)eϕ

Klm =
wl(kr)

kr
l(l + 1)Plm(cos ϑ) cos(mϕ)er +

1

kr

d

dr
(rwl(kr))

dPlm(cos ϑ)

dϑ
cos(mϕ)eϑ

− 1

kr

d

dr
(rwl(kr))

mPlm(cos ϑ)

sinϑ
sin(mϕ)eϕ

K
′

lm =
wl(kr)

kr
l(l + 1)Plm(cos ϑ) sin(mϕ)er +

1

kr

d

dr
(rwl(kr))

dPlm(cos ϑ)

dϑ
sin(mϕ)eϑ

+
1

kr

d

dr
(rwl(kr))

mPlm(cos ϑ)

sinϑ
cos(mϕ)eϕ

(21)

5 Properties of special functions

In this section we discuss some properties of sperical Bessel functions and associated Leg-
endre functions.

We define the Legendre polynomials by

Pl(ξ) =
1

2ll!

( d

dξ

)

(ξ2 − 1)l . (22)

The Legendre polynomials are the regular solutions to the differential equation

((1 − ξ2)y′)′ + l(l + 1)y = (1− ξ2)y′′ − 2ξy′ + l(l + 1)y = 0 . (23)

The Legendre polynomials are orthogonal:

∫ 1

−1
Pl(ξ)Pl′(ξ)dξ =

2δl,l′

2l + 1
, (24)
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which is proved in many textbooks, but one proof can also be found in my notes on
associated Legendre functions4.

The Legendre polynomials P0 up to Pl span the space of polynomials up to degree l and
thus ξn can be expanded by the Legendre polynomials P0 up to Pn and thus if n < l we
must have

∫ 1
−1 ξ

nPl(ξ)dξ = 0. Another interesting integral is

∫ 1

−1
ξlPl(ξ)dξ =

2l+1(l!)2

(2l + 1)!
, (25)

which can be proved by partial integration using the definition (22) and the integral identity

∫ 1

−1
(1− ξ2)ldξ = 22l+1 l!l!

(2l + 1)!
. (26)

The Legendre polynomials satisfy the differential relation

P ′

l+1(ξ)− P ′

l−1(ξ) = (2l + 1)Pl(ξ) (27)

and the recurrence relation

(2l + 1)ξPl(ξ) = (l + 1)Pl+1(ξ) + lPl−1(ξ) . (28)

We define the associated Legendre functions by

Plm(ξ) =
(−1)m

2ll!
(1− ξ2)m/2

( d

dξ

)l+m
(ξ2 − 1) . (29)

Clearly we have Pl0 = Pl and for m ≥ 0 we have

Plm(ξ) = (−1)m(1− ξ2)m/2
( d

dξ

)m
Pl(ξ) , m ≥ 0 . (30)

One can show that Pl,−m and Plm are proportional. The associated Legendre polynomials
are the regular solutions of the differential equation

((1− ξ2)y′)′ +
(

l(l+ 1)− m2

1− ξ2

)

y = (1− ξ2)y′′ − 2ξy′ +
(

l(l+ 1)− m2

1− ξ2

)

y = 0 . (31)

Using this differential equation one can show using partial integrations that for fixed m
one has

∫ 1

−1
Plm(ξ)Pl′m(ξ)dξ =

2δl,l′

2l + 1

(l +m)!

(l −m)!
. (32)

4See the PDF file behind the link

https://www.mat.univie.ac.at/~westra/associatedlegendrefunctions.pdf
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The functions Plm(cos ϑ) cos(mϕ) and Plm(cos ϑ) sin(mϕ) make up a set of orthogonal
functions on the sphere S2. In fact, any continuous function on the sphere can be expanded
in terms of these basis functions. By orthogonality, such an expansion is unique. If f and
g are two functions on the sphere, we write 〈f |g〉 for the inner product on the sphere

〈f |g〉 =
∫ 2π

0
dϕ

∫ π

0
sinϑdϑ f∗g , (33)

where f∗ denotes the complex conjugate of f . It is often convenient to switch from ϑ to
the integration variable ξ = cos ϑ and then

∫ π
0 sinϑdϑ =

∫ 1
−1 dξ.

The spherical Bessel functions wl come in two disguises, jl and yl, which are defined by

jl(x) = (−x)l
( d

xdx

)l sin(x)

x
, yl(x) = −(−x)l

( d

xdx

)l cos(x)

x
. (34)

The spherical Bessel functions are solutions to the differential equation

x2y′′ + 2xy′ + (x2 − l(l + 1))y = 0 . (35)

Another useful definition is
hl(x) = jl(x) + iyl(x) , (36)

which behaves for large x as (−i)l+1 eix

x , which will be necessary when we get to find good
expansions for the outgoing radiation.

The behavior of jl(x) at the origin is given by

jl(x) =
2ll!

(2l + 1)!
xl +O(xl) , (37)

which can be proved by using the definition (34) and inserting a power series expansion
for sin(x), a calculation which is eased by putting u = x2.

Two equations that will often be useful and will be used without mentioning is

wn+1(x) = −w′

n(x) +
n

x
wn(x)

wl+1(x) + wl−1(x) =
2l + 1

x
wl(x) .

(38)

We sketch a proof. One first puts D = d
xdx and shows that Dxr = rxr−1. Then one brings

the definitions (34) into the form wl = (−x)lDlf . Pulling one D out of the definition of
wl+1 almost immediately gives the first identity of eqns.(38). One then also has wn =
−w′

n−1 +
n−1
x wn−1; differentiating this equation and using the differential equation (35)

one arrives at the second of eqns.(38). As a side remark, using eqns.(38) one can easily
define w−1.
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6 Plane wave expansions

The incoming plane wave hitting the water droplet is taken to be of the form

E
in = exEeikz−iωt . (39)

From eqn.(39) the magnetic field H
in can be calculated. The field strength is contained

in the constant E , which will appear linearly in all quantities. Hence we could as well put
it to 1 and re-insert it later. We will however keep it in this section and absorb it in sone
other constants later on. The time-dependent factor e−iωt can be ignored in this section;
we are only concerned with the dependence on r, ϑ and ϕ.

We start with a rather well-known result. The following expansion holds:

eikr cos ϑ =

∞
∑

l=0

il(2l + 1)Pl(cos ϑ)jl(kr) . (40)

Since we will exploit this result in obtaining an expansion of Ein in terms of Llm, L′

lm,
Klm and K

′

lm we give a short indication of a proof eqn.(40).

Since eikz solves the Helmholtz equation and is regular at the origin, it can be expanded
in the basic functions as eikz =

∑

lm almPlm(cos ϑ)jl(kr)e
imϕ, but since ikz = ikr cos ϑ,

there is no ϕ-dependence and so only the coefficients for m = 0 are nozero. We thus have

eikr cosϑ =
∞
∑

l=0

alPl(cos ϑ)jl(kr) , (41)

and our task is to determine al. As before we put ξ = cos ϑ. By the orthogonality relation
(24) we can determine the al by

2

2l + 1
aljl(kr) =

∫ 1

−1
eikrξPl(ξ)dξ . (42)

In order not to have to calculate all integrals
∫ 1
−1 ξ

kPl(ξ)dξ we use a trick, which consists

in considering eqn.(42) around x = kr = 0. From eqn.(37) we see that jl(x) = 2ll!
(2l+1)!x

l

plus higher order terms. We thus expand eixξ =
∑

n
inxn

n! ξ
n and consider the term ilxl

l! ξ
l

– indeed
∫ 1
−1 ξ

nPl(ξ)dξ = 0 for n < l since the Legendre polynomials up to degree n span
the space of polynomials up to degree n, so that Pl is orthogonal to them for l > n, and
for n > l we obtain the higher order terms, so we can restrict our attention to n = l. Using
relation (25) then leads to al = il(2l + 1).

Now we come to the main part of this section and expand E
in in terms of the vector

harmonics
E

in =
∑

lm

AlmKlm +A′

lmK
′

lm +BlmLlm +B′

lmL
′

lm , (43)
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where we now choose to take wl = jl since E
in is definitively regular at the origin. We

now take inner products with er, eϑ, eϕ use the relations

er · ex = sinϑ cosϕ , eϑ · ex = cos ϑ cosϕ , eϕ · ex = − sinϕ , (44)

and see that only terms with m = 1 can contribute, which excludes all terms with l = 0.
Furthermore, noting that sinϕ and cosϕ are orthogonal, we can restrict to an expansion
in terms of Kl1 and L

′

l1. We thus write E
in =

∑

lAlKl1 +BlL
′

l1 and need to solve for

∞
∑

l=0

il(2l + 1)jl(x)Pl(ξ) sin ϑ =

∞
∑

l=1

jl(x)

x
l(l + 1)Pl1(ξ)Al

∞
∑

l=0

il(2l + 1)jl(x)Pl(ξ) cos ϑ =

∞
∑

l=1

AlXl(x)
dPl1(ξ)

dϑ
+Bl

Pl1(ξ)

sinϑ
jl(x)

∞
∑

l=0

il(2l + 1)jl(x)Pl(ξ) =
∞
∑

l=1

AlXl(x)
Pl1(ξ)

sinϑ
+Bl

dPl1(ξ)

dϑ
jl(x)

(45)

where Xl(x) =
1
x(xjl(x))

′. To solve these equations we note that the functions

Π±

l (ξ) =
Pl1(ξ)

√

1− ξ2
±

√

1− ξ2
dPl1(ξ)

dξ
(46)

make up two sets of orthogonal functions and we have

∫ 1

−1
Π±

k (ξ)Π
±

l (ξ)dξ = δk,l
2l2(l + 1)2

2l + 1
. (47)

This relation is proved by a partial integration and using that Pl1 satisfies ((1− ξ2)P ′

l1)
′ =

(

1
1−ξ2

− l(l + 1)
)

Pl1. If we add the second and the third from eqns.(45) we obtain

∞
∑

l=0

il(2l + 1)(ξ + 1)Pl(ξ) =
∑

l=1

(AlXl(x) +Bljl(x))Π
−

l (ξ) . (48)

We now pursue the following strategy: We express the left-hand side as a linear sum of the
Pl and then take the inner product left and right with Π−

k to find a linear relation between
Ak, Bk and the jl. We thus need to evaluate 〈Pl|Π−

k 〉, to which we now turn.

Usindfg Pl1(ξ) = −
√

1− ξ2P ′

l (ξ) and the differential relation satisfied by Pl we find the
following equalities

Π−

l (ξ) = (ξ + 1)
(

−P ′

l (ξ) + (1− ξ)P ′′

l (ξ)
)

= (ξ − 1)P ′

l (ξ)− l(l + 1)Pl(ξ) . (49)
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From eqn.(27) we find

P ′

l = (2l − 1)Pl−1 + (2l − 5)Pl−3 + . . . . (50)

Using this and eqn.(28) we find after some algebra that

Π−

l = −l2Pl + (−1)l
l−1
∑

j=0

(−1)j(2j + 1)Pj . (51)

Using the latter we find the relation

〈
∑

l

clPl,Π
−

k 〉 = −k2 2ck
2k + 1

+

k−1
∑

j=0

(−1)k+j2cj , (52)

for any coefficients cl. We now use again eqn.(28) and rewrite

∞
∑

l=0

ll(2l+1)jl(x)Pl(ξ)(ξ+1) =

∞
∑

l=0

(

ljl−1(x)+i(2l+1)jl(x)−(l+1)jl+1(x)
)

il−1Pl(ξ) . (53)

We now call cl =
(

ljl−1(x) + i(2l + 1)jl(x)− (l + 1)jl+1(x)
)

il−1 and find that we have to

solve

−k2 2ck
2k + 1

+
k−1
∑

j=0

(−1)k+j2cj =
(

AkXk +Bkjk

)2k2(k + 1)2

2k + 1
. (54)

Investigating ck and the sums
∑p−1

j=0 ck(−1)k for some low values of p and k one easily
convinces him or herself that we have the following relation

p−1
∑

j=0

ck(−1)k = −p(−i)p(jp − ijp−1) . (55)

Plugging this into eqn.(54) we find that we have to solve

AkXk +Bkjk =
1

k(k + 1)

(

ik+1(k + 1)jk−1 − ik+1kjk+1 − ik(2k + 1)jk

)

. (56)

Using the explicit expression Xl(x) = − l
2l+1jl+1(x) +

l+1
2l+1jl−1(x) and comparing the co-

efficients in front of the different spherical Bessel functions, one concludes that a solution
to the equation to solve is

Ak =
ik+1(2k + 1)

k(k + 1)
, Bk = − i

k(2k + 1)

k(k + 1)
. (57)
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We will check this solution in two ways, using the two other independent equations from
eqns.(45). But before doing so, we put the above result into a useful expansion; defining

El =
il+1(2l+1)

l(l+1) we write the electric and magnetic field of the incoming radiation as

E
in = E

∞
∑

l=1

El(Kl1 + iL′

l1)

H
in = E

√

ǫ

µ

∞
∑

l=1

El(K
′

l1 − iLl1) .

(58)

6.1 Checking with the radial equation

Noting that Pl1(ξ) = −
√

1− ξ2P ′

l (ξ) = − sinϑP ′

l (ξ) and using jl(x)
x =

jl+1(x)+jl−1(x)
2l+1 we

obtain from the first of eqns.(45) the equation, supressing the arguments,

∞
∑

l=0

il(2l + 1)jlPl = −
∞
∑

l=1

jl
l(l − 1)

2l − 1
P ′

l−1Al−1 −
∞
∑

l=0

jl
(l + 1)(l + 2)

2l + 3
P ′

l+1Al+1 . (59)

Then using again eqn.(27) and taking an ansatz Al =
2l+1
l(l+1)ali

l we bring eqn.(59) into the
form

j0P0 +

∞
∑

l=1

iljl(P
′

l+1 − P ′

l−1) = −
∞
∑

l=1

jlP
′

l−1al−1i
l−1 −

∞
∑

l=1

jlP
′

l+1al+1i
l+1 − ia1j0P0 . (60)

We see that al = i is a solution, corroborating the equation for Al as found in eqn.(57).

6.2 Checking with Π
+
l

We combine the second and the third of eqns.(45) into

∞
∑

l=0

il(2l + 1)Pl(ξ)(1− ξ) =

∞
∑

l=1

(AlXl −Bljl)Π
+
l . (61)

Using similar algebraic steps one shows that

∞
∑

l=0

il(2l + 1)Pl(ξ)(1− ξ) =

∞
∑

l=0

(

il(2l + 1)jl − il−1ljl − il+1(l + 1)jl+1

)

Pl(ξ) . (62)

We call cl = il(2l + 1)jl − il−1ljl − il+1(l + 1)jl+1.
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We express Π+
l as

Π+
l (ξ) = −(ξ + 1)P ′

l (ξ) + l(l + 1)Pl(ξ) . (63)

Using similar steps as before, one shows that

(1 + ξ)P ′

l (ξ) = lPl +

l−1
∑

j=0

(2j + 1)Pj . (64)

With these, we have

Π+
l = l2Pl −

l−1
∑

j=0

(2j + 1)Pj . (65)

Hence we find
∞
∑

k=0

ck〈Pk|Π+
l 〉 =

2l2cl
2l + 1

−
l−1
∑

j=0

2cj . (66)

Either considering the first few lowest values for l or by a direct calculation one easily
shows that

l−1
∑

j=0

cj = il−1l(jl−1 − ijl) . (67)

Hence
∞
∑

k=0

ck〈Pk|Π+
l 〉 =

2l2

2l + 1
cl − 2il−1l(jl−1 − ijl) (68)

which we rearrange as

∞
∑

k=0

ck〈Pk|Π+
l 〉 = 2ill(l + 1)jl − 2il+1 l

2(l + 1)

2l + 1
jl+1 − 2il−1 l(l + 1)2

2l + 1
jl−1 . (69)

On the other hand, we also have 〈Π+
l |Π+

k 〉 = δkl
2l2(l+1)2

2l+1 and hence

∞
∑

k=1

(AkXk −Bkjk)〈Π+
l |Π+

k 〉 =
(

− l

2l + 1
jl+1Al +

l + 1

2l + 1
jl−1Al −Bljl

)2l2(l + 1)2

2l + 1
. (70)

Comparing the coefficients in front of the different spherical Bessel functions jl, jl+1 and

jl−1 we againg find Al =
il+1(2l+1)

l(l+1) and Bl = − il(2l+1)
l(l+1) .
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7 Implementing the interface conditions

Our problem of determining the scattered electromagnetic field can be tackled as follows:
The incoming radiation, given by E

in and H
in, causes an electromagnetic field inside

the droplet, which will be given its electric field E
d and its magnetic field H

d, but also
an outgoing electromagnetic field, characterized by E

out and H
out. All of these can be

expanded in terms of the vector spherical harmonics, where now for each one, a good
choice of the spherical Bessel function has to be made, and where the radial dependence
given by kr is different in the droplet (in water) from that outside the droplet (in the air).
The expansion of the incoming fields is already known. The interface conditions on the
surface of the droplet will determine the other expansions; the droplet is taken to be a
sphere with radius a.

The interface conditions for a water droplet without surface charges and currents are

(Din +D
out) · er = D

d · er at r = a ,

(Bin +B
out) · er = B

d · er at r = a ,

(Ein +E
out)× er = E

d × er at r = a ,

(Hin +H
out)× er = H

d × er at r = a .

(71)

In order to deal with these interface conditions effectively, we introduce the following
functions on the sphere:

∆+
lm(ϑ,ϕ) =

mPlm(cos ϑ)

sinϑ
cos(mϕ)

∆−

lm(ϑ,ϕ) =
mPlm(cos ϑ)

sinϑ
sin(mϕ)

Γ+
lm(ϑ,ϕ) =

dPlm(cos ϑ)

dϑ
cos(mϕ)

Γ−

lm(ϑ,ϕ) =
dPlm(cos ϑ)

dϑ
sin(mϕ) ,

(72)

which can then be used to rewrite the vector harmonics as

Llm(x) = ∆+
lmwl(x)eϑ − Γ−

lmwl(x)eϕ

L
′

lm(x) = −∆−

lmwl(x)eϑ − Γ+
lmwl(x)eϕ

Klm(x) = l(l + 1)Plm(cos ϑ) sin(mϕ)
wl(x)

x
er + Γ−

lmXl(x)eϑ +∆+
lmXl(x)eϕ

K
′

lm(x) = l(l + 1)Plm(cos ϑ) cos(mϕ)
wl(x)

x
er + Γ+

lmXl(x)eϑ −∆−

lmXl(x)eϕ

(73)

where we also abbreviated Xl(x) =
1
x(xwl(x))

′. Note that we indicated the r-dependence
through x = kr explicitly; this is just to facilitate the bookkeeping. The newly defined
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functions ∆±

lm and Γ±

lm satisfy some interesting orthogonality properties with respect to
the inner product on the sphere (33), which will be useful to use when dealing with the
interface conditions.

The integer m that labels the vector harmonics only takes nonnegative values. With this
restriction we have

∫ 2π

0
sin(mϕ) sin(m′ϕ)dϕ = πδm,m′

∫ 2π

0
cos(mϕ) cos(m′ϕ)dϕ = πδm,m′(1 + δm,0)

∫ 2π

0
sin(mϕ) cos(m′ϕ)dϕ = 0 .

(74)

Using these relations, the orthogonality property eqn.(32) of the associated Legendre func-
tions and the differential equation satisfied by them, one finds the following relations hold:

〈∆+
lm|∆−

l′m′〉 = 〈Γ+
lm|Γ−

l′m′〉 = 〈∆+
lm|Γ−

l′m′〉 = 〈∆−

lm|Γ+
l′m′〉 = 0

〈∆σ1

lm|Γσ1

l′m′〉+ 〈Γσ2

lm|∆σ2

l′m′〉 = 0(!!!)

〈∆±

lm|∆±

l′m′〉+ 〈Γ−

lm|Γ−

l′m′〉 = π
2l(l + 1)

2l + 1

(l +m)!

(l −m)!
δl,l′δm,m′

〈∆±

lm|∆±

l′m′〉+ 〈Γ+
lm|Γ+

l′m′〉 = π
2l(l + 1)

2l + 1

(l +m)!

(l −m)!
δl,l′δm,m′(1 + δm,0)

(75)

where in the second line all signs σi ∈ {−,+} for i = 1, 2 can be chosen at will. We now
introduce the following short notation

clm = π
2l(l + 1)

2l + 1

(l +m)!

(l −m)!
, (76)

with which we then find the following orthogonality relations with respect to the inner
product on the sphere: The nonzero inner products are

〈Llm(x1)|Ll′m′(x2)〉 = wl(x1)wl(x2)δl,l′δm,m′clm

〈L′

lm(x1)|L′

l′m′(x2)〉 = wl(x1)wl(x2)δl,l′δm,m′clm(1 + δm,0)

〈Klm(x1)|Kl′m′(x2)〉 =
(wl(x1)wl(x2)

x1x2
l(l + 1) +Xl(x1)Xl(x2)

)

δl,l′δm,m′clm

〈K′

lm(x1)|K′

l′m′(x2)〉 =
(wl(x1)wl(x2)

x1x2
l(l + 1) +Xl(x1)Xl(x2)

)

δl,l′δm,m′(1 + δm,0)clm .

(77)

whereas all other inner products are zero;

〈Llm(x1)|L′

l′m′(x2)〉 = 〈Llm(x1)|Kl′m′(x2)〉 = 〈Llm(x1)|K′

l′m′(x2)〉 = 0

〈L′

lm(x1)|Kl′m′(x2)〉 = 〈L′

lm(x1)|K′

l′m′(x2)〉 = 〈Klm(x1)|K′

l′m′(x2)〉 = 0 .
(78)
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One has to be careful with interpreting the notation here: In each vector field wl is at the
moment still free to choose, but in expressions such as in eqns.(77) a product wl(x1)wl(x2)
one should remember that wl(x1) might be stemming from the same function as wl(x2),
which would be wrong. The product wl(x1)wl(x2) means the product of perhaps two
different functions, one evaluated at x1, the other at x2; it could thus be hl(x1)jl(x2), or
even yl(x1)hl(x2), depending on the choice made for the spherical Bessel function inside
the vector harmonic on the left-hand side. We think this ambiguity is less awkward than
any other choice of notation.

Since we will first focus on the continuity of E×er and H×er at the surface of the droplet,
the vector products with er are to be considered as well. Using eϑ×er = −eϕ and eϕ×er

one can write

Llm × er = −Γ−

lmwl(x)eϑ −∆+
lmwl(x)eϕ

L
′

lm × er = −Γ+
lmwl(x)eϑ +∆−

lmwl(x)eϕ

Klm × er = +∆+
lmXl(x)eϑ − Γ−

lmXl(x)eϕ

K
′

lm × er = −∆−

lmXl(x)eϑ − Γ+
lmXl(x)eϕ ,

(79)

which also satisfy some useful orthogonality properties, which are easily deduced, either
directly using eqns.(77) and (78), or by very similar calculations: The only nonvanishing
inner products are

〈Llm(x1)× er|Ll′m′(x2)× er〉 = wl(x1)wl(x2)δl,l′δm,m′clm

〈L′

lm(x1)× er|L′

l′m′(x2)× er〉 = wl(x1)wl(x2)δl,l′δm,m′clm(1 + δm,0)

〈Klm(x1)× er|Kl′m′(x2)× er〉 = δl,l′δm,m′clmXl(x1)Xl(x2)

〈K′

lm(x1)× er|K′

l′m′(x2)× er〉 = δl,l′δm,m′(1 + δm,0)clmXl(x1)Xl(x2) .

(80)

Again, one has to be careful to interpret products as wl(x1)wl(x2), in the equations above.
But below, we indicate as an additional argument, which spherical Bessel function has to
be taken – a detail, which till now barely mattered, so that we tried to keep the notation
as little clumsy as was necessary. We will below for example write Llm(h, k1r) to indicate
that in the vector field Llm the spherical Bessel function that was taken is hl and that its
argument is k1r. Also, we will use an index on the objects Xl, thus X

j
l (x) =

1
x(xjl(x))

′

for example.

The scattered radiation is given by its values outside the droplet, so it need not even by
regular at the origin. But being an outgoing wave, its behavior for large x should be of
the form eix

x , which dictates that we use hl. The radiation inside the droplet has to be
regular at the origin, since this is the center of the droplet, and hence we have to take jl
for the vector fields inside the droplet.

With these considerations on the choice of spherical harmonics, we first take a completely
general ansatz for the outgoing radiation E

out, Hout and the radiation inside the droplet
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E
d, Hd :

E
out =

∑

lm

AlmKlm(h, k1r) +A′

lmK
′

lm(h, k1r) +BlmLlm(h, k1r) +B′

lmL
′

lm(h, k1r)

H
out = −im1

∑

lm

AlmLlm(h, k1r) +A′

lmL
′

lm(h, k1r) +BlmKlm(h, k1r) +B′

lmK
′

lm(h, k1r)

E
d =

∑

lm

ClmKlm(j, k2r) + C ′

lmK
′

lm(j, k2r) +DlmLlm(j, k2r) +D′

lmL
′

lm(j, k2r)

H
d = −im2

∑

lm

ClmLlm(j, k2r) + C ′

lmL
′

lm(j, k2r) +DlmKlm(j, k2r) +D′

lmK
′

lm(j, k2r) ,

(81)

where m1 =
√

ǫ1
µ1

and m2 =
√

ǫ2
µ2
.

For the incoming radiation we use eqns.(58) and adapt it to the renewed notation:

E
in = E

∞
∑

l=1

El(Kl1(j, k1r) + iL′

l1(j, k1r))

H
in = m1E

∞
∑

l=1

El(K
′

l1(j, k1r)− iLl1(j, k1r)) .

(82)

We remind the reader that El =
il+1(2l+1)

l(l+1) .

To take care of the third and fourth of the interface conditions (71), we take the vector
product with er and then use the orthogonality relations (80). First, let us consider m 6= 1.
Taking inner products with appropriate choices of Klm×er and Llm×er we obtain among
others the following equations:

AlmX
h
l (k1a) = ClmX

j
l m1Almhl(k1a) = m2m2Clmjl(k2a) . (83)

But unless
m2jl(k2a)X

h
l (k1a)−m1hl(k1a)X

j
l (k2a) = 0 . (84)

the only solution is Alm = Clm = 0. Equation (84) can never be satisfied for general values
of a, only a special value of a can make this expression to vanish, but there are infinitely
many values of l. Also, for m = 1 we will see that the expression on the right hand side
has to be nonzero in order for a solution to exist. From a more physical perspective, if
no radiation is incoming, we do not expect some radiation to be scattered, and hence
the equations that are not altered by the presence of the incoming radiation – here the
presence of terms proportional to El – are expected to have the same solutions as without
incoming radiation. We thus arrive at the conclusion that all coefficients vanish unless
m = 1; indeed, for the other coefficients one finds similar equations for m 6= 1.
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We rewrite the coefficients slightly; as the coefficients Alm and others vanish for m 6= 1,
we write Al1 = Al and similarly for the others – we thus omit the index 1. The equations
to solve now are only those for m = 1 and taking appropriate inner products with Kl1×er

and others we arrive at the following set of equations:

EElX
j
l (k1a) +AlX

h
l (k1a) = ClX

j
l (k2a)

m1BlX
h
l (k1a) = m2DlX

j
l (k2a)

A′

lX
h
l (k1a) = C ′

lX
j
l (k2a)

im1EElX
j
l (k1a) +m1B

′

lX
h
l (k1a) = m2D

′

lX
j
l (k2a)

Blhl(k1a) = Dljl(k2a)

m1EEljl(k1a) +m1Alhl(k1a) = m2Cljl(k2a)

iEEljl(k1a) +B′

lhl(k1a) = D′

ljl(k2a)

m1A
′

lhl(k1a) = m2C
′

ljl(k2a)

(85)

From those equations without El, i.e., from the second, third and fifth, we see that, using
a reasoning similar to above, that Bl = Dl = 0 and A′

l = C ′

l = 0. The remaining equations
are linear equations and hence are easily solved, although the algebra can be a little messy:

Al =
m1jl(x1)X

j
l (x2)−m2jl(x2)X

j
l (x1)

m2jl(x2)X
h
l (x1)−m1hl(x1)X

j
l (x2)

EEl

Cl =
m1jl(x1)X

h
l (x1)−m1hl(x1)X

j
l (x1)

m2jl(x2)X
h
l (x1)−m1hl(x1)X

j
l (x2)

EEl

B′

l = i
m2jl(x1)X

j
l (x2)−m1jl(x2)X

j
l (x1)

m1jl(x2)X
h
l (x1)−m2hl(x1)X

j
l (x2)

EEl

D′

l = i
m1jl(x1)X

h
l (x1)−m1hl(x1)X

j
l (x1)

m1jl(x2)X
h
l (x1)−m2hl(x1)X

j
l (x2)

EEl .

(86)

We can now apply some cosmethics to obtain some nicer form. First we define the refraction
index

n =

√

ǫ2µ2
ǫ1µ1

. (87)

We remark that x2 = k2a = k1an = x1n. Multiplying denominator and nominator in the
above expressions with x1x2 and using the definitions

Ql(x) = xhl(x) , Sl(x) = xjl(x) (88)

and
Al = αlEEl , Cl = nγlEEl , B′

l = iβlEEl , D′

l = inδlEEl (89)
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we then find

αl =
m1Sl(x1)S

′

l(x2)−m2Sl(x2)S
′

l(x1)

m2Sl(x2)Q
′

l(x1)−m1Ql(x1)S
′

l(x2)

γl =
m1Sl(x1)Q

′

l(x1)−m1Ql(x1)S
′

l(x1)

m2Sl(x2)Q
′

l(x1)−m1Ql(x1)S
′

l(x2)

βl =
m2Sl(x1)S

′

l(x2)−m1Sl(x2)S
′

l(x1)

m1Sl(x2)Q
′

l(x1)−m2Ql(x1)S
′

l(x2)

δl =
m1Sl(x1)Q

′

l(x1)−m1Ql(x1)S
′

l(x1)

m1Sl(x2)Q
′

l(x1)−m2Ql(x1)S
′

l(x2)

(90)

and the expansions of the scattered fields and the fields inside the droplets now finally
become:

E
out = E

∑

l

El

(

αlKl1(h, k1r) + iβlL
′

l1(h, k1r)
)

H
out = m1E

∑

l

El

(

βlK
′

l1(h, k1r)− iαlLl1(h, k1r)
)

E
d = nE

∑

l

El

(

γlKl1(j, k2r) + iδlL
′

l1(j, k2r)
)

H
d = m2nE

∑

l

El

(

δlK
′

l1(j, k2r)− iγlLl1(j, k2r)
)

.

(91)

The expressions (90) and (91) are our final expressions, those that we wanted to deduce in
a systematic and explicit way. We will now perform some checks, to verify the correctness
of the result. The first check is to take ǫ1 = ǫ2 and µ1 = µ2, so effectively to elimenate the
droplet. We then have m1 = m2, n = 1 and x1 = x2. We then see that αl = βl = 0 and
γl = δl = El. As expected, then the outgoing fields vanish and the fields inside the droplet
are then just the continuation of the incoming wave to the inside.

A second check consists in the first two of the interface conditions (71). Using the consti-
tutive relations ǫ1E

out = D
out, ǫ2E

d = D
d, µ1H

out = B
out and µ2H

d = B
d these radial

interface conditions become

ǫ1(E
in +E

out) · er = ǫ2E
d · er at r = a

µ1(H
in +H

out) · er = µ2H
d · er at r = a .

(92)

Since Llm · er = L
′

lm · er = 0 and

Klm(w, x) · er =
wl(x)

x
l(l + 1)Plm(ξ) cos(mϕ)

K
′

lm(w, x) · er =
wl(x)

x
l(l + 1)Plm(ξ) sin(mϕ)

(93)
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and by the orthogonality of the associated Legendre functions, we find the radial interface
conditions reduce to

ǫ1αl
hl(x1)

x1
+ ǫ1

jl(x1)

x1
= ǫ2nγl

jl(x2)

x2
(94)

and

µ1m1βl
hl(x1)

x1
+ µ1m1

jl(x1)

x1
= µ2m2nδ2

jl(x2)

x2
. (95)

Using identities like ǫ1nm2 = m1ǫ2, µ1m1n = µ2m2 and x2 = nx1 and inserting the explicit
expressions of αl, βl, γl and δl one finds that the interface conditions are satisfied as well.

8 Aftermath

To calculate the ingoing and outgoing power, we cannot simply apply S = E ×H, since
our fields are complex. Considering the real parts of fields Ee−iωt and He−iωt one finds
that the vector

S =
1

2
Re

(

E×H
∗

)

(96)

describes the Poynting vector in the complex case.

The ingoing power is then given by P in = Re
(

ez · Ein × H
in∗

)

πa2. From E
in, given in

eqn.(39), one finds
H

in∗ = m1eyEe−ikz . (97)

Therefore the ingoing power is P in = 1
2m1πa

2E2.

The outgoing energy flux is Iout =
∫

S2 er · Re
(

E
out ×H

out∗dΩ
)

. We will consider a large

sphere of radius R around the droplet. We need then the large x behavior of X∗

l hl and
its complex conjugate. One finds that Xl(x)

∗hl(x) ≈ −i
x2 plus terms that go faster to zero

than x−2. Working out the products er ·Kl1×Kl′1, er ·Kl1×Ll′1 and all others one finds
that the only relevant nonzero integrals are

∫

S2

dΩ er ·Klm × L
∗

lm ,

∫

S2

dΩ er ·K′

lm × L
∗′

lm , (98)

and their complex conjugates.

We find

∫

S2

dΩer ·Eout×H
out∗ = im1E2

∫

S2

dΩ
∞
∑

l=1

|El|2er ·
(

|αl|2Kl1×L
∗

l1−|βl|2K∗

l1×L
′

l1

)

, (99)
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from which, after some algebra, follows that the outgoing power is given by

P out =
4π2m1E2

k21

∞
∑

l=1

(2l + 1)
(

|αl|2 + |βl|2
)

. (100)

From this, one easily finds the ratio P out/P in, which is the total cross section.

The sun does not radiate through planar waves. To correctly describe the physics of
rainbows at least two aspects need to be taken into account: (1) The radiation of a distant

pointlike object is more of the form eikR

R than a plane wave, where R the distance to the
pointlike object, (2) the sun is not a pointlike object. Suppose one has taken the first point
into account. Then one could try and write the incident radiation as a sum the radiation
of several pointlike distant objects. We therefore give some thoughts on the first point.

We could proceed as follows: In one step we find adequate spherical solutions to the
Maxwell equations, and then relate two spherical coordinate systems to each other. Then
we expand the transformed solutions in a series of the parameter 1

R keeping only the lowest
orders. This then gives a deformed expression for the incident radiation, which can – at
least in principle – be expanded in terms of the spherical vector harmonics.

Spherical electromagnetic waves can be constructed as follows:

E(x, y, z) = ∇×
(

h0(kr)ex

)

= −kL11 , (101)

where the last equality follows from ∇ × (sinϑ cosϕr) = ex × er. Calculating H from
eqn.(101) one finds an expression proportional to K11. Then one finds that

Ser =
1

2
Re

(

E×H
∗) ∼ 1

r2

(

sin2 ϕ+ cos2 ϕ cos2 ϑ
)

+O(r−3) , (102)

which shows that the radiation intensity indeed has the right r-dependence.

One could choose the two coordinate systems as follows: One has two coordinate systems
at the pointlike sun, C ′ is a cartesian coordinate system at the sun and S′ is a spherical
coordinate system at the sun, where the usual relations eqns.(1) hold, but then with primes
coordinates r′, ϑ′, ϕ′, x′, y′ and z′. On the earth we choose one water droplet, and take a
cartesian coordinate C and a spherical coordinate system S at the center of the droplet.
We choose the x-axis to be parallel to the x′-axis, the y-axis parallel to the y′-axis and the
z-axis parallel to the z′-axis and furthermore, the droplet is located at z′ = R, x′ = y′ = 0.
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That is, the z-axis and the z′-axis are the same line. One then finds

cos ϑ′ =
ǫ cos ϑ+ 1√

1 + ǫ2 + 2ǫ cos θ

sinϑ′ =
ǫ sinϑ√

1 + ǫ2 + 2ǫ cos θ

ϕ′ = ϕ

r′ = R
√

1 + ǫ2 + 2ǫ cos θ ,

(103)

where ǫ = r
R . Using the relations between C ′ and C and the expressions eqns.(1) for both

the sun and the droplet, one arrives sfter some algebra at the following relations between
the basis vectors

e
′

r′ =
(cos ϑ+ ǫ)er − sinϑeϑ√

1 + ǫ2 + 2ǫ cos θ

e
′

ϑ′ =
sinϑer + (cos ϑ+ ǫ)eϑ√

1 + ǫ2 + 2ǫ cos θ

e
′

ϕ′ = eϕ .

(104)

The square root is related to the generating function of the Legendre polynomials

1
√

1 + x2 − 2xξ
=

∞
∑

n=0

Pn(ξ)x
n . (105)

It is therefore tedious, but straightforward to obtain expansions in ǫ to any order of all
quantities involved. Hence the incoming electromagnetic wave can be described by a power
series expansion in ǫ, where the coefficients are vectors, which are to be expanded in the
vector spherical harmonics.

The functions Sl(x) and Ql(x) defined in eqns. (88) are called Bessel–Riccati functions.
The functions ψl(x) = xwl(x) satisfy the differential equation

x2ψ′′

l (x) + (x2 − l(l + 1))ψl(x) = 0 . (106)

In several problems the Bessel–Riccati equation shows up. For example, if one tries to solve
the Schrödinger equation for a particle in a three-dimensional, infinite, spherical potential
well of radius a by the same method of separation of variables discussed in section 3,
one finds that the radial part of the wave function ψ = R(r)Θ(ϑ)Φ(ϕ) can be described
by a solution u of the Bessel–Riccati equations that satisfies the normalization constraint
∫ a
0 |u(r)|2dr = 1, where the relation between R and u is given by R(r) = ru(r).

Finally, we remark on rainbow-like phenomena. Various material properties, in this note
incorporated in ǫ2 and µ2 may describe on the frequency. Therefore the coefficients αl, βl,
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γl and δl will vary with ω. This then means that certain intensity extremal directions may
vary with ω. Hence, if any intensity variations with respect to angles ϑ may occur, they
will vary with color, giving rise to effects like the rainbow.

Many open questions remain. For sure we haven’t taken the effort to plot typical scattering
patterns, which would have completed this note. Our aim was to write down, how the
basic equations of Mie theory can be derived. Now it is up to the reader to find out more,
and fill in the gaps.

9 Notational glossary

Except for the spherical vector harmonics L′

lm and K
′

lm a prime will be used for a function
of a single variable to denote its derivative with respect to the variable.

△: Laplacian, p.4

a: radius of water droplet

Γ±

lm: special functions on the sphere, p. 15

clm: clm = π 2l(l+1)
2l+1

(l+m)!
(l−m)! , 16

δl,l′ , δα,β: Kronecker Delta, p. 6

∆±

lm: special functions on the sphere, p. 15

D: displacement field, p.3

ǫ, ǫ1, ǫ2: permittivity, p. 3

E : strength of ingoing electromagnetic fields, p. 10

El: coefficient in expansion if ingoing radiation El =
il+1(2l+1)

l(l+1) , p. 13

E
d: electric field in the droplet, section 7

E
in: incoming electric field, section 6

E
out: outgoing electric field, section 6

ex. ey, ez: cartesian unit basis vectors, p. 2

er. eϑ, eϕ: spherical unit basis vectors, p. 2

E: electric field, p.3

H
d: magnetic field in the droplet, section 7

H
in: incoming magnetic field, section 6

H
out: outgoing magnetic field, section 7
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hl: spherical Bessel function jl + iyl, p. 9

jl: regular spherical Bessel function, p. 9

k, k1, k2: wave number, p. 3

Klm, K′

lm: vector spherical harmonic, p. 7

Llm, L′

lm: vector spherical harmonic, p. 7

µ, µ1, µ2: permeability, p. 3

m1, m2:
√

ǫi
µi
, p. 18

n: refraction index n =
√

ǫ2µ2

ǫ1µ1
, p. 19

Π±

l : orthogonal functions, p. 11

Pl: Legendre polynomial, p. 7

Plm: associated Legendre functions, p. 8

Ql(x): second Bessel–Riccati function xhl(x), p. 19

r, ϑ, ϕ: spherical coordinates, p. 2

Sl(x): first Bessel–Riccati function xjl(x), p. 19

t: time

wl: (generic) spherical Bessel function, p. 5, 9

ξ: cos ϑ, argument of associated Legendre functions, 5

Xl: special function Xl(x) =
1
x(xwl(x))

′, p. 11

Xj
l , X

h
l : special function Xj

l (x) =
1
x(xjl(x))

′, Xh
l (x) =

1
x(xhl(x))

′, p. 17

yl: irregular spherical Bessel function, p. 9

ω: angular frequency of radiation, p. 3
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