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1 Introduction

Conformal transformations are those maps between manifolds that preserve a conformal
structure. This comes down to the following: If f : M → N are manifolds with metrics gM
and gN respectively, then the pull-back metric f∗(gN ) differs from gM only by a smooth
functionα : M → R: gM = αf∗(gN ). We will first restrict M and N to be R

n and consider
only metrics that are multiples of the standard euclidean metric, which we denote by a dot:
a · b, the corresponding norm will be written with bars |x|2 = x · x. In this case the (local)
conformal transformations are well-known and are given by compositions of the following
basic transformations

Translations: τa(x) = x+ a , a ∈ R
n ,

Orthogonal transformations: ωO(x) = Ox , O ∈ O(n) ,

Dilations: D∆(x) = e∆x , ∆ ∈ R ,

Special Conformal Transformations: ϕb(x) =
x+ |x|2b

1 + 2x · b+ |x|2|b|2 , b ∈ R .

Only two groups of these conformal tranformations types are linear and special conformal
transformations are not even globally defined: for x = −b/|b|2 the denominator vanishes.
The special conformal transformations can be seen as the composition I ◦ τb ◦ I where
I(x) = x/|x|2 is the radial inversion. It is then clear that all these maps can be made
globally defined by the standard projective map f : R → Sn ⊂ R

n+1 given by

fd(x) =
( 2x1

1 + |x|2 , . . . ,
2xn

1 + |x|2 ,
|x|2 − 1

|x|2 + 1

)
, x = (x1, . . . , xn) .

The map I then induces the map I ′ : Sn → Sn exchanging north and south: I ′(u1, . . . , un, un+1) =
(u1, . . . , un,−un+1). However, still, translations and dilations are not realized as linear maps
on the sphere. We show in the sequel a way to find a linear realization of the conformal
transformations. Then automatically all maps are globally defined.

The idea is not completely my own idea. I got inspiration from a lecture found on

http://www.physics.usu.edu/Wheeler/GaugeTheory/09Mar27zNotes.pdf

and in fact, it turns out, I just did something like James Wheeler did, just maybe from a
slightly changed perspective. Therefore, this little not is to be seen as an alternative way to
write down what James Wheeler explained already very well in his lecture on gauge theory.
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2 The starting fibre bundle

We write π : M = R
n × R

>0 → R
n for the bundle on R

n whose fibres contain the metrics
that are conformally equivalent to the standard euclidean metric. Since any such metric
is just a multiple of the standard euclidean metric, each fibre can be thought of as the set
R

∗. Since however pull-back preserve the sign of the multiple, we even restrict to R
>0. Any

point (x, λ) in M can thus be thought as the metric on TxR
n at x which is λ times the

standard euclidean metric. Sections of this bundle can be seen as functions λ : U → R
>0

from an open set U ⊂ R
n to the set of positive real numbers.

If f : U → V is an invertible conformal transformation between two open sets U, V ⊂ R
n,

the pull-back f∗ allows to define a map f̂ : π−1U → π−1V as follows: If we write ηx
for the standard euclidean metric at x on R

n, the pull-back along the inverse of f is a
metric (f−1)∗η on V and since f is conformal, we have (f−1)∗ηx = λ(f−1)f(x)ηf(x), where
λ(f−1)f(x) is a positive real number. We have

λ(f−1)f(x) =
1

λ(f)x
,

where f∗(ηf(x)) = λ(f)xηx can be calculated from

∑

k

∂fk(x)

∂xi

∂fk(x)

∂xj

= λ(f)xδij

where δij are the components of the standard euclidean metric, i.e., 1 if i = j and zero
elsewise.

We find the following expressions for λ(f) for conformal transformations:

• Translations: λ(τa) = 1

• Orthogonal transfomations: λ(ωO) = 1

• Dilations: λ(D∆) = e2∆

• Special conformal transformations: λ(ϕb) =
1

(1 + 2b · x+ |x|2|b|2)2

The first three are proven rather easily. To find the fourth, either a tedious calculation will
do the job, or use ϕb = I ◦ τb ◦ I and that λ(I) = |x|−4; then, from

λ(ϕb)x = λ(I)xλ(τb)I(x)λ(I)I(x)+b =
1

|x|4
1

|I(x) + b|4

and |I(x)+b|2 = |x|−2(1+2b·x+|x|2|b|2) the result follows. As the map I plays a prominent
role, we will often include it; although it is not well-defined at the origin, it preserves the
conformal structure.

Using the above found expressions λ, it is easy to find the induced maps f̂ : M → M for
conformal transformations:
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• Translations: τ̂a(x, z) = (x+ a, z).

• Orthogonal transformations: ω̂O(x, z) = (Ox, z).

• Dilations: D̂∆(x, z) = (e∆x, e−2∆z).

• Inversion: Î(x, z) = (x/|x|2, |x|4z).

• Special conformal transformations: ϕ̂b(x, z) = ( x+|x|2b
1+2b·x+|x|2|b|2 , (1 + 2b · x+ |x|2|b|2)2z)

We remark that the expression x
√
z is invariant under dilations and inversions.

3 Mapping M to R
n+2

We define a map Φ : M → R
n+2 by the following recipe:

Φ(x, z) =
(√

zx,
1

2

√
z(1 − |x|2), 1

2

√
z(1 + |x|2)

)
.

We write the components of Rn+2 as (Y, S, T ) with Y ∈ R
n, S, T ∈ R . Then the points

(Y, S, T ) in the image of Φ satisfy |Y |2 + S2 − T 2 = 0. We see that the image of Φ lies in
the light cone; the Lorentzian metric η on R

n+2 is then of signature (1, . . . , 1,−1).

We now want to prove the following statement:

All four kinds of conformal transformations f : Rn → R
n are realized in R

n+2 as linear

maps and preserve the Lorentzian metric, thus are elements of O(n+1, 1). In addition, any

Weyl scaling on R
n is realized as a Wey rescaling on R

n+2.

What we mean by this statement is the following. Any conformal transformation f : Rn →
R

n induces a map f̂ : M → M . We show that we can find a map f : Rn+2 → R
n+2 such

that f ◦ Φ = Φ ◦ f̂ . All these maps f are linear maps and take values in O(n + 1, 1) and
thus preserve the Lorentzian metric on R

n+2. Finding f for the various f given above is
not too difficult and hence we content with giving these results:

(t) For translations we find that τa is given by the matrix




1n a a
−aT 1− |a|2/2 −|a|2/2
aT |a|2/2 1 + |a|2/2


 ,

where aT denotes the transpose in general, thus here it denotes the row vector associated
to the column vector a, and 1n denotes the n× n unit-matrix.

(o) For orthogonal transformations ωO : x 7→ Ox we find that ωO is represented by the
matrix



O 0 0
0 1 0
0 0 1


 .
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(d) For dilations D∆ : x 7→ e∆x we find that D∆ is represented by the matrix



1n 0 0
0 cosh(∆) − sinh(∆)
0 − sinh(∆) cosh(∆)


 .

Thus dilations induce Lorentz boosts.

(i) The inversion I : x 7→ x
|x|2 induces a map I represented by the matrix



1 0 0
0 −1 0
0 0 1




(sct) The special conformation transformations ϕb induce mappings ϕb given by the matrix




1 −b b
bT 1− |b|2/2 |b|2/2
bT −|b|2/2 1 + |b|2/2


 .

By a direct calculation, we see that all of the above matrices satisfy the relation f
T
ηf = η

where η is the diagonal matrix with entries (1, . . . , 1,−1). Thus all these matrices belong
to O(n+ 1, 1).

If wσ is the Weyl-rescaling that multiplies the metric at x with e2σ(x). Then x is left fixed,
but z is mapped to e2wz. On R

n+2 this induces a rescaling (Y, S, T ) 7→ ew(Y, S, T ), which
commutes with all the above. Although a Weyl rescaling is not realized as an O(n + 1, 1)-
transformation, it preserves the conformal class.

Thus, the statement has been proven.

4 Combining the conformal transformations

There are some useful relations between the various conformal transformations:

ωOD∆ = D∆ωO , D∆1
◦D∆2

= D∆2
◦D∆1

, τa1
◦ τa2

= τa2
◦ τa1

,

ωO ◦ τa = τOa ◦ ωO , τa ◦D∆ = D∆ ◦ τe−∆a , I ◦O = O ◦ I ,
I ◦D∆ = D−∆ ◦ I , I ◦ τa = ϕa ◦ I , I ◦ I = id .

A little inspection shows that all such relations also hold for the induced maps f̂ : M →
M . Furthermore, it can be checked by matrix calculations that all these relations also
hold for the maps f : Rn+2 → R

n+2. The map f 7→ f is then easily seen to have the
property f1 ◦ f2 = f1◦f2 for all conformal transformations, translations, rotations, dilations,
inversions and special conformal transformations. The maps f 7→ f thus preserves the
product structure.

By introducing a parameter t that takes values in a small interval around 0, one sees that
the conformal transformations τta and ϕtb can be connected to the identity map. Clearly,
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special orthogonal transformations and dilations can also be connected to the identity. But
then it, using dimension counting, it is clear that the maps the images of τa, ϕb, ωO and D∆

under the map f 7→ f generate a subgroup of O(n+1, 1) of dimension n+n+ 1
2n(n−1)+1 =

1
2 (n + 1)(n + 2), which is the connected component of O(n + 1, 1), which is contained in
SO(n+ 1, 1).

5 The image of Φ and conclusion

As mentioned before, the image Φ(M) lies in the positive light-cone, |Y |2 + S2 − T 2 = 0
and T > 0. We furthermore have S + T =

√
z > 0 and T − S =

√
z|x|2 ≥ 0, with equality

only for x = 0. For any point on the positive light cone (Y, S, T ) with S + T > 0, we have
|Y |2 + S2 = T 2 and we can put

(x, z) =
( Y

S + T
, (S + T )2

)

and then Φ(x, z) = (Y, S, T ). This then shows that we have

The image of Φ is the open subset of the positive light-cone
√
|Y |2 + S2 = T > 0 for which

T + S > 0.

Thus Φ(M) can be seen as the positive light-cone with the line l : S + T = 0 cut out. The
map I maps the line l′ : T − S = 0 to the line l. Thus Φ(M) ∪ I(Φ(M)) is the complete
positive light-cone.

The map (Y, S, T ) 7→ (Y, S,−T ), or equivalently (Y, S, T ) 7→ (−Y,−S,−T ), is not among
the maps f for f running over the conformal transformations, including I. The other
reflections Y i 7→ −Y i for some fixed i while keeping the other Y j and S fixed are images
of corresponding orthogonal transformations, and the reflection (Y, S, T ) 7→ (Y,−S, T ) is
induced by I.

All in all we have shown that the conformal transformations on R
n can be realized as linear

maps on R
n+2 preserving a Lorentzian metric. Furthermore the conformal transformations

generate a subgroup of O(n + 1, 1) containing the connected component. The infinitesimal
conformal transformations thus have a Lie algebra structure isomorphic to so(n+1, 1). The
map R → R

n+2 that is used can be seen as emerging from the line-bundle π : M → R
n

that attaches to each point of Rn a metric conformally equivalent to the standard euclidean
metric.
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