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Abstract

By means of an example we provide a small lesson on constrained dynamics. This

lesson has its natural place in a course on classical dynamics, lagrangean and hamiltonian

dynamics.

1 The example

Suppose we have an object with mass m that can slide without friction along a surface that

has the form of a parabola P : y = x2

2b with b > 0. We assume the presence of a constant
gravitational force field g = (0,−g). Our goal will be to motivate the equations of motion and
to find a method to identify the forces that hold the object on the parabola.

Before we tackle the problem on a more formal level, let us go through some basic physical
considerations. The parabola will not exert an amount of work; if this were so, we could invent
a trick to extract in infinite amount from the parabola by letting the mass slide a bit along
the parabola absorbing the energy from the parabola and move the mass back up, which only
requires the gravitational energy. This would give us a surplus of the energy given by the
parabola. Also, the assumption that the mass can slide frictionless means that the parabola
will not absorb an amount of work. If F is the force exerted by the parabola and δx is an
infinitesimal displacement vector between two positions of the mass, then Fδx = 0. As F and
δx are vectors and both are nonzero, this means that F is normal to δx, and thus, the force
exerted by the parabola is a normal force. The only force doing work is the gravitational field.
Hence ∆1

2mv2 = mg∆h. We can thus give the velocity as a function of the y-coordinate.
Suppose the mass is initially at t = 0 at rest at the point (x0, y0). The total energy is thus

mgy0. The kinetic energy is given by

1

2
m(ẋ2 + ẏ2) =

1

2
m
(

1 +
x2

b2

)

ẋ2 .

We thus arrive at an energy balance equation

1

2

(

1 +
x2

b2

)

ẋ2 + gy = gy0 .

Substituting y = x2

2b we arrive at a differential equation for x. In principle such an equation can
be solved, approximately, numerically, or even exactly with more patience (maybe). However,
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we did not obtain an equation that describes the normal forces of the parabola. In the appendix
we give an expression for the period of the oscillation of the object in the parabola.

We now combine some physical concepts with the geometry of the problem. Since the mass

is to follow the parabola, we insist that for the path (x(t), y(t)) we have y(t) = x(t)2

2b and thus

ẏ(t) =
x(t)ẋ(t)

b
, ÿ(t) =

ẋ(t)2 + x(t)ẍ(t)

b
.

From this expression we can read off the total force F = (Fx, Fy)

Fx = mẍ(t) , Fy =
m

b
(ẋ(t)2 + x(t)ẍ(t)) .

We thus have a relation
−xFx + bFy = mẋ(t)2 .

For the normal force N = (Nx, Ny) we thus find

−xNx + bNy = mẋ(t)2 +mg .

The vector n = (−x, b) is normal to the parabola. Thus we can solve the last equation for N.
The result is

N =
mẋ(t)2 +mg

x2 + b2
(−x, b) ,

which contains a term mẋ(t)2, which reminds us of the centripetal force.
Let us show how to slightly generalize the above way to derive the normal forces. We

consider the movement of an object attached to a hypersurface N with a normal vector n. The

gradient of the function C(x, y) = y − x2

2b is a normal vector n′ = (−x
b , 1) to the parabola; for

convenience, we might as well work with n = (−x, b). For more general submanifolds N ⊂ M ,
one has to consider a set of normal vectors that are a complement to TN in TM .

Since the velocity v is an element of TN , we obtain

n · v = 0 ,

which for the parabola leads to −xvx + bvy = 0. Differentiating n · v = 0 we obtain

−v · d

dt
n = n · a .

We can write the acceleration due to the normal forces as αn for some real number α, since
the surface is not to do any work. If one then writes a = a′ +αn, where a′ contains the known
forces, not due to the normal forces, one can use the above equations to solve for α. This then
solves the problem of finding the normal forces.

For the parabola we differentiate −xvx + bvy = 0 and find

v2x = −xax + bay .

and writing the total acceleration as α(−x, b)− g, we get

v2x = α(x2 + b2)− gb
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and hence

α =
ẋ2 + gb

x2 + b2
.

For the normal force we then find again

N = mαn = m
ẋ2 + gb

x2 + b2
(−x, b) =

(−x, b)

x2 + b2
m(ẋ2 + gb) .

The norm of the normal force is thus m(ẋ2+gb)√
x2+b2

. If the mass is at rest at the bottom of the

parabola we recover that the magnitude of the normal force is mg.

2 The formalism

We are interested in the case, where the degrees of freedom (qi, q̇i) satisfy a set of constraints Ca

of the type Ca(q
i) = 0. The constraints are thus independent of the velocities and only depend

on time through qi(t). Such constraints are called holonomic. The most general holonomic
constraint is by definition on that involves constraint equations that depend on the coordinates
and possibly of time, but not of the velocities.

2.1 Elimination of coordinates

The most straightforward approach would be to use the constraints to eliminate some of the
coordinates. We thus actually try to perform a coordinate transformation

ui = f i(q1, . . . , qn)

such that the constraints take the form ui = 0 for some of the i. Let us assume we have m
constraints and that we find a coordinate transformation so that the constraints read ui = 0
for i = n−m+ 1, . . . , n. Then the Lagrangean can be translated to a Lagrangean depending
only on n−m coordinates u1, . . . , un−m, which are unconstrained. For this to work, one needs
to assume certain smoothness conditions on the constraints.

In order that a local coordinate transformation works, the constraints need to define a
smooth submanifold. A necessary and sufficient condition is that the functions Ca(q

i) have
linearly independent derivative one-forms at each point, where the constraint is satisfied. Al-
ternatively and equivalently dC1 ∧ dC2 ∧ . . .∧ dCm(p) is nonzero for each p with Ca(p) = 0 for
all a. In this case, the constraints define new coordinates orthogonal to the subset defined by
the constraints.

Let us see how this works for our example. There is only one constraint C = y− x2

2b = 0 and
its differential is dC = dy− x

b dx. The one-form dC vanishes nowhere. Consider the coordinate
transformation

u(x, y) = x , v(x, y) = y − x2

2b
.

The Jacobian matrix of this transformation is

∂(u, v)

∂(x, y)
=

(

1 0
−x

b 1

)

,
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which is invertible everywhere. Thus at least locally, we can always invert the coordinate
transformation and express x and y in terms of u und v. It is however not too difficult to show
that it can also be inverted globally:

x(u, v) = u , y(u, v) = v +
u2

2b
.

In the new coordinates the constraint reduces to v = 0. Let us try and express the old
Lagrangean in the new coordinates. The kinetic terms transform to

m(ẋ2 + ẏ2) = m(u̇2 + v̇2 + 2
u

b
u̇v̇ +

u2

b2
u̇2)

which reduces by the constraint v = 0 to

m(u̇2 +
u2

b2
u̇2) .

For the potential term we simply get mgy = mg u2

2b . Thus the new Lagrangean is

L(u) = L(u, v = 0) =
m

2
(1 +

u2

b2
)u̇2 −mg

u2

2b
.

As to be expected, we obtain the same result when we use the equation y = x2

2b to eliminate
y from the Lagrangean. Using the Euler–Lagrange equations the new equations of motion are
now

(1 +
u2

b2
)ü = − u̇2u

b2
− gu

b
.

Getting the expression for the normal force from this expression is not an easy issue! The in-
terpretation is somewhat blurred by the kinetic term, which now contains a position dependent

“mass matrix” m
2 (1 +

u2

b2 ).
One can try to manipulate the mass matrix to get a standard form and then read off the

normal forces. Let us consider the variable

z =
1

2
u

√

1 +
u2

b2
+

b

2
sinh−1

(u

b

)

.

We then find that
dz

du
=

√

1 +
u2

b2
.

Now the kinetic term becomes 1
2mż2, which should come as no surprise. z is just the arc length

of the parabola between x = 0 and x = u. ż is thus nothing more than
√

ẋ2 + ẏ2, the real
velocity of the mass. There is however little hope to express u in z to get a tractable expression
for the potential term.
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2.2 Lagrangean approach

There is a convenient way to incorporate constraints into a lagrangean scheme. For each
constraint Ca one introduces a Lagrange-multiplier λa. By varying the action, one also varies
the multipliers; this then reduces to the constraint. Let us see how this works in general, and
then we apply it to the example of the parabola.

The action with the constraints added is

S[q, λ] =

∫

(L(q, q̇)− λaCa(q))dt =

∫

L∗(q, q̇)dt , L∗ = L− λaCa ,

and thus variing the action we get the following equations of motion

d

dt

∂L∗

∂q̇i
=

∂L∗

∂qi
, − ∂L∗

∂λa
= Ca = 0 .

Working out, we get
d

dt

∂L

∂q̇i
− ∂L

∂qi
= −λa ∂Ca

∂qi

together with the constraints Ca = 0. The ordinary equations of motion, those without con-
straints, are thus no longer zero, but are a linear combination of gradients ∇Ca. The term
λa∇Ca can be interpreted as a force that arises due to the constraint. Indeed, by dimensional
analysis, L has units of energy and thus so does λaCa and hence λa∇Ca thus has units of force.
The normal forces thus arise almost immediately.

Let us check this with our example. We have just one constraint, y − x2

2b , which has units

of length. The parameter λ in λ(y − x2

2b ) which we add to the Lagrangean thus has units of
force. Our new Lagrangean is

L∗ =
m

2
(ẋ2 + ẏ2)−mgy − λ

(

y − x2

2b

)

.

The Euler–Langrange equations now become

mẍ = λ
x

b
, mÿ = −λ−mg y =

x2

2b
.

Whereas −mg represents the gravitational force, the normal force is found by looking at the
remaining terms of (mẍ,mÿ). We then find N = (λx

b ,−λ) = −λ
b (−x, b) . In order to find λ we

have to work with the constraint.
Differentiating the constraint, we have bÿ = ẋ2 + xẍ. Inserting the other Euler–Lagrange

equations we get

mbÿ = −λb−mbg = mẋ2 + λ
x2

b
.

Thus we find

λ = −mb2g +mbẋ2

b2 + x2

and thus for the normal force we find

N = −λ

b
(−x, b) =

mbg +mẋ2

b2 + x2
(−x, b) .
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2.3 Restricted variations

When one has a Lagrangean, one obtains the equations of motion by varying the action.
However, in a constrained situation, not all variations are allowed. Let us try to formalize this.

Suppose we have a Lagrangean L(q, q̇) and an action S[q] =
∫ t2
t1

L(q, q̇)dt. Applying a

variation δq to q and thus a variation d
dtδq = δq̇ to q̇ we obtain

δS =

∫ t2

t1

(∂L

∂q
− d

dt

∂L

∂q̇

)

δq +
[

δq
∂L

∂q̇

]t2

t1
.

The variations are chosen to be zero at the endpoints so the boundary term vanishes. We
stress, that δq vanishes at the endpoints, but that δq̇ is free; the variation keeps the endposition
fixed but the endvelocity may vary.

The general conclusion is that the term in the brackets inside the integral has to vanish,
and thus the equations of motion are obtained. This argument brakes down when constraints
need to be considered. So suppose we have a finite set of constraints Ca(q), where we again
assume that the constraints involve explicitly only the coordinates. Also, we assume that the
constraints are regular. They must define a smooth subvariety. Constraints of the form q21 = 0
are not allows and these can be reduced to q1 = 0. However, constraints of the form q1q2 = 0
define a singularity at the point q1 = q2 = 0. We thus exclude these kind of situations.

Let us try to sketch the bigger picture. In the unconstrained situation the coordinates q
parametrize a manifold M . For the sake of simplicity we may as well take M = R

n. The
constraints are to define a smooth submanifold N ⊂ M . At each point n ∈ N we can write
the tangent space at n as a direct sum TnM = TnN ⊕ TnN

⊥. Since the variations are to lie
inside TnN , their inner product with TnN

⊥ vanishes. Now we look again at the variation of
the action and recognize that the term inside the brackets must lie in TnN

⊥ at each point
n ∈ N .

∂L

∂q
− d

dt

∂L

∂q̇
∈ TnN , ∀n ∈ N .

Our next goal is thus to identify TN⊥, the collection of all TnN
⊥ for all n ∈ N . This

is rather easy, since the constraints Ca(q) = 0 define N , and hence the gradients ∇Ca =
(∂1Ca, . . . , ∂nCa) are perpendicular to N . Thus TN is spanned by the gradients ∇Ca. But
this implies nothing more than that there exist functions λa(q), for each constraint one, at each
point n ∈ N such that

∂L

∂qi
− d

dt

∂L

∂q̇i
=

∑

a

λa(q)∂iCa(q) .

We thus see that the restricted variations lead directly to the method of lagrange multipliers.

2.4 The Hamiltonian

From the unconstrained Lagrangean L = m
2 (ẋ

2 + ẏ2)−mgy we obtain the momenta

px =
∂L

∂ẋ
= mẋ , px =

∂L

∂ẏ
= mẏ .

Therefore we obtain the unconstrained Hamiltonian H = 1
2m (p2x + p2y)+mgy. To deal with

the constraint, we could eliminate y of course. Since this will lead to nothing new, we leave this
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exercise to the reader and go on to another method. A suggestion would be to add a term to
the Hamiltonian of the form λaCa, similar to Lagrange multipliers. But then what is the role
of the λa? Are they going to be dynamical variables? If so, then phase space might become
odd-dimensional, not allowing for a dymplectic form. In order to do so, we thus need a guiding
principle, a good motivation. To reach this goal we first go over some general aspects about
Lagrangeans and Hamiltonians.

A dynamical system is often formulated in terms of a Lagrangean L on the tangent bundle
P = TM of some appropriate configuration space M . Then one defines a map L : P → Q =
T ∗M to the phase space by putting locally

(qi, q̇i) 7→ (qi, pi) , pi =
∂L

∂q̇i
.

This map is not always an isomorphism. The image might be a lower-dimensional subset of Q.
Often this is a hint that there are some symmetries and not all variables are physical. In the
above (unconstrained) example however, the map is one-to-one and invertible. However, in the
example not the whole space P is allowed, hence also the image of L will be a proper subset of
Q. We are thus in the situation where we have subsets P ′ ⊂ P and Q′ ⊂ Q and a map L that
is to map P ′ to Q′. Since in the unconstrained case the map L is invertible, one can directly
translate the constraints Ca on P to constraints Da on Q. This then will define the subset Q′

and again, as above, we require that the functions Da define a regular submanifold.
Having defined the map L and two appropriate submanifolds, we obtain a restricted map

L′ : P ′ → Q′. We define the Hamiltonian in the usual way

H =
∑

i

q̇i
∂L

∂q̇i
− L(q, q̇) = qipi − L(q, q̇) .

As it stands, H seems to be a function of q and q̇. Indeed, given q and q̇ it is unambiguous
how to calculated H . We can by the third form H = q̇p− L also view H as a function of q, q̇
and p. Then under infinitesimal variations

δH = −∂L

∂q
δq +

(

p− ∂L

∂q̇

)

δq̇ + q̇δp .

Thus, if we consider a points (q, p) ∈ Q and go along its fibre L−1(q, p) the function H does
not change! We might thus view H as a function of p and q alone. In order to calculate H we
can take any point in the fibre L−1(q, p) since H is constant along this fibre.

To get the temporal dynamics we write the last equation as

(∂H

∂q
+ ṗ

)

δq +
(∂H

∂p
− q̇

)

δp = 0 .

But we should remember that not all variations are allowed! The variations are parallel to Q′

and thus the above equation means that the vector

(∂H

∂q
+ ṗ,

∂H

∂p
− q̇

)
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is normal to Q′ and thus a linear combination of the gradients (∂qDa, ∂pDa). We thus arrive
at the following equations fo motion

ṗi = −∂H

∂qi
+ µa ∂Da

∂qi
, q̇i =

∂H

∂pi
+ µa ∂Da

∂pi
.

The dynamics thus seems to be governed by the Hamiltonian H ′ = H+µaDa and the Poisson-
bracket {, } defined by

{A,B} =
∂A

∂qi
∂B

∂pi
− ∂A

∂pi

∂B

∂qi

which allows a recasting of the equation of motion into the form

ṗ = {p,H ′} , q̇ = {q,H ′} , Ȧ = {A,H ′} .

One might wonder how to treat the undetermined µa in these Poisson-brackets. First we
remark that if A is any function of p and q, then

{A, µaDa} = {A, µa}Da + µa{A,Da}

and the first term vanishes on Q′ thus not giving any problems. The second term precisely
appears in the equation for Ȧ. So terms of the form {A, µa} seem to be excluded.

In order to get consistent dynamics we need to ensure that the constraints are preserved in
time, we need to check that Ḋa = {H,Da} vanishes. This might lead to new constraints. The
whole programm of Dirac and Bargmann is developped to deal with these cases. To return to
simplicity, we focus on our example.

The following Poisson brackets are easily deduced using the definitions

{x, px} = {y, py} = 1 , {x, py} = {y, px} = {x, y} = {px, py} = 0 .

Also the following identites are easily obtained

{A,B} = −{B,A} , {A,BC} = {A,B}C +B{A,C} .

With a bit more labor one also obtains the Jacobi identity

{A, {B,C}}+ {B, {C,A}}+ {C, {A,B}} = 0 .

From these identities all other Poisson brackets can now be calculated. One finds for example

{x,H} =
px
m

, {y,H} =
py
m

, {px, H} = 0 , {py, H} = −mg .

These are the usual definitions; mẋ = px and mẏ = py.

First we consider the dynamics of the constraint D = y − x2

2b itself

Ḋ = {D,H ′} = {D,H} = {y,H} − 2
x

2b
{x,H} =

py
m

− xpx
bm

.

In order that the dynamics stays on the surface defined by the parabola, we need the following
(secondary) constraint

D′ = bpy − xpx = 0 .
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This equation is in fact nothing more than the requirement ẏ = xẋ
b , which we have already

encountered before. This constraint says that the velocity is parallel to the parabola.
Second, we check whether the new constraint gives rise to new constraints, since we need

Ḋ′ = 0. We find

{D′, H ′} = {bpy − xpx, H}+ µ{bpy − xpx, y −
x2

2b
} = −mgb− p2x

m
− µ(b+

x2

b
) .

This equation lets us solve for µ without giving rise to new constraints. This then stops the
Dirac–Bargmann algorithm, and we end up with the following value for µ

µ = −b
mgb+

p2

x

m

b2 + x2
.

This precisely corresponds to λ from section 2.2. The was to be expected sind the Lagrange
multipliers added to the Lagrangean arise through L′ = K −U −λaC

a, where K is the kinetic
energy and U the potential energy. The Hamiltonian obtained from L′ is then of the form
H ′ = 2K − L′ = K + U + λaC

a. We can thus identify µa with λa.
We thus find the following expression for the total Hamiltonian

H ′ = H + µD =
p2x + p2y
2m

+mgy − b
mgb+

p2

x

m

b2 + x2
(y − x2

2b
) .

This Hamiltonian is to be supplemented with the following constraints D = y − x2

2b = 0 and
D′ = bpy−xpx = 0. The dynamics thus takes place on a two-dimensional surface Σ in the four-
dimensional space R

4 with coordinates (x, y, px, py), where Σ is defined by D = 0 and D′ = 0.

The time-evolution of any function A = A(x, y, px, py) on Σ is determined by Ȧ = {A,H ′}.
One word about the interpretation of the additional term in the Hamiltonian µD. On Σ

the Poisson brackets {x, µD} and {y, µD} vanish and the nontrivial brackets are

{px, µD} = −x
mgb+

p2

x

m

b2 + x2
, {py, µD} = b

mgb+
p2

x

m

b2 + x2

where we restrict to Σ in order to only need to calculate µ{px, D} since D{px, µ} is zero by
D = 0 on Σ, for example. Since {p, H ′} = ṗ is a force, we see that the additional term in

the Hamiltonian gives rise to a force
mgb+

p
2
x

m

b2+x2 (−x, b). This precisely corresponds to the normal
force N. This then ends our discussion on the Hamiltonian.

3 Conclusion

From this simple example one can learn that constraining the dynamics on a submanifold
can be done by Lagrange multipliers, which have an interpretation as the forces that restrict
the objects on the submanifold. In the example the map from the tangent bundle to the
cotangent bundle is not singular and the constraints are essentially the same. Whereas in the
lagrangeanapproach further constraints are obtained by differentiating the constraint, in the
Hamiltonian approach this happens by virtue of the Poisson bracket.
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From a pedagogical point of view one might first give such an example before one teaches
the singular nature of the map L : TM → TM∗ when one treats electromagnetism. In this
example of the parabola the role of the constraint is clear and does not arise due to maps with
singular nature. The procedure for obtaining an appropriate Hamiltonian is the same however.
Therefore the conceptual difficulties disappear in the background.

Appendix: Period of oscillations

From conservation of momentum we find

ẋ =
√

2gb2
√

y0 − y

x2 + b2
.

We substitute y = x2

2b and y0 =
x2

0

2b and find

ẋ =
√

gb

√

x2
0 − x2

x2 + b2
.

T = 4

∫ x0

−x0

dt = 4

∫ x0

0

dx

ẋ
=

4√
gb

∫ x0

0

√

x2 + b2

x2
0 − x2

dx

Writing x = x0 cos(θ) we obtain

T =
4√
gb

∫ π/2

0

√

x2
0 cos

2(θ) + b2 dθ = 4

√

x2
0 + b2

gb

∫ π/2

0

√

1− k2 sin2(θ) dθ

where k2 =
x2

0

x2

0
+b2

. The integral on the right-hand side is an elliptic integral of the second kind:

E(k) =

∫ π/2

0

√

1− k2 sin2(θ) dθ , E(φ|k) =
∫ φ

0

√

1− k2 sin2(θ) dθ

so that E(k) = E(π2 |k). Elliptic integrals of the second kind E(k) cannot be expressed in terms
of other elementary functions unless k takes trivial values, e.g. k = 0 or k = 1. With these
definitions we obtain

T = 4

√

x2
0 + b2

gb
E
(

√

x2
0

x2
0 + b2

)

.

We can obtain a more intuitive form if we first define the characteristic time of the parabola

τ =
√

b
g . Then we find an angle 0 ≤ α ≤ π/2 such that sin(α) = x0√

x2

0
+b2

and cos(α) = b√
x2

0
+b2

and then

T = 4τ
E(sin(α))

cos(α)
.
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