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1 Introduction

Combinatorics is a field of mathematics that deserves little attention in high-school ed-
ucation. One reason is probably that creativity of students is necessary to get to some
result. Therefore a success is not directly guaranteed, or only accessible, when sufficient
time is present; in high-school education the educational goals should be at reach within
a certain, but limited, amount of time. Although creativity is needed in real-life situa-
tions, educational aims are dominated by algorithmic and programmatic themes, which
often allow a testable and reachable scheme of skills. As a consequence, combinatorics
is only tought in some minimal form. We think that mathematics education should
also try to offer contact hours, where nontestable skills that require some creativity
are developped. The goal of education should not be a list of test results, but more a
preparation for a future life.

This little note will not change the world, neither is this note about some fundamen-
tal results in combinatorics. We present some thoughts on a question/exercise posed
by Martin Erickson in his book Beautiful Mathematics (Mathematical Associaiton of
America, Spectrum; german version: Mathematische Appetithäppchen, Springer Ver-
lag). In a little chapter on the expansions for the tangens and secans functions he relates
the expansions to the number of alternating permutations. An alternating permutation
of the numbers {1, 2, . . . , n} is a permutation a1a2 · · · an of the integers 1 to n, such
that a2 is larger than a1, a3 is smaller than a2, a4 is larger than a3 and so on. In other
words, these are the permutations where one first goes up, then goes down, goes up,
goes down, and so on. In this little note we present a proof, why the expansions of
secans and tangens give the numbers of the alternating permutations.

We hope that some mathematicians or mathematics teachers reading this note feel
encouraged to once and a while take the opportunity to show some of the elegance of
combinatorics to non-mathematicians. Also, some pupils or students might find this
note worthwile reading and feel encouraged to spend once and a while some time on
combinatorial problems. The material in this note can be understood by high-school
students in their final years; some preparation by the teacher is needed. Maybe the
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teacher should expand some on the idea of giving a power series expansion of and on
the compact notation. The idea of reducing a problem to earlier solved problems might
be worth discussing with pupils even in a nonmathematical context.

2 Series expansions and recursive formulae

To study the behavior of a function f around some point one can try to give an approx-
imating expression, which contains enough information, but is easier to handle than the
function f itself. The idea of Taylor expansion of a function f is to give a polynomial
expression up to arbitrary degree that approximates f very well. As the degree is ar-
bitrary, one takes the limit and arrives at a power series expression. The point around
which one wants to study f we now choose as the origin. A Taylor expansion is thus of
the form

f(x) =
∞
∑

k=0

fk

k!
xk

where we included k! in the denominator for convenience. Matching all derivatives at
x = 0 requires fk = f (k)(0). If f satisfies f(x) = f(−x) then fk = 0 for all odd k, and
if f satisfies f(x) = −f(−x) then fk = 0 for all even k.

We now consider the functions tan(x) and sec(x) = 1
cos(x)

. Differentiating one obtains

tan′(x) = sec2(x) and sec′(x) = tan(x) sec(x). Putting

tan(x) =
∞
∑

k=0

tk

k!
xk , sec(x) =

∞
∑

k=0

sk

k!
xk ,

and comparing coefficients we arrive at

tk =

k−1
∑

p=0

(

k − 1

p

)

spsk−1−p , sk =

k−1
∑

p=0

(

k − 1

p

)

tpsk−1−p .

Since t0 = s1 = 0 and t1 = s0 = 1 these formulae can be used to recursively find all
other sk and tk. Since tk = 0 for all even k and sk = 0 for all odd k the sums in the
formulae contain many zeros; in fact the running index p can be taken to take two steps
at a time. Using the recursion formulae we find:

s2 =

(

1

0

)

t0s1 +

(

1

1

)

t1s0 = 0 + 1 = 1

t3 =

(

2

0

)

s2s0 +

(

2

1

)

s1s1 +

(

2

2

)

s0s2 = 1 + 0 + 1 = 2
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s4 =

(

3

9

)

t0s3 +

(

3

1

)

t1s2 +

(

3

2

)

t2s1 +

(

3

3

)

t3s0 = 0 + 3 + 0 + 2 = 5

and proceeding t5 = 16, s6 = 61, t7 = 272. Note again that 0 = t0 = t2 = t4 = . . . and
0 = s1 = s3 = s5 = . . ., a fact that is respected by the recursive formulae.

3 Main result

We define a function a : N → N as follows: We put a0 = a1 = 1 and define a(n) = sn if
n is even and a(n) = tn if n is odd. The main result is the interesting fact, which Martin
Erickson noted in his book, that a(n) is the number of alternating permutations of the
set {1, 2, . . . , n} starting with going up. Let us first give some examples to calculate
this number of alternating permutations and give some remarks. To make the language
easier to read we denote b(n) the number of alternating permutations of {1, 2, . . . , n}
starting with going up.

If n = 2 the set has only two elements and thus the only allowed permutation is
(12). If n = 3 we find two alternating permutations starting with going up: (132) and
(231). If n = 4 we find 5: (1324), (1423), (2314), (2413) and (3412). Thus at least for
n = 1, 2, 3, 4, 5 the numbers a(n) agree with the number of alternating permutations
starting with going up.

If S = {a1, a2, . . . , an} is a set of integers with a1 < a2 < · · · < an then the number
of alternating permutations of S starting with going up equals b(n). This is true since
only the ordering matters. In particular, the number of alternating permutations of
{2, 3, . . . , n} starting with going up equals b(n− 1).

We could have equally well have chosen to let the alternating permutations start with
going down. Their number equals b(n) as is easily seen by applying the transformation
k 7→ n− k.

We will shortly show that b(n) = a(n) by shoing that b(n) satisfies the recursive
relation satisfied by a(n). To get the idea we will first treat two examples. We will
calculate b(5) in two ways and then calculate b(6).

Any permutation of {1, 2, 3, 4, 5} can be obtained by a permutation of {1, 2, 3, 4}
and then adding the 5. To find b(5) we note that the 5 can only be at the second or the
fourth place in an alternating permutation since elsewise it cannot start with going up.
Schematically this can be seen as follows: We only look for permutations of the form

X ր X ց X ր X ց X

and clearly the 5 cannot follow a going down ց. This leaves only two places. We thus
look for permutations of the form X5Y Y Y and XXX5Y . By symmetry their number
is equal. To construct such an alternating permutation we first have to choose the X

and the Y , this can be done in
(

4
1

)

= 4 ways. On X in X5Y Y Y we have no restriction,
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on the Y Y Y in X5Y Y Y we know that the allowed number of their permutations is b(3),
a.k.a. t3. We thus find b(5) = 2 · 4 · 2 = 16.

Instead of matching the 5 into a permutation of {1, 2, 3, 4} we could equally well fit
a 1 into a permutation of {2, 3, 4, 5}. Then the 1 can only be at the first, the third and
the fifth place. We thus look for alternating permutations starting with going up of the
form 1XXXX , of which there are s4 = 5, or of the form XX5XX , of which there are
(

4
2

)

s2s2 = 6 or of the form XXXX1 of which there are again 5. Adding these numbers
we arrive again at 5 + 6 + 5 = 16, but we note that the way we obtained this number
resembles the recursive formula for t5.

Now we look for b(6). We start as in the previous paragraph, we note that the 1
can only be in the first, the third and the fifth place, as we look for permutations of the
form

X ր X ց X ր X ց X ր X .

We then split our job into counting the allowed permutations of the form 1XXXXX ,
XX1XXXX , XXXX1X . The first form is easy, there are b(5) = 16 of these. To
obtain an allowed permutation of the second form, we first have to choose 2 out of 5,
permute the two in the right way and also find a good permutation for the remaining
three. Thus there are

(

5
2

)

· b(2) · b(3) =
(

6
2

)

·s2 · t3 = 20. For the last form we first need to

select 4 out of 5 and then permute the four in the right way. Thus we find
(

5
4

)

· s4 = 25
of them. In total we thus find

b(6) =

(

5

0

)

t5s0 +

(

5

2

)

s2t3 +

(

5

4

)

t1s4 = 61 .

A similar counting for b(7) reveals

b(7) =

(

6

0

)

s6s0 +

(

6

2

)

s4s2 +

(

6

4

)

s4s2 +

(

6

6

)

s6s0

and then the idea is clear; the b(n) satisfy the same recursion relation as the a(n), hence,
being equal for n = 1, 2, 3, 4, 5 they are equal for all n.

Let us try to make a formal proof using an induction argument. Assume a(k) = b(k)
holds for 1 ≤ n ≤ n. We consider first the case, where n + 1 is even, so that n is odd.
We consider allowed permutations of the form

1(X · · ·X)n , XX1(X · · ·X)n−2 , . . . (X · · ·X)2k1(X · · ·X)n−2k , . . . , (X · · ·X)n−11X

where (X · · ·X)p is a short-hand for p concatenated X-symbols. The number of allowed
permutations is thus

s0tn +

(

n

2

)

s2tn−2 + . . .+

(

n

n− 1

)

sn−1t1 =

n
∑

p=0

(

n

p

)

sptn−p .
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In the case where n+ 1 is odd and thus n is even, we have the allowed permutations

1(X · · ·X)n , XX1(X · · ·X)n−2 , . . . (X · · ·X)2k1(X · · ·X)n−2k , . . . , (X · · ·X)n1

and their number is

s0sn +

(

n

2

)

s2sn−2 + . . .+

(

n

n

)

sns0 =

n
∑

p=0

(

n

p

)

spsn−p .

In both expressions we used that sk vanishes if k is odd, and tk vanishes if k is even.
Having shown that b(n+1) satisfies the same recursive relations as a(n+1) and knowing
that a(n) = b(n) for n = 1 (and if fact for n = 2, 3, 4, 5, 6 as shown by examples) we
thus arrive at the conclusion a(n) = b(n) for all n. We thus succeeded in the exercise
posed by Martin Erickson.

4 Aftermath and ackowledgements

The arguments given are all rather basic and could in principle be adapted for a (master-
)class mathematics in high-school. Leaving the formal notation aside and working by
examples and without induction, pupils might appreciate the different way of thinking
used in combinatorics.

The worked out example shows that some power series have coefficients that have
a certain meaning. In fact, in number theory more expansions, even those with zero
radius of convergence are used to find formulae. We hope that we have encouraged the
reader to think of some other power series and relations with combinatorics.

We would like to thank Martin Erickson for his nice book on mathematics that
ignited us to work out this example. Unfortunately, he passed away too early in 2013.
We would have liked to have had the opportunity to enjoy the way how Martin Erickson
presented mathematics; he was a gifted mathematician and a gifted teacher.

We would like to thank the colleagues of mathematics at the high school Wenzgasse
at Vienna for a nice atmosphere, in which discussions about mathematical problems,
easy and hard ones, which works motivating to write up the solved problems, even the
easy ones.
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