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These notes are meant as introductory notes on Caratheodory’s extension theorem. The
presentation is not completely my own work; the presentation heavily relies on the pre-
sentation of Noel Vaillant on http://www.probability.net/WEBcaratheodory.pdf.
To make the line of arguments as clear as possible, the starting point is the notion of a
ring on a topological space and not the notion of a semi-ring.

1 Elementary definitions and properties

We fix a topological space Ω. The power set of Ω is denoted P(Ω) and consists of all
subsets of Ω.

Definition 1. A ring on on Ω is a subset R of P(Ω), such that

(i) ∅ ∈ R

(ii) A,B ∈ R ⇒ A ∪B ∈ R

(iii) A,B ∈ R ⇒ A \B ∈ R

Definition 2. A σ-algebra on Ω is a subset Σ of P(Ω) such that

(i) ∅ ∈ Σ

(ii) (An)n∈N ∈ Σ ⇒ ∪n An ∈ Σ

(iii) A ∈ Σ ⇒ Ac ∈ Σ

Since A∩B = A\(A\B) it follows that any ring on Ω is closed under finite intersections;
hence any ring is also a semi-ring. Since ∩nAn = (∪nA

c)c it follows that any σ-algebra
is closed under arbitrary intersections. And from A \ B = A ∩ Bc we deduce that any
σ-algebra is also a ring.

If (Ri)i∈I is a set of rings on Ω then it is clear that ∩IRi is also a ring on Ω. Let S be
any subset of P(Ω), then we call the intersection of all rings on Ω containing S the ring
generated by S.

Definition 3. Let A be a subset of P(Ω). A measure on A is a map µ : A → [0,+ inf]
such that

(i) µ(∅) = 0

(ii) If An ∈ A are disjoint and A = ⊎nAn ∈ A ⇒ µ(A) =
∑

n µ(An).

If A is a σ-algebra, we don’t need to assume that in addition ⊎nAn ∈ A. By taking all
but finitely many An to be the empty set one sees that µ(A1 ⊎ · · · ⊎ AN ) = µ(A1) +
. . .+µ(An). If A ⊂ B then A⊎ (B \A) = B and hence µ(B) = µ(A)+µ(B \A) ≥ µ(A).
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Definition 4. We call an outer measure on Ω a map λ : P(Ω) → [0,+∞] with

(i) λ(∅) = 0

(ii) A ⊂ B ⇒ λ(A) ≤ λ(B)

(iii) (An)n∈N ∈ P(Ω) , λ(∪nAn) ≤
∑

n λ(An)

By taking all but finitely many An to be the empty set one sees that an outer measure
is subadditive; λ(A ∪B) ≤ λ(A) + λ(B).

2 The interplay between σ-algebras and (outer) mea-
sures

Let λ be an outer measure on Ω. We define Σλ to be the set of all subsets A ⊂ Ω such
that for any X ⊂ Ω we have

λ(X) = λ(X ∩ A) + λ(X ∩ Ac) .

In other words, Σλ consists of all subsets A ⊂ Ω that cut Ω in two in a good way. Clearly,
Ω ∈ Σλ and by the very form of the definition of Σλ, we have A ∈ Σλ ⇔ Ac ∈ Σλ.
We can now present the following proposition, whose proof is a bit tedious, but which
contains loads of information on the exact interplay.

Proposition 5. Let λ be an outer measure on Ω and let Σλ be as defined above. Then

Σλ is a σ-algebra on Ω.

Proof. After the preliminary remarks preceding the proposition, it only remains to show
that Σλ is closed under countable unions. We will first prove that Σλ is closed under
finite intersections and unions.

Let A,B ∈ Σλ and let X be any subset of Ω. We have X ∩ Ac = X ∩ (A ∩ B)c ∩ Ac

since (A ∩ B)c ⊃ Ac. On the other hand we have (A ∩ B)c = Ac ∪ Bc and hence
X ∩ (A ∩ B)c ∩ A = (X ∩ A ∩ Bc) ∪ (X ∩ A ∩ Ac) = X ∩ A ∩ Bc. Therefore we have
λ(X∩(A∩B)c) = λ(X∩(A∩B)c∩A)+λ(X∩(A∩B)c∩Ac = λ(X∩Ac)+λ(X∩A∩Bc).
Now adding λ(X ∩ A ∩B) and using that λ(X ∩ A) = λ(X ∩ A ∩B) + λ(X ∩ A ∩Bc)
one obtains λ(X ∩ A ∩B) + λ(X ∩ (A ∩B)c) = λ(X). Hence A ∩B ∈ Σλ.

Since A ∪ B = (Ac ∩ Bc)c and A \ B = A ∩ Bc we see that Σλ is closed under finite
unions and the set-theoretic difference. Thus Σλ is a ring on Ω.

If A,B ∈ Σλ are disjoint and X ⊂ Ω then λ(X ∩ (A ⊎B)) = λ(X)− λ(X ∩Ac ∩Bc) =
λ(X) − λ(X ∩ Ac) + λ(X ∩ Ac ∩ B) = λ(X ∩ A) + λ(X ∩ B) as Ac ∩ B = B. Using

induction we obtain λ(X ∩
⊎N

n=1
An) =

∑N

n=1
λ(X ∩ An) whenever An are in Σλ and

pairwise disjoint.

Now we fix a sequence An in Σλ which are pairwise disjoint and we denote the union
∪nAn by A. Furthermore, we fix an arbitrary X ∈ Ω and an arbitrary large integer N .

Since X ∩ Ac ⊂ X ∩ (
⊎N

n=1
An)

c and Σλ is closed under finite unions we have λ(X ∩

Ac) + λ(X ∩ (
⊎N

n=1
An)) ≤ λ(X ∩ (

⊎N

n=1
An)

c) +
∑

n λ(X ∩ An) = λ(X). But N is
arbitrary in this equation and we can safely let it go to ∞ and obtain

λ(X ∩ Ac) +
∑

n

λ(X ∩An) ≤ λ(X) . (1)
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On the other hand we have λ(X) ≤ λ(X ∩Ac)+λ(X∩A), which again by the definition
of an outer measure is less or equal λ(X ∩ Ac) +

∑
n λ(X ∩ An). Hence using (1) we

obtain

λ(X) ≤ λ(X ∩ Ac) + λ(X ∩A) ≤ λ(X ∩ Ac) +
∑

n

λ(X ∩ An) ≤ λ(X) .

It follows that we must equality. From this we conclude that Σλ is indeed closed
under countable unions and, by taking X = A, that λ(A) =

∑
n λ(An). Therefore the

restriction of λ to Σλ is a measure on Σλ.

We will call Σλ the σ-algebra related to λ.

Now we come to a critical step; we want to associate an outer measure λµ to a given
measure λ on some ring R. Of course, we want the restriction of the outer measure λµ

to the ring to coincide with the measure µ.

Let R be a ring on Ω and let µ be a measure on R. If X ⊂ Ω is any subset we can
cover X with sets from R to approximate X inside R - we call an R-cover of X a
countable subset (An)n of R with X ⊂ ∪nAn. This leads to the following definition; for
any X ⊂ Ω we λµ(X) to be the infimum of all sums

∑
n µ(An) where (An)n∈N is any

countable cover of X with An in R. We need to check that this is an outer measure.

Proposition 6. The map λµ : P(Ω) → [0,+∞] defined in the above paragraph defines

an outer measure on Ω.

Proof. Since ∅ ∈ R we have λµ(∅) = 0. If X ⊂ Y are two subsets of Ω, then any cover
of Y with sets from R also covers X and hence λµ(X) ≤ λµ(Y ).

Now let Xn be any sequence of subsets of subsets. By the definition of the infimum
we can find for each ǫ > 0 and for each n an R-cover (An,m)m of Xn such that∑

m µ(An,m) < λµ(X) + ǫ
2n

. The sets An,m form a countable cover of X = ∪nXn;
we can for example set B1 = A1,1, B2 = A2,1, B3 = A1,2, B4 = A3,1 and so on,
similar to Cantor’s proof of the countability of Q. But then λµ(X) = λµ(∪nXn) ≤∑

n,m µ(An,m) <
∑

n(λµ(Xn) +
ǫ
2n

) =
∑

n λµ(Xn) + ǫ. But ǫ was arbitrary and hence
λµ(∪nXn) ≤

∑
n λµ(Xn).

Proposition 7. The restriction of λµ to R is µ.

Proof. For any A ∈ R the set A itself forms a cover and hence λµ(A) ≤ µ(A).

On the other hand, let (An) be an R-cover of A. We define B1 = A1 ∩ A and Bn+1 =
(An∩A)\∪k≥n(Ak∩A) for n ≥ 1. Then clearly Bn ∈ R, the Bn are disjoint, ⊎nBn = A

and µ(Bn) ≤ µ(An). Since µ is a measure on R we have µ(A) =
∑

n µ(Bn) which is less
than or equal to

∑
n µ(An). Since this holds for anyR-cover of A we have µ(A) ≤ λµ(A).

Therefore equality holds and the proposition is proved.

We will call λµ the outer measure associated to µ.

So we now have two constructions; given a ring and a measure on it we can construct
an outer measure. Given an outer measure we can construct a σ-algebra such that the
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restriction of the outer measure to the σ-algebra is a measure on the σ-algebra. So
it seems feasible that we can construct a measure on a σ-algebra starting from a ring
with a measure on it. That this really works and that all things work out nicely is the
content of Caratheodory’s theorem.

3 Caratheodory’s theorem: Statement and Proof

Lemma 8. Let R be a ring on Ω and let µ be a measure on R. Let λ be the outer

measure associated to µ. Let Σ be the σ-algebra related to λ. Then R ∈ Σ.

Proof. Let A be an element of R and let X be any subset of Ω. Since λ is an outer
measure on Ω we have λ(X) = λ((X ∩ A) ∪ (X ∩ Ac)) ≤ λ(X ∩ A) + λ(X ∩Ac).

Now let (An)n∈N be any R-cover of X . Then the An ∩A form an R-cover of X ∩A and
the An ∩Ac form an R-cover of X ∩ Ac. Hence we have that λ(X ∩A) + λ(X ∩Ac) ≤∑

n µ(An ∩ A) +
∑

n(An ∩ Ac) =
∑

n µ(An), where the last step follows from the fact
that µ is a measure and hence µ(C ⊎D) = µ(C) + µ(D). Since the inequality holds for
any R-cover of X we need λ(X ∩ A) + λ(X ∩ Ac) ≤ λ(X). We thus need equality; for
any X ⊂ Ω we have λ(X) = λ(X ∩A) + λ(X ∩Ac), or in other words A ∈ Σ and since
A was an arbitrary element of R the lemma is proved.

Remark 9. Any ring generates a σ-algebra; one at least has to enlarge the ring with

countable unions and countable intersections. Put in a correct way, the σ-algeba gen-

erated by the ring R is the intersection of all σ-algebras that contain R. Therefore the

above lemma shows that the σ-algebra generated by R is contained in Σ.

Now we come to Caratheodory’s theorem:

Theorem 10. Let R be a ring on Ω and let µ be a measure on R. Then there exists a

measure µ′ on the σ-algebra generated by R such that the restriction of µ′ to R coincides

with µ.

Proof. Let λ be the outer measure on Ω associated to µ. Let Σ be the σ-algebra
associated to λ. Then by lemma 8 the σ-algebra generated by R is contained in Σ.
Hence λ restricts to a measure on the σ-algebra generated by R. By proposition 7 this
restriction of λ to R coincides with µ.

Example 11. Let Ω be the real line. Then the open intervals generate a σ-algebra

Σ. For any open interval (a, b) with a < b we can put µ((a, b)) = b − a. Then there

exists a measure µ′ on Σ such that µ′((a, b)) = b − a. Indeed, for countable unions of

disjoint intervals we can define µ(∪n(an, bn)) =
∑

n(bn − an). Hence µ does give rise

to a measure on the ring generated by all intervals.
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out an incorrectness.
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