Alternating harmonic series through integrals of power series

DBW

October 2016

We consider the following identities:

$$
\begin{align*}
& O=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\ldots=\frac{\pi}{4} \\
& H=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\ldots=\ln (2) \tag{1}
\end{align*}
$$

The second series is know as the alternating harmonic series. We prove both identities and rely heavily on the geometric series:

$$
\sum_{n=0}^{\infty} s^{n}=\frac{1}{1-s}, \quad \sum_{n=0}^{\infty}(-1)^{n} s^{n}=\frac{1}{1+s},
$$

which are valid for $|s|<1$.
Remark: We will not proof that we can interchange summation and integration. The interested reader is urged to apply the Dominated Convergence Criterium.

1 Integrals

Consider the integral I defined by

$$
I=\int_{0}^{\infty} \frac{\mathrm{d} x}{1+e^{x}}
$$

which clearly exists. We first remark that the integrand is the derivative of the funtion $f(x)=-\ln \left(1+e^{-x}\right)$. Thus we have $I=f(\infty)-f(0)=-\ln (1)+\ln (2)=$ $\ln (2)$. Now consider the expansion

$$
\frac{1}{1+e^{x}}=\frac{e^{-x}}{1+e^{-x}}=\sum_{n=0}^{\infty}(-1)^{n} e^{-(n+1) x}
$$

so that we also find the following expression for I :

$$
I=\int_{0}^{\infty} \sum_{n=0}^{\infty}(-1)^{n} e^{-(n+1) x}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}
$$

We have thus proven the second identity in (1).
Now we consider the well-known integral $2 J$ given by

$$
2 J=\int_{0}^{\infty} \frac{\mathrm{d} x}{1+x^{2}}=\frac{\pi}{2} .
$$

We first remark that if we put $t=1 / x$ we have

$$
\frac{\mathrm{d} x}{1+x^{2}}=\frac{\mathrm{d} t}{1+t^{2}}
$$

from which it follows that

$$
J=\int_{1}^{\infty} \frac{\mathrm{d} x}{1+x^{2}}=\int_{0}^{1} \frac{\mathrm{~d} x}{1+x^{2}}=\frac{\pi}{4}
$$

Also, one directly finds $\int_{0}^{1} \frac{\mathrm{~d} x}{1+x^{2}}=\arctan (1)-\arctan (0)=\pi / 4$. A direct conclusion is that the Cauchy distribution is invariant under inversions $x \mapsto 1 / x$. We now expand

$$
\frac{1}{1+x^{2}}=\frac{1}{x^{2}} \frac{1}{1+\frac{1}{x^{2}}}=\sum_{n=0}^{\infty} \frac{(-1)}{x^{2 n+2}}
$$

and integrate term by term to obtain

$$
J=\sum_{n=0}^{\infty} \int_{1}^{\infty} \mathrm{d} x \frac{(-1)}{x^{2 n+2}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} .
$$

This proves the first identity of (1).

2 Expansions of known functions

Consider the series

$$
a(x)=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\ldots
$$

which converges for all $|x|<1$. Differentiating $a(x)$ one obtains

$$
a^{\prime}(x)=1+x+x^{2}+x^{3}+\ldots=\frac{1}{1-x}
$$

We thus have

$$
a(x)=a(0)+\int_{0}^{x} \frac{\mathrm{~d} t}{1-t}=-\ln (1-x)
$$

which exists for all $|t|<1-$ for $x=1$ we see that the harmonic series diverges, a well-known fact. In fact, the limit $t \rightarrow-1$ exists and we thus find

$$
a(-1)=-\ln (2)=-1+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}+\ldots
$$

which alternatively proves the second identity of (1). We can in fact do more. The function $a(x)$ is analytic inside the unit disk and in many points on the boundary the limit exists. We rewrite the above and obtain

$$
1+\frac{x}{2}+\frac{x^{2}}{3}+\frac{x^{3}}{4}+\ldots=-\frac{\ln (1-x)}{x}
$$

If we insert $x=i$ we obtain

$$
\begin{equation*}
1+\frac{i}{2}-\frac{1}{2}-\frac{i}{4}+\frac{1}{5}+\frac{i}{6}-\frac{1}{7}+\ldots=-\frac{\ln (1-i)}{i}=i \ln (1-i) \tag{2}
\end{equation*}
$$

By inspection we see that the left-hand side of (2) reduces to

$$
\frac{i}{2} H+O
$$

On the other hand $1-i=\sqrt{2} e^{-\frac{i \pi}{4}}$ so that the right-hand side of (2) reduces

$$
-\frac{\ln (1-i)}{i}=\frac{\pi}{4}+i \ln (\sqrt{2})=\frac{\pi}{4}+\frac{i}{2} \ln (2)
$$

We thus immediately read off that $O=\frac{\pi}{4}$ and $H=\ln (2)$.
We have thus shown in several ways that the identities in (1) hold.

