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These notes are meant as introductory notes on Caratheodory’s extension theorem. The
presentation is not completely my own work; the presentation heavily relies on the pre-
sentation of Noel Vaillant on http://www.probability.net/WEBcaratheodory.pdf.
To make the line of arguments as clear as possible, the starting point is the notion of a
ring on a topological space and not the notion of a semi-ring.

1 Elementary definitions and properties

We fix a topological space Q. The power set of  is denoted P(Q2) and consists of all
subsets of (2.

Definition 1. A ring on on Q is a subset R of P(), such that

(i)0eRrR

(1) ABER = AUBEeR

(iii) ABeR = A\BeR

Definition 2. A o-algebra on Q is a subset ¥ of P(Q) such that

(i)0eXx

(1)) (Ap)nen € = U, A, €X

(1i)) Ae ¥ = A°eX

Since ANB = A\ (A\ B) it follows that any ring on 2 is closed under finite intersections;
hence any ring is also a semi-ring. Since N, 4,, = (U, A°)¢ it follows that any o-algebra

is closed under arbitrary intersections. And from A\ B = AN B¢ we deduce that any
o-algebra is also a ring.

If (R;)icr is a set of rings on  then it is clear that N;R; is also a ring on Q. Let S be
any subset of P(£2), then we call the intersection of all rings on € containing S the ring
generated by S.

Definition 3. Let A be a subset of P(Q). A measure on A is a map p: A — [0, + inf]
such that

(i) u(0) =0
(i1) If A, € A are disjoint and A =W, A, € A = pu(A) =3 n(4,).
If A is a o-algebra, we don’t need to assume that in addition ¥, A,, € A. By taking all

but finitely many A,, to be the empty set one sees that pu(4; W--- W Ax) = pu(A4y) +
..+ u(Ay). If A C Bthen AW (B\ A) = B and hence u(B) = u(A)+u(B\ A) > u(A).



Definition 4. We call an outer measure on Q a map X : P(Q2) — [0, +o0] with
(z) (@) =0

(it) ACB = MA) < AB)

(iii) (An)nen € P(), MUndAn) < 32, AMAn)

By taking all but finitely many A,, to be the empty set one sees that an outer measure
is subadditive; A(A U B) < A(A) + A(B).

2 The interplay between c-algebras and (outer) mea-
sures

Let A\ be an outer measure on 2. We define X to be the set of all subsets A C € such
that for any X C Q we have

AMX)=AMXNA)+AXXNAY).

In other words, 3 consists of all subsets A C Q that cut €2 in two in a good way. Clearly,
Q € Xy and by the very form of the definition of ¥\, we have A € X\ & A° € X,.
We can now present the following proposition, whose proof is a bit tedious, but which
contains loads of information on the exact interplay.

Proposition 5. Let A be an outer measure on 2 and let X be as defined above. Then
Yy is a o-algebra on €.

Proof. After the preliminary remarks preceding the proposition, it only remains to show
that Xy is closed under countable unions. We will first prove that 3 is closed under
finite intersections and unions.

Let A,B € ¥ and let X be any subset of Q. We have X N A° = X N (AN B)°N A°
since (AN B)¢ D A° On the other hand we have (AN B)¢ = A° U B° and hence
XNANBFNA=(XNANB)U(XNANA®) = X N AN B°. Therefore we have
MXN(ANB)¢) = M(XN(ANB)*NA)+AXN(ANB)*NA° = M(XNA®)+A(XNANBC).
Now adding A\(X N AN B) and using that A(X N A) = A(X NANB)+ XX NAN B°)
one obtains A(X NANB) + AMX N(ANDB)°) =A(X). Hence AN B € X,.

Since AUB = (A°N B°)° and A\ B = AN B¢ we see that X is closed under finite
unions and the set-theoretic difference. Thus X is a ring on (2.

If A, B € ¥ are disjoint and X C Q then A\(X N (AW B)) = A(X) - AMX NA°NB°) =
AX)=AMXNA)+MXNANB)=AMXNA) +AXXNB)as AN B = B. Using
induction we obtain A(X N &Jf:;l Ap) = ij:l A(X N A,) whenever A,, are in 3 and
pairwise disjoint.

Now we fix a sequence A,, in ¥ which are pairwise disjoint and we denote the union
Un A, by A. Furthermore, we fix an arbitrary X € Q and an arbitrary large integer N.

Since X N A° C X N (Lﬂﬁ;l Ap)¢ and Xy is closed under finite unions we have A(X N
A9+ XX N (WY, A40) < AX N (WY, 4,)9) + 3, AMX NA,) = A(X). But N is
arbitrary in this equation and we can safely let it go to oo and obtain

AX NA)+ D MX NA,) < MX). (1)



On the other hand we have A(X) < A(X N A°)+A(X NA), which again by the definition
of an outer measure is less or equal A(X N A°) + > A(X N A,). Hence using (1) we
obtain

AX) SAXNAY)+MX NA) SAXNA)+ Y MXNA,) < AX).

It follows that we must equality. From this we conclude that ¥, is indeed closed
under countable unions and, by taking X = A, that A(A) =", A(An). Therefore the
restriction of A to Xy is a measure on 2.

O

We will call 3y the o-algebra related to A.

Now we come to a critical step; we want to associate an outer measure A, to a given
measure A on some ring R. Of course, we want the restriction of the outer measure A,
to the ring to coincide with the measure p.

Let R be a ring on 2 and let p be a measure on R. If X C Q is any subset we can
cover X with sets from R to approximate X inside R - we call an R-cover of X a
countable subset (4,), of R with X C U, A,. This leads to the following definition; for
any X C Q we \,(X) to be the infimum of all sums )", u(A,) where (Ay)nen is any
countable cover of X with A4, in R. We need to check that this is an outer measure.

Proposition 6. The map X\, : P(2) — [0,400] defined in the above paragraph defines
an outer measure on €.

Proof. Since ) € R we have A\, (0) = 0. If X C Y are two subsets of €, then any cover
of Y with sets from R also covers X and hence A, (X) < A, (Y).

Now let X,, be any sequence of subsets of subsets. By the definition of the infimum
we can find for each € > 0 and for each n an R-cover (A, m)m of X, such that
Yo b(Anm) < Au(X) 4+ 55 The sets A, ,, form a countable cover of X = U,X,;
we can for example set By = Ay1, By = Az, Bz = A2, Bs = A3 and so on,
similar to Cantor’s proof of the countability of Q. But then A,(X) = \,(UnXy) <
D nm H(Anm) <32, (Au(Xn) + 55) = >, Au(Xy) + €. But € was arbitrary and hence

A(UnXn) <30, Au(X5).
O

Proposition 7. The restriction of A\, to R is pu.

Proof. For any A € R the set A itself forms a cover and hence A, (A4) < p(A).

On the other hand, let (A,) be an R-cover of A. We define B = A; N A and Bp41 =
(Ap,NA)\Ug>n (AxNA) for n > 1. Then clearly B,, € R, the B,, are disjoint, &, B,, = A
and p(By) < p(Ay). Since p is a measure on R we have pu(A) = > u(By,) which is less
than or equal to ) 11(A,). Since this holds for any R-cover of A we have ji(A4) < A, (A).
Therefore equality holds and the proposition is proved.

O

We will call A, the outer measure associated to p.

So we now have two constructions; given a ring and a measure on it we can construct
an outer measure. Given an outer measure we can construct a o-algebra such that the



restriction of the outer measure to the o-algebra is a measure on the o-algebra. So
it seems feasible that we can construct a measure on a o-algebra starting from a ring
with a measure on it. That this really works and that all things work out nicely is the
content of Caratheodory’s theorem.

3 Caratheodory’s theorem: Statement and Proof

Lemma 8. Let R be a ring on Q0 and let p be a measure on R. Let X be the outer
measure associated to p. Let 3 be the o-algebra related to \. Then R € Y.

Proof. Let A be an element of R and let X be any subset of Q. Since A is an outer
measure on {2 we have A(X) = A((X NA)U(X NA%)) <AMXNA)+ A(XNA°).

Now let (A, )nen be any R-cover of X. Then the A, N A form an R-cover of X N A and
the A, N A form an R-cover of X N A°. Hence we have that A(X N A) + A(X N A°) <
Yo (A MA)+ >0 (A, NA°) =3 u(Ay), where the last step follows from the fact
that p is a measure and hence pu(C WD) = u(C) + p(D). Since the inequality holds for
any R-cover of X we need A(X N A) + A(X N A°) < A(X). We thus need equality; for
any X C © we have \(X) = AM(X NA) + A\(X N A°), or in other words A € ¥ and since
A was an arbitrary element of R the lemma is proved. o

Remark 9. Any ring generates a o-algebra; one at least has to enlarge the ring with
countable unions and countable intersections. Put in a correct way, the o-algeba gen-
erated by the ring R is the intersection of all o-algebras that contain R. Therefore the
above lemma shows that the o-algebra generated by R is contained in 3.

Now we come to Caratheodory’s theorem:

Theorem 10. Let R be a ring on Q and let p be a measure on R. Then there exists a
measure ' on the o-algebra generated by R such that the restriction of i’ to R coincides
with p.

Proof. Let A be the outer measure on () associated to u. Let ¥ be the o-algebra
associated to A. Then by lemma 8 the o-algebra generated by R is contained in 3.
Hence A restricts to a measure on the o-algebra generated by R. By proposition 7 this
restriction of A to R coincides with .

O

Example 11. Let Q be the real line. Then the open intervals generate a o-algebra
Y. For any open interval (a,b) with a < b we can put p((a,b)) = b —a. Then there
exists a measure ' on 3 such that ' ((a,b)) = b — a. Indeed, for countable unions of
disjoint intervals we can define p(Up(an,by)) =, (bn — ayn). Hence p does give rise
to a measure on the ring generated by all intervals.
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