Caratheodory's extension theorem

DBW

August 3, 2016

These notes are meant as introductory notes on Caratheodory's extension theorem. The presentation is not completely my own work; the presentation heavily relies on the presentation of Noel Vaillant on http://www.probability.net/WEBcaratheodory.pdf. To make the line of arguments as clear as possible, the starting point is the notion of a ring on a topological space and not the notion of a semi-ring.

1 Elementary definitions and properties

We fix a topological space Ω . The power set of Ω is denoted $\mathcal{P}(\Omega)$ and consists of all subsets of Ω .

Definition 1. A ring on on Ω is a subset \mathcal{R} of $\mathcal{P}(\Omega)$, such that

(i) $\emptyset \in \mathcal{R}$

 $(ii) A, B \in \mathcal{R} \quad \Rightarrow \quad A \cup B \in \mathcal{R}$

 $(iii) \ A, B \in \mathcal{R} \quad \Rightarrow \quad A \setminus B \in \mathcal{R}$

Definition 2. A σ -algebra on Ω is a subset Σ of $\mathcal{P}(\Omega)$ such that

- (i) $\emptyset \in \Sigma$
- $(ii) \ (A_n)_{n \in \mathbb{N}} \in \Sigma \quad \Rightarrow \quad \cup_n A_n \in \Sigma$
- $(iii) \ A \in \Sigma \quad \Rightarrow \quad A^c \in \Sigma$

Since $A \cap B = A \setminus (A \setminus B)$ it follows that any ring on Ω is closed under finite intersections; hence any ring is also a semi-ring. Since $\cap_n A_n = (\bigcup_n A^c)^c$ it follows that any σ -algebra is closed under arbitrary intersections. And from $A \setminus B = A \cap B^c$ we deduce that any σ -algebra is also a ring.

If $(R_i)_{i \in I}$ is a set of rings on Ω then it is clear that $\cap_I R_i$ is also a ring on Ω . Let S be any subset of $\mathcal{P}(\Omega)$, then we call the intersection of all rings on Ω containing S the ring generated by S.

Definition 3. Let \mathcal{A} be a subset of $\mathcal{P}(\Omega)$. A measure on \mathcal{A} is a map $\mu : \mathcal{A} \to [0, +\inf]$ such that

- (i) $\mu(\emptyset) = 0$
- (ii) If $A_n \in \mathcal{A}$ are disjoint and $A = \biguplus_n A_n \in \mathcal{A} \implies \mu(A) = \sum_n \mu(A_n)$.

If \mathcal{A} is a σ -algebra, we don't need to assume that in addition $\biguplus_n A_n \in \mathcal{A}$. By taking all but finitely many A_n to be the empty set one sees that $\mu(A_1 \uplus \cdots \uplus A_N) = \mu(A_1) + \dots + \mu(A_n)$. If $A \subset B$ then $A \uplus (B \setminus A) = B$ and hence $\mu(B) = \mu(A) + \mu(B \setminus A) \ge \mu(A)$.

Definition 4. We call an outer measure on Ω a map $\lambda : \mathcal{P}(\Omega) \to [0, +\infty]$ with

(i) $\lambda(\emptyset) = 0$ (ii) $A \subset B \implies \lambda(A) \le \lambda(B)$ (iii) $(A_n)_{n \in \mathbb{N}} \in \mathcal{P}(\Omega), \ \lambda(\cup_n A_n) \le \sum_n \lambda(A_n)$

By taking all but finitely many A_n to be the empty set one sees that an outer measure is subadditive; $\lambda(A \cup B) \leq \lambda(A) + \lambda(B)$.

2 The interplay between σ -algebras and (outer) measures

Let λ be an outer measure on Ω . We define Σ_{λ} to be the set of all subsets $A \subset \Omega$ such that for any $X \subset \Omega$ we have

$$\lambda(X) = \lambda(X \cap A) + \lambda(X \cap A^c).$$

In other words, Σ_{λ} consists of all subsets $A \subset \Omega$ that cut Ω in two in a good way. Clearly, $\Omega \in \Sigma_{\lambda}$ and by the very form of the definition of Σ_{λ} , we have $A \in \Sigma_{\lambda} \Leftrightarrow A^c \in \Sigma_{\lambda}$. We can now present the following proposition, whose proof is a bit tedious, but which contains loads of information on the exact interplay.

Proposition 5. Let λ be an outer measure on Ω and let Σ_{λ} be as defined above. Then Σ_{λ} is a σ -algebra on Ω .

Proof. After the preliminary remarks preceding the proposition, it only remains to show that Σ_{λ} is closed under countable unions. We will first prove that Σ_{λ} is closed under finite intersections and unions.

Let $A, B \in \Sigma_{\lambda}$ and let X be any subset of Ω . We have $X \cap A^c = X \cap (A \cap B)^c \cap A^c$ since $(A \cap B)^c \supset A^c$. On the other hand we have $(A \cap B)^c = A^c \cup B^c$ and hence $X \cap (A \cap B)^c \cap A = (X \cap A \cap B^c) \cup (X \cap A \cap A^c) = X \cap A \cap B^c$. Therefore we have $\lambda(X \cap (A \cap B)^c) = \lambda(X \cap (A \cap B)^c \cap A) + \lambda(X \cap (A \cap B)^c \cap A^c = \lambda(X \cap A^c) + \lambda(X \cap A \cap B^c)$. Now adding $\lambda(X \cap A \cap B)$ and using that $\lambda(X \cap A) = \lambda(X \cap A \cap B) + \lambda(X \cap A \cap B^c)$ one obtains $\lambda(X \cap A \cap B) + \lambda(X \cap (A \cap B)^c) = \lambda(X)$. Hence $A \cap B \in \Sigma_{\lambda}$.

Since $A \cup B = (A^c \cap B^c)^c$ and $A \setminus B = A \cap B^c$ we see that Σ_{λ} is closed under finite unions and the set-theoretic difference. Thus Σ_{λ} is a ring on Ω .

If $A, B \in \Sigma_{\lambda}$ are disjoint and $X \subset \Omega$ then $\lambda(X \cap (A \uplus B)) = \lambda(X) - \lambda(X \cap A^c \cap B^c) = \lambda(X) - \lambda(X \cap A^c) + \lambda(X \cap A^c \cap B) = \lambda(X \cap A) + \lambda(X \cap B)$ as $A^c \cap B = B$. Using induction we obtain $\lambda(X \cap \bigcup_{n=1}^{N} A_n) = \sum_{n=1}^{N} \lambda(X \cap A_n)$ whenever A_n are in Σ_{λ} and pairwise disjoint.

Now we fix a sequence A_n in Σ_{λ} which are pairwise disjoint and we denote the union $\cup_n A_n$ by A. Furthermore, we fix an arbitrary $X \in \Omega$ and an arbitrary large integer N. Since $X \cap A^c \subset X \cap (\biguplus_{n=1}^N A_n)^c$ and Σ_{λ} is closed under finite unions we have $\lambda(X \cap A^c) + \lambda(X \cap (\biguplus_{n=1}^N A_n)) \leq \lambda(X \cap (\biguplus_{n=1}^N A_n)^c) + \sum_n \lambda(X \cap A_n) = \lambda(X)$. But N is arbitrary in this equation and we can safely let it go to ∞ and obtain

$$\lambda(X \cap A^c) + \sum_n \lambda(X \cap A_n) \le \lambda(X) \,. \tag{1}$$

On the other hand we have $\lambda(X) \leq \lambda(X \cap A^c) + \lambda(X \cap A)$, which again by the definition of an outer measure is less or equal $\lambda(X \cap A^c) + \sum_n \lambda(X \cap A_n)$. Hence using (1) we obtain

$$\lambda(X) \le \lambda(X \cap A^c) + \lambda(X \cap A) \le \lambda(X \cap A^c) + \sum_n \lambda(X \cap A_n) \le \lambda(X).$$

It follows that we must equality. From this we conclude that Σ_{λ} is indeed closed under countable unions and, by taking X = A, that $\lambda(A) = \sum_{n} \lambda(A_n)$. Therefore the restriction of λ to Σ_{λ} is a measure on Σ_{λ} .

We will call Σ_{λ} the σ -algebra related to λ .

Now we come to a critical step; we want to associate an outer measure λ_{μ} to a given measure λ on some ring \mathcal{R} . Of course, we want the restriction of the outer measure λ_{μ} to the ring to coincide with the measure μ .

Let \mathcal{R} be a ring on Ω and let μ be a measure on \mathcal{R} . If $X \subset \Omega$ is any subset we can cover X with sets from \mathcal{R} to approximate X inside \mathcal{R} - we call an \mathcal{R} -cover of X a countable subset $(A_n)_n$ of \mathcal{R} with $X \subset \bigcup_n A_n$. This leads to the following definition; for any $X \subset \Omega$ we $\lambda_{\mu}(X)$ to be the infimum of all sums $\sum_n \mu(A_n)$ where $(A_n)_{n \in \mathbb{N}}$ is any countable cover of X with A_n in \mathcal{R} . We need to check that this is an outer measure.

Proposition 6. The map $\lambda_{\mu} : \mathcal{P}(\Omega) \to [0, +\infty]$ defined in the above paragraph defines an outer measure on Ω .

Proof. Since $\emptyset \in \mathcal{R}$ we have $\lambda_{\mu}(\emptyset) = 0$. If $X \subset Y$ are two subsets of Ω , then any cover of Y with sets from \mathcal{R} also covers X and hence $\lambda_{\mu}(X) \leq \lambda_{\mu}(Y)$.

Now let X_n be any sequence of subsets of subsets. By the definition of the infimum we can find for each $\epsilon > 0$ and for each n an \mathcal{R} -cover $(A_{n,m})_m$ of X_n such that $\sum_m \mu(A_{n,m}) < \lambda_\mu(X) + \frac{\epsilon}{2^n}$. The sets $A_{n,m}$ form a countable cover of $X = \bigcup_n X_n$; we can for example set $B_1 = A_{1,1}$, $B_2 = A_{2,1}$, $B_3 = A_{1,2}$, $B_4 = A_{3,1}$ and so on, similar to Cantor's proof of the countability of \mathbb{Q} . But then $\lambda_\mu(X) = \lambda_\mu(\bigcup_n X_n) \leq \sum_{n,m} \mu(A_{n,m}) < \sum_n (\lambda_\mu(X_n) + \frac{\epsilon}{2^n}) = \sum_n \lambda_\mu(X_n) + \epsilon$. But ϵ was arbitrary and hence $\lambda_\mu(\bigcup_n X_n) \leq \sum_n \lambda_\mu(X_n)$.

Proposition 7. The restriction of λ_{μ} to \mathcal{R} is μ .

Proof. For any $A \in \mathcal{R}$ the set A itself forms a cover and hence $\lambda_{\mu}(A) \leq \mu(A)$.

On the other hand, let (A_n) be an \mathcal{R} -cover of A. We define $B_1 = A_1 \cap A$ and $B_{n+1} = (A_n \cap A) \setminus \bigcup_{k \ge n} (A_k \cap A)$ for $n \ge 1$. Then clearly $B_n \in \mathcal{R}$, the B_n are disjoint, $\bigcup_n B_n = A$ and $\mu(B_n) \le \mu(A_n)$. Since μ is a measure on \mathcal{R} we have $\mu(A) = \sum_n \mu(B_n)$ which is less than or equal to $\sum_n \mu(A_n)$. Since this holds for any \mathcal{R} -cover of A we have $\mu(A) \le \lambda_{\mu}(A)$. Therefore equality holds and the proposition is proved.

We will call λ_{μ} the outer measure associated to μ .

So we now have two constructions; given a ring and a measure on it we can construct an outer measure. Given an outer measure we can construct a σ -algebra such that the

restriction of the outer measure to the σ -algebra is a measure on the σ -algebra. So it seems feasible that we can construct a measure on a σ -algebra starting from a ring with a measure on it. That this really works and that all things work out nicely is the content of Caratheodory's theorem.

3 Caratheodory's theorem: Statement and Proof

Lemma 8. Let \mathcal{R} be a ring on Ω and let μ be a measure on \mathcal{R} . Let λ be the outer measure associated to μ . Let Σ be the σ -algebra related to λ . Then $\mathcal{R} \in \Sigma$.

Proof. Let A be an element of \mathcal{R} and let X be any subset of Ω . Since λ is an outer measure on Ω we have $\lambda(X) = \lambda((X \cap A) \cup (X \cap A^c)) \leq \lambda(X \cap A) + \lambda(X \cap A^c)$.

Now let $(A_n)_{n\in\mathbb{N}}$ be any \mathcal{R} -cover of X. Then the $A_n \cap A$ form an \mathcal{R} -cover of $X \cap A$ and the $A_n \cap A^c$ form an \mathcal{R} -cover of $X \cap A^c$. Hence we have that $\lambda(X \cap A) + \lambda(X \cap A^c) \leq \sum_n \mu(A_n \cap A) + \sum_n (A_n \cap A^c) = \sum_n \mu(A_n)$, where the last step follows from the fact that μ is a measure and hence $\mu(C \uplus D) = \mu(C) + \mu(D)$. Since the inequality holds for any \mathcal{R} -cover of X we need $\lambda(X \cap A) + \lambda(X \cap A^c) \leq \lambda(X)$. We thus need equality; for any $X \subset \Omega$ we have $\lambda(X) = \lambda(X \cap A) + \lambda(X \cap A^c)$, or in other words $A \in \Sigma$ and since A was an arbitrary element of \mathcal{R} the lemma is proved. \Box

Remark 9. Any ring generates a σ -algebra; one at least has to enlarge the ring with countable unions and countable intersections. Put in a correct way, the σ -algeba generated by the ring \mathcal{R} is the intersection of all σ -algebras that contain \mathcal{R} . Therefore the above lemma shows that the σ -algebra generated by \mathcal{R} is contained in Σ .

Now we come to Caratheodory's theorem:

Theorem 10. Let \mathcal{R} be a ring on Ω and let μ be a measure on \mathcal{R} . Then there exists a measure μ' on the σ -algebra generated by \mathcal{R} such that the restriction of μ' to \mathcal{R} coincides with μ .

Proof. Let λ be the outer measure on Ω associated to μ . Let Σ be the σ -algebra associated to λ . Then by lemma 8 the σ -algebra generated by \mathcal{R} is contained in Σ . Hence λ restricts to a measure on the σ -algebra generated by \mathcal{R} . By proposition 7 this restriction of λ to \mathcal{R} coincides with μ .

Example 11. Let Ω be the real line. Then the open intervals generate a σ -algebra Σ . For any open interval (a,b) with a < b we can put $\mu((a,b)) = b - a$. Then there exists a measure μ' on Σ such that $\mu'((a,b)) = b - a$. Indeed, for countable unions of disjoint intervals we can define $\mu(\cup_n(a_n,b_n)) = \sum_n(b_n - a_n)$. Hence μ does give rise to a measure on the ring generated by all intervals.

Acknowledgement: I thank István Gergely Édes for valuable remarks and pointing out an incorrectness.