Caratheodory's extension theorem

DBW

August 3, 2016

These notes are meant as introductory notes on Caratheodory's extension theorem. The presentation is not completely my own work; the presentation heavily relies on the presentation of Noel Vaillant on http://www.probability.net/WEBcaratheodory.pdf. To make the line of arguments as clear as possible, the starting point is the notion of a ring on a topological space and not the notion of a semi-ring.

1 Elementary definitions and properties

We fix a topological space Ω. The power set of Ω is denoted $\mathcal{P}(\Omega)$ and consists of all subsets of Ω.

Definition 1. A ring on on Ω is a subset \mathcal{R} of $\mathcal{P}(\Omega)$, such that
(i) $\emptyset \in \mathcal{R}$
(ii) $A, B \in \mathcal{R} \quad \Rightarrow \quad A \cup B \in \mathcal{R}$
(iii) $A, B \in \mathcal{R} \quad \Rightarrow \quad A \backslash B \in \mathcal{R}$

Definition 2. $A \sigma$-algebra on Ω is a subset Σ of $\mathcal{P}(\Omega)$ such that
(i) $\emptyset \in \Sigma$
(ii) $\left(A_{n}\right)_{n \in \mathbb{N}} \in \Sigma \Rightarrow \cup_{n} A_{n} \in \Sigma$
(iii) $A \in \Sigma \Rightarrow A^{c} \in \Sigma$

Since $A \cap B=A \backslash(A \backslash B)$ it follows that any ring on Ω is closed under finite intersections; hence any ring is also a semi-ring. Since $\cap_{n} A_{n}=\left(\cup_{n} A^{c}\right)^{c}$ it follows that any σ-algebra is closed under arbitrary intersections. And from $A \backslash B=A \cap B^{c}$ we deduce that any σ-algebra is also a ring.

If $\left(R_{i}\right)_{i \in I}$ is a set of rings on Ω then it is clear that $\cap_{I} R_{i}$ is also a ring on Ω. Let S be any subset of $\mathcal{P}(\Omega)$, then we call the intersection of all rings on Ω containing S the ring generated by S.

Definition 3. Let \mathcal{A} be a subset of $\mathcal{P}(\Omega)$. A measure on \mathcal{A} is a map $\mu: \mathcal{A} \rightarrow[0,+\inf]$ such that
(i) $\mu(\emptyset)=0$
(ii) If $A_{n} \in \mathcal{A}$ are disjoint and $A=\uplus_{n} A_{n} \in \mathcal{A} \Rightarrow \mu(A)=\sum_{n} \mu\left(A_{n}\right)$.

If \mathcal{A} is a σ-algebra, we don't need to assume that in addition $\uplus_{n} A_{n} \in \mathcal{A}$. By taking all but finitely many A_{n} to be the empty set one sees that $\mu\left(A_{1} \uplus \cdots \uplus A_{N}\right)=\mu\left(A_{1}\right)+$ $\ldots+\mu\left(A_{n}\right)$. If $A \subset B$ then $A \uplus(B \backslash A)=B$ and hence $\mu(B)=\mu(A)+\mu(B \backslash A) \geq \mu(A)$.

Definition 4. We call an outer measure on Ω a map $\lambda: \mathcal{P}(\Omega) \rightarrow[0,+\infty]$ with
(i) $\lambda(\emptyset)=0$
(ii) $A \subset B \Rightarrow \lambda(A) \leq \lambda(B)$
(iii) $\left(A_{n}\right)_{n \in \mathbb{N}} \in \mathcal{P}(\Omega), \lambda\left(\cup_{n} A_{n}\right) \leq \sum_{n} \lambda\left(A_{n}\right)$

By taking all but finitely many A_{n} to be the empty set one sees that an outer measure is subadditive; $\lambda(A \cup B) \leq \lambda(A)+\lambda(B)$.

2 The interplay between σ-algebras and (outer) measures

Let λ be an outer measure on Ω. We define Σ_{λ} to be the set of all subsets $A \subset \Omega$ such that for any $X \subset \Omega$ we have

$$
\lambda(X)=\lambda(X \cap A)+\lambda\left(X \cap A^{c}\right)
$$

In other words, Σ_{λ} consists of all subsets $A \subset \Omega$ that cut Ω in two in a good way. Clearly, $\Omega \in \Sigma_{\lambda}$ and by the very form of the definition of Σ_{λ}, we have $A \in \Sigma_{\lambda} \Leftrightarrow A^{c} \in \Sigma_{\lambda}$. We can now present the following proposition, whose proof is a bit tedious, but which contains loads of information on the exact interplay.

Proposition 5. Let λ be an outer measure on Ω and let Σ_{λ} be as defined above. Then Σ_{λ} is a σ-algebra on Ω.

Proof. After the preliminary remarks preceding the proposition, it only remains to show that Σ_{λ} is closed under countable unions. We will first prove that Σ_{λ} is closed under finite intersections and unions.

Let $A, B \in \Sigma_{\lambda}$ and let X be any subset of Ω. We have $X \cap A^{c}=X \cap(A \cap B)^{c} \cap A^{c}$ since $(A \cap B)^{c} \supset A^{c}$. On the other hand we have $(A \cap B)^{c}=A^{c} \cup B^{c}$ and hence $X \cap(A \cap B)^{c} \cap A=\left(X \cap A \cap B^{c}\right) \cup\left(X \cap A \cap A^{c}\right)=X \cap A \cap B^{c}$. Therefore we have $\lambda\left(X \cap(A \cap B)^{c}\right)=\lambda\left(X \cap(A \cap B)^{c} \cap A\right)+\lambda\left(X \cap(A \cap B)^{c} \cap A^{c}=\lambda\left(X \cap A^{c}\right)+\lambda\left(X \cap A \cap B^{c}\right)\right.$. Now adding $\lambda(X \cap A \cap B)$ and using that $\lambda(X \cap A)=\lambda(X \cap A \cap B)+\lambda\left(X \cap A \cap B^{c}\right)$ one obtains $\lambda(X \cap A \cap B)+\lambda\left(X \cap(A \cap B)^{c}\right)=\lambda(X)$. Hence $A \cap B \in \Sigma_{\lambda}$.
Since $A \cup B=\left(A^{c} \cap B^{c}\right)^{c}$ and $A \backslash B=A \cap B^{c}$ we see that Σ_{λ} is closed under finite unions and the set-theoretic difference. Thus Σ_{λ} is a ring on Ω.

If $A, B \in \Sigma_{\lambda}$ are disjoint and $X \subset \Omega$ then $\lambda(X \cap(A \uplus B))=\lambda(X)-\lambda\left(X \cap A^{c} \cap B^{c}\right)=$ $\lambda(X)-\lambda\left(X \cap A^{c}\right)+\lambda\left(X \cap A^{c} \cap B\right)=\lambda(X \cap A)+\lambda(X \cap B)$ as $A^{c} \cap B=B$. Using induction we obtain $\lambda\left(X \cap \biguplus_{n=1}^{N} A_{n}\right)=\sum_{n=1}^{N} \lambda\left(X \cap A_{n}\right)$ whenever A_{n} are in Σ_{λ} and pairwise disjoint.

Now we fix a sequence A_{n} in Σ_{λ} which are pairwise disjoint and we denote the union $\cup_{n} A_{n}$ by A. Furthermore, we fix an arbitrary $X \in \Omega$ and an arbitrary large integer N.
Since $X \cap A^{c} \subset X \cap\left(\biguplus_{n=1}^{N} A_{n}\right)^{c}$ and Σ_{λ} is closed under finite unions we have $\lambda(X \cap$ $\left.A^{c}\right)+\lambda\left(X \cap\left(\biguplus_{n=1}^{N} A_{n}\right)\right) \leq \lambda\left(X \cap\left(\biguplus_{n=1}^{N} A_{n}\right)^{c}\right)+\sum_{n} \lambda\left(X \cap A_{n}\right)=\lambda(X)$. But N is arbitrary in this equation and we can safely let it go to ∞ and obtain

$$
\begin{equation*}
\lambda\left(X \cap A^{c}\right)+\sum_{n} \lambda\left(X \cap A_{n}\right) \leq \lambda(X) \tag{1}
\end{equation*}
$$

On the other hand we have $\lambda(X) \leq \lambda\left(X \cap A^{c}\right)+\lambda(X \cap A)$, which again by the definition of an outer measure is less or equal $\lambda\left(X \cap A^{c}\right)+\sum_{n} \lambda\left(X \cap A_{n}\right)$. Hence using (1) we obtain

$$
\lambda(X) \leq \lambda\left(X \cap A^{c}\right)+\lambda(X \cap A) \leq \lambda\left(X \cap A^{c}\right)+\sum_{n} \lambda\left(X \cap A_{n}\right) \leq \lambda(X)
$$

It follows that we must equality. From this we conclude that Σ_{λ} is indeed closed under countable unions and, by taking $X=A$, that $\lambda(A)=\sum_{n} \lambda\left(A_{n}\right)$. Therefore the restriction of λ to Σ_{λ} is a measure on Σ_{λ}.

We will call Σ_{λ} the σ-algebra related to λ.
Now we come to a critical step; we want to associate an outer measure λ_{μ} to a given measure λ on some ring \mathcal{R}. Of course, we want the restriction of the outer measure λ_{μ} to the ring to coincide with the measure μ.

Let \mathcal{R} be a ring on Ω and let μ be a measure on \mathcal{R}. If $X \subset \Omega$ is any subset we can cover X with sets from \mathcal{R} to approximate X inside \mathcal{R} - we call an \mathcal{R}-cover of X a countable subset $\left(A_{n}\right)_{n}$ of \mathcal{R} with $X \subset \cup_{n} A_{n}$. This leads to the following definition; for any $X \subset \Omega$ we $\lambda_{\mu}(X)$ to be the infimum of all sums $\sum_{n} \mu\left(A_{n}\right)$ where $\left(A_{n}\right)_{n \in \mathbb{N}}$ is any countable cover of X with A_{n} in \mathcal{R}. We need to check that this is an outer measure.

Proposition 6. The map $\lambda_{\mu}: \mathcal{P}(\Omega) \rightarrow[0,+\infty]$ defined in the above paragraph defines an outer measure on Ω.

Proof. Since $\emptyset \in \mathcal{R}$ we have $\lambda_{\mu}(\emptyset)=0$. If $X \subset Y$ are two subsets of Ω, then any cover of Y with sets from \mathcal{R} also covers X and hence $\lambda_{\mu}(X) \leq \lambda_{\mu}(Y)$.
Now let X_{n} be any sequence of subsets of subsets. By the definition of the infimum we can find for each $\epsilon>0$ and for each n an \mathcal{R}-cover $\left(A_{n, m}\right)_{m}$ of X_{n} such that $\sum_{m} \mu\left(A_{n, m}\right)<\lambda_{\mu}(X)+\frac{\epsilon}{2^{n}}$. The sets $A_{n, m}$ form a countable cover of $X=\cup_{n} X_{n}$; we can for example set $B_{1}=A_{1,1}, B_{2}=A_{2,1}, B_{3}=A_{1,2}, B_{4}=A_{3,1}$ and so on, similar to Cantor's proof of the countability of \mathbb{Q}. But then $\lambda_{\mu}(X)=\lambda_{\mu}\left(\cup_{n} X_{n}\right) \leq$ $\sum_{n, m} \mu\left(A_{n, m}\right)<\sum_{n}\left(\lambda_{\mu}\left(X_{n}\right)+\frac{\epsilon}{2^{n}}\right)=\sum_{n} \lambda_{\mu}\left(X_{n}\right)+\epsilon$. But ϵ was arbitrary and hence $\lambda_{\mu}\left(\cup_{n} X_{n}\right) \leq \sum_{n} \lambda_{\mu}\left(X_{n}\right)$.

Proposition 7. The restriction of λ_{μ} to \mathcal{R} is μ.

Proof. For any $A \in \mathcal{R}$ the set A itself forms a cover and hence $\lambda_{\mu}(A) \leq \mu(A)$.
On the other hand, let $\left(A_{n}\right)$ be an \mathcal{R}-cover of A. We define $B_{1}=A_{1} \cap A$ and $B_{n+1}=$ $\left(A_{n} \cap A\right) \backslash \cup_{k \geq n}\left(A_{k} \cap A\right)$ for $n \geq 1$. Then clearly $B_{n} \in \mathcal{R}$, the B_{n} are disjoint, $\uplus_{n} B_{n}=A$ and $\mu\left(B_{n}\right) \leq \mu\left(A_{n}\right)$. Since μ is a measure on \mathcal{R} we have $\mu(A)=\sum_{n} \mu\left(B_{n}\right)$ which is less than or equal to $\sum_{n} \mu\left(A_{n}\right)$. Since this holds for any \mathcal{R}-cover of A we have $\mu(A) \leq \lambda_{\mu}(A)$. Therefore equality holds and the proposition is proved.

We will call λ_{μ} the outer measure associated to μ.
So we now have two constructions; given a ring and a measure on it we can construct an outer measure. Given an outer measure we can construct a σ-algebra such that the
restriction of the outer measure to the σ-algebra is a measure on the σ-algebra. So it seems feasible that we can construct a measure on a σ-algebra starting from a ring with a measure on it. That this really works and that all things work out nicely is the content of Caratheodory's theorem.

3 Caratheodory's theorem: Statement and Proof

Lemma 8. Let \mathcal{R} be a ring on Ω and let μ be a measure on \mathcal{R}. Let λ be the outer measure associated to μ. Let Σ be the σ-algebra related to λ. Then $\mathcal{R} \in \Sigma$.

Proof. Let A be an element of \mathcal{R} and let X be any subset of Ω. Since λ is an outer measure on Ω we have $\lambda(X)=\lambda\left((X \cap A) \cup\left(X \cap A^{c}\right)\right) \leq \lambda(X \cap A)+\lambda\left(X \cap A^{c}\right)$.
Now let $\left(A_{n}\right)_{n \in \mathbb{N}}$ be any \mathcal{R}-cover of X. Then the $A_{n} \cap A$ form an \mathcal{R}-cover of $X \cap A$ and the $A_{n} \cap A^{c}$ form an \mathcal{R}-cover of $X \cap A^{c}$. Hence we have that $\lambda(X \cap A)+\lambda\left(X \cap A^{c}\right) \leq$ $\sum_{n} \mu\left(A_{n} \cap A\right)+\sum_{n}\left(A_{n} \cap A^{c}\right)=\sum_{n} \mu\left(A_{n}\right)$, where the last step follows from the fact that μ is a measure and hence $\mu(C \uplus D)=\mu(C)+\mu(D)$. Since the inequality holds for any \mathcal{R}-cover of X we need $\lambda(X \cap A)+\lambda\left(X \cap A^{c}\right) \leq \lambda(X)$. We thus need equality; for any $X \subset \Omega$ we have $\lambda(X)=\lambda(X \cap A)+\lambda\left(X \cap A^{c}\right)$, or in other words $A \in \Sigma$ and since A was an arbitrary element of \mathcal{R} the lemma is proved.

Remark 9. Any ring generates a σ-algebra; one at least has to enlarge the ring with countable unions and countable intersections. Put in a correct way, the σ-algeba generated by the ring \mathcal{R} is the intersection of all σ-algebras that contain \mathcal{R}. Therefore the above lemma shows that the σ-algebra generated by \mathcal{R} is contained in Σ.

Now we come to Caratheodory's theorem:
Theorem 10. Let \mathcal{R} be a ring on Ω and let μ be a measure on \mathcal{R}. Then there exists a measure μ^{\prime} on the σ-algebra generated by \mathcal{R} such that the restriction of μ^{\prime} to \mathcal{R} coincides with μ.

Proof. Let λ be the outer measure on Ω associated to μ. Let Σ be the σ-algebra associated to λ. Then by lemma 8 the σ-algebra generated by \mathcal{R} is contained in Σ. Hence λ restricts to a measure on the σ-algebra generated by \mathcal{R}. By proposition 7 this restriction of λ to \mathcal{R} coincides with μ.

Example 11. Let Ω be the real line. Then the open intervals generate a σ-algebra Σ. For any open interval (a, b) with $a<b$ we can put $\mu((a, b))=b-a$. Then there exists a measure μ^{\prime} on Σ such that $\mu^{\prime}((a, b))=b-a$. Indeed, for countable unions of disjoint intervals we can define $\mu\left(\cup_{n}\left(a_{n}, b_{n}\right)\right)=\sum_{n}\left(b_{n}-a_{n}\right)$. Hence μ does give rise to a measure on the ring generated by all intervals.

Acknowledgement: I thank István Gergely Édes for valuable remarks and pointing out an incorrectness.

