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1 Introduction

A well-known lottery game goes as follows: One marks 6 (distinct) numbers on a 7×7-
grid, ranging from 1 to 49. How many of the marked numbers are drawn in a drawing
event determines your win. Suppose a good fairy tells you that the following drawing
event will select six numbers a1, . . . , a6 such that the sum S = a1 + . . .+ a6 times the
number of ways this sum S can be achieved by marking six distinct numbers ranging
from 1 to 49 precisely equals the product P = a1 · . . . · a6 – do you know, which six
numbers to select and win the jackpot? Below we analyse this problem and single out
4 possibilities that make us win the jackpot. Our method is that of brute force; we do
not use very advanced mathematics, but reduce the problem to a calculation that can
easily be performed on a computer.

From the information of the fairy it is clear that the sum of the six numbers divides
their product. At first, this might not be happening too oft. However, the number
of possibilities to select 6 numbers out of 49 is huge, 13983816. A computer analysis
shows that at least several ten thousands selections of 6 numbers satisfy the condition
that their sum divides their product.

We focus on how may ways a certain sum can be achieved by six different numbers
ranging from 1 to 49. Clearly the lowest possible value is 1 + 2 + 3 + 4 + 5 + 6 = 21,
whereas the highest possible value is 49+48+47+46+45+44 = 279. Since choosing
(a, b, c, d, e, f) or (50− a, 50− b, 50− c, 50− d, 50− e, 50− f) makes for the number of
possibilities no difference, we see that the number of ways a sum S can be achieved is
the same as the number of ways to obtain the sum 300− S. Thus, we expect that the
value 150 can be achieved in most ways.

2 Recursive formula

We define W (a, b, c, ) as the set of partitions of a into a sum of b different integers from
the set {1, 2, . . . , c}. Each element λ of W (a, b, c) is a b-tuble λ = (λ1, . . . , λb) with
c ≥ λ1 > λ2 > . . . > λb ≥ 1.
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ϕ

15 = 6 + 5 + 3 + 1 5 = 2 + 2 + 1 (+ 0)

Figure 1: Pictorial description of the isomorphism ϕ : W (a, b, c) → W ′(a − 1

2
b(b +

1), b, c− b). The squares that are removed in the process are marked gray.

We define W ′(a, b, c) as the set of partitions of a into a sum of b nonnegative integers
not exceeding c. Each element µ ∈ W ′(a, b, c) is a b-tuple µ = (µ1, . . . , µb) with
c ≥ µ1 ≥ µ2 . . . ≥ µb ≥ 0.

The map ϕ : W (a, b, c) → W ′(a− 1

2
b(b+ 1), b, c− b) defined by ϕ : (λ1, λ2, . . . , λb) 7→

(λ1 − b, λ2 − (b − 1), . . . , λb − 1) substracts one from the lowest value, 2 from the one
but lowest value and so on, thus substracting b from the highest value. The map ϕ is
well-defined and sets up an isomorphism. An example: 16 = 6 + 5 + 3 + 1 is mapped
to 5 = 2 + 2 + 1, depicted by means of (mirrored) Ferrer diagrams in figure 1.

If we let I(a, b, c) and J(a, b, c) denote the cardinalities of W (a, b, c) and W ′(a, b, c)
respectively, we have the following identity:

I(a, b, c) = J
(

a−
b(b+ 1)

2
, b, c− b

)

. (1)

Although our object of interest is I(a, b, c), we will focus on the J(a, b, c).

Each element of W ′(a, b, c) can be assigned a coloring of a rectangle of b× c squares by
which a squares are colored with one color (blue) and the remaining with another color
(red), such that the number of blue boxes does not increase from left to right – see
figure 2. If a > bc we cannot do this, so W ′(a, b, c) is empty in this case. Exchanging
rows and columns, we get a good coloring of a rectangle of c× b squares, thus

J(a, b, c) = J(a, c, b) . (2)
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Figure 2: The number J(a, b, c) counts the number of colorings of a rectangle with a
total of b×c squares of which a are blue and bc−a red, such that from left to right the
number of blue squares is nonincreasing. We can thus pull all the blue boxes to the
bottom line and the blue boxes make up a region below the graph of a nonincreasing
step function.

If a boxes are colored blue, then bc − a are colored red. Rotating the rectangle and
exchanging colors leads to the identity

J(a, b, c) = J(bc− a, b, c) . (3)

If a < c all summands of a partition are not exceeding a, thus we can replace c by a:

J(a, b, c) = J(a, b, a) if c > a . (4)

And thus, if b and c both exceed a, we have

J(a, b, c) = J(a, a, a) if b, c > a . (5)

The set W ′(a, b, c) can be partioned into two disjoint sets: those µ for which µ1 < c

and those for which µ1 = c. Those of the first type are in one-to-one correspondence
with the elements of W ′(a, b, c − 1) and those of the second type are in one-to-one
correspondence with the elements of W ′(a− c, b−1, c), which can be seen by removing
µ1 from µ to obtain (µ2, . . . , µb). Therefore

J(a, b, c) = J(a, b, c− 1) + J(a− c, b− 1, c) . (6)

By symmetry, we can find another partition of the set W ′(a, b, c): Those partitions
for which the lower row is completely blue and those for which the lower row is not
completely blue, i.e., those partitions (µ1, . . . , µb) for which µb 6= 0 and those for which
µb = 0. Reasoning as before, we find

J(a, b, c) = J(a, b− 1, c) + J(a− b, b, c− 1) . (7)
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The above equations (6) and (7) can be used as recursive relations to calculate the
J(a, b, c). We need some initial values:

J(0, b, c) = 1 b, c > 0

J(1, b, c) = 1 b, c > 0

J(a, 1, c) = 1 c ≥ a , and J(a, 1, c) = 0 elsewise

J(a, b, 1) = 1 b ≥ a , and J(a, b, 1) = 0 elsewise .

(8)

Further conditions also can serve as initial values for calculating J(a, b, c):

J(a, b, c) = 0 if bc < a ,

J(bc, b, c) = 1 ,

J(2, b, c) = 2 if b, c > 1 .

(9)

With the above identities it is simple to calculate J(a, b, c) and thus J(a, b, c) for any
value of a, b and c. The calculations tend to be rather lengthy however. Therefore
some simple code that is run on a computer can be of help; in the next section we will
explain how this can be done.

3 Design of a computer aided computation

First, we describe how an algorithm could calculate J(a, b, c) for b = 6 and c = 43
and where a ranges from 0 to 258. Then we show, how to find an algorithm that runs
through all the possible ways to select 6 numbers from the set {1, 2, . . . , 49}.

The triple (a, b, c) is inserted into an ordered list L = {(a, b, c)} and a number x is
set to 0. The algorithm takes the first triple (a, b, c) from the list and then considers
following conditions and takes the corresponding actions:

1. If bc < a then (a, b, c) is deleted from the list;

2. else, if bc = a, then (a, b, c) is deleted from the list and x is replaced by x+ 1;

3. else, if a = 1, then (a, b, c) is deleted from the list and x is replaced by x+ 1;

4. else, if a = 0, then (a, b, c) is deleted form the list and x is replaced by x+ 1;

5. else, if b = 1, then (a, b, c) is deleted from the list and x is replaced by x+ 1;

6. else, if c = 1, then (a, b, c) is deleted form the list and x is replaced by x+ 1;

7. else, if a = 2 and b > 1 and c > 1, then (a, b, c) is deleted from the list and x is
replaced by x+ 2;

8. else, if a = 3 and b > 2 and c > 2, then (a, b, c) is deleted from the list and x is
replaced by x+ 3;
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9. else, if c > a, then (a, b, c) is deleted from the list, x is replaced by x+1 and the
triple (a, b, a− 1) is inserted at the first place in L;

10. elsewise, then (a, b, c) is deleted from the list and then first (a, b, c−1) is inserted
at the first place in L, then (a− c, b−1, c) is inserted at the first place in L (thus
shifting (a, b, c− 1) to the second place).

These steps are iterated until L = ∅, or equivalently, the length of L becomes zero,
and then x = J(a, b, c).

The idea behind first inserting (a, b, c−1) and then (a−c, b−1, c) is that the algorithm
always takes the first element from L. Thus after (a, b, c) is replaced and x is not
changed, the next triple to be considered is (a − c, b − 1, c). By these steps the first
number of the triple under consideration rapidly reaches 0, 1, 2 or 3 and therefore the
size of L does not increase too rapid.

After the above one has found J(a, b, c) and one proceeds to J(a+1, b, c), thus obtaining
J(a, 6, 43) with a ranging from 0 to 258, or equivalently I(a, 6, 49) with a ranging from
21 to 279. These numbers J(a, 6, 43) are saved in list J ordered such that the first in
the list is J(0, 6, 43), the next is J(1, 6, 43) and so on, and the last in the list J is thus
J(258, 6, 43).

Now, how to go through all the possible 6-tuples (a, b, c, d, e, f) with 1 ≤ a < b <

c < d < e < f ≤ 49. One can consider a lexicographical ordering on these 6-tuples:
(a, b, c, d, e, f) > (a′, b′, c′, d′, e′, f ′) if the first (read from left to right) nonzero number
of the list (a− a′, b− b′, c− c′, d− d′, e− e′, f − f ′) is positive. Then starting with an
arbitrary 6-tuple (a, b, c, d, e, f), the next 6-tuple in the ordering is found as follows:

1. if f < 49, then f 7→ f + 1;

2. else, if e < 48, then (a, b, c, d, e, f) 7→ (a, b, c, d, e+ 1, e+ 2);

3. else, if d < 47, then (a, b, c, d, e, f) 7→ (a, b, c, d+ 1, d+ 2, d+ 3);;

4. else, if c < 46, then (a, b, c, d, e, f) 7→ (a, b, c+ 1, c+ 2, c+ 3, c+ 4);

5. else, if b < 45, then (a, b, c, d, e, f) 7→ (a, b+ 1, b+ 2, b+ 3, b+ 4, b+ 5);;

6. else, if a < 44, then (a, b, c, d, e, f) 7→ (a+ 1, a+ 2, a+ 3, a+ 4, a+ 5, a+ 6);

7. elsewise (thus if (a, b, c, d, e, f) = (44, 45, 46, 47, 48, 49)) one is already at the last
element in the lexicographical ordering.

With this algorithm and starting with (1, 2, 3, 4, 5, 6) one goes through all the possible
selections of 6 numbers from the set {1, 2, . . . , 49}. For each selection (a, b, c, d, e, f)
one can calculate S = a+ b+ c+ d+ e+ f , multiply this number with the (S − 21)th
number from the list J . If this equals the product abcdef , then the result is printed.The
output is a list of four possibilities:
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(1) (1,2,3,4,11,15): sum 36; product: 3960; I(36, 6, 49) = 110;

(2) (1,4,5,7,9,19): sum 45; product: 23940; I(45, 6, 49) = 532;

(3) (2,8,11,14,19,22): sum 76; product: 1029952; I(76, 6, 49) = 13552;

(4) (5,8,11,26,37,43): sum 130; product: 18201040; I(130, 6, 49) = 140008.

4 Connection to standard partitions

If the size restriction, encoded by c, plays no role, we have

J(a, b, a+∆) = J(a, b, a) = pb(a) , ∆ ≥ 0 , (10)

where pk(n) is the number of partitions of n into k summands, which, as can be shown
easily by reflecting the Ferrer diagramm, equals the number of partitions of n into
summands of size at most k. One has to be careful not to confuse pk(n) with the
number of partitions of n into exactly k summands. For examply, 5 = 3 + 2 is an
element of the set of partitions of 5 into at most 3 summands, but not element of the
set of partitions of 5 into exactly 3 summands (summand 0 not allowed). The set of
partitions of n into summands of size at most k can be divided into two disjoint sets;
either at least one summand equals k, or not. If the largest summand is k, we can
subtract it and find a partition of n− k into summands of size at most k, if not, then
the partition is an element of the set of partitions of n into summands of size at most
k − 1. Hence we have

pk(n) = pk−1(n) + pk(n− k) . (11)

Since J(a, b, c) satisfies J(a, b, c) = J(a, b− 1, c) + J(a− b, b, c− 1), we have for c > a

and b ≥ 1 that a− b < a− 1 and thus the relation

J(a, b, a) = J(a, b− 1, a) + J(a− b, b, a− 1)

= J(a, b− 1, a) + J(a− b, b, a− b)
(12)

holds. Hence J(a, b, a) satisfies the same recurrence relation as pb(a).

We let πk(n) denote the number of partitions of n into exactly k (nonzero) summands.
Equivalently, πk(n) is the number of partitions of n with largest summand equal k.
Since any partition of k whose summands do not exceed k must have a largest summand
l ≤ k we have

pk(n) =
n
∑

l=1

πl(n) ,

and since any partition of n with summands not exceeding k must either have a largest
summand k, or the summands do not exceed k − 1, we have

πk(n) = pk(n)− pk−1(n) .

Consider a partition of n whose largest summand equals k. Then either there is exactly
one summand equal k, or there are at least two summands equal k. Those partitions
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of the first kind are in one-to-one correspondence with the partitions of n− 1, whose
largest summand equals k − 1 (as can be seen by subtracting one from the largest
summand), or equivalently, by removing a block from the Ferrer diagram), whereas
those of the second kind are in one-to-one correspondence with partitions of n − k

whose largest summand equals k (as can be seen by removing the largest summand
completely, or equivalently, by removing the entire column in the Ferrer diamgram).
From these considerations we obtain

πk(n) = πk(n− k) + πk−1(n− 1) . (13)

A further relation between pk(n) and πk(n) exists, which connects the two recurrence
relations (11) and (13). If n = λ1+. . .+λr is a partition of n, with k = λ1 ≥ λ2 ≥ . . . ≥
λr > 0, then n− k = λ2 + . . .+ λr and no summand exceeds k. Removing the largest
summand thus sets up an equivalence between partitions of n with largest summand
k and partitions of n − k with summands not exceeding k, hence πk(n) = pk(n − k).
Using equation (13) we thus have, pk(n) = πk(n + k) = πk(n) + πk−1(n + k − 1) =
pk(n− k) + pk−1(n), which is eqn.(11).

If both the number of summands and the size of the summands plays no role, i.e.,
when b > a and c > a, then J(a, b, c) is just the number of partitions of a. We write
p(n) for the number of partitions of n. Clearly, we have

p(n) = pn(n) = J(n, n, n) =

n
∑

k=1

πk(n) =

n
∑

k=1

J(n− k, k, n− k) . (14)

The numbers p(n) can be thought as the diagonal of the matrix A with values Aij =
pi(j). In particular p(n) = J(n, n, n). This finishes our discussion on the relation to
the well-known partition numbers p(n) and pk(n).
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