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Many derivations of the formulae for the centrifugal and coriolis forces exist. In

this writeup I present my way of deriving the centrifugal and coriolis forces, and

of course, my way can be criticized in many ways. It might not be too intuitive,

but is straightforward. It does use some notions like group representations, which

might not be well-known to all first-semester students. In the appendix I present

some mathematical details that are left out in the main argument. The words in

italics are explained very shortly in the appendix - the reader not acquainted with

the mathematical machinery is urged to first skim the appendix.

The set-up. We consider to coordinate frames K and K ′. The coordinate frame

K is an inertial frame, whereas K ′ is a rotating frame. We choose the coordinate

centers to coincide, so that both frames are linked by a rotation matrix R(t) ∈ SO(3)

at all times t. The coordinates in K are denoted x, y, z and the position vector

is r = (x, y, z). The coordinates in K ′ are primed, x′, y′ and z′; the position

vector is denoted r′ = (x′, y′, z′). We assume we have some small mass moving

around; in K its position at time t is denoted r(t), in K ′ its position is denoted

r′(t). These position vectors are related by a time-dependent SO(3)-transformation

r′(t) = R(t)r(t). We use a dot above a symbol for time derivatives.

If we differentiate the expression r′(t) = R(t)r(t) twice we get the relations:

ṙ′(t) = Ṙ(t)r(t) +R(t)ṙ(t) = Ṙ(t)R−1(t)r′(t) +R(t)ṙ(t) , (1)

and

r̈′(t) = R̈(t)r(t) + 2Ṙ(t)ṙ(t) +R(t)r̈(t) . (2)

In fact, all information is already in these expressions. The rest of this writeup

consists in making sense of these expressions.

Translating to angular velocity. In general, if we have a rotation around an

axis, we have a angular velocity vector ω such that for any fixed point in K ′ we

have ṙ(t) = ω× r(t). Differentiating the relation defining ω another time, assuming

it does not depend on time, we have

r̈ = ω × (ω × r) = (ω · r)ω − ω2r = −ω2r⊥ . (3)
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The term r⊥ = r− ω·r
ω2 ω is nothing more than the component of r perpendicular to

ω. Eqn.(3) gives the centripetal acceleration, which is directed inwards; the point

P needs to be accelerated to the rotation axis in order to rotate at all.

The vector ω is the angular velocity as indicated above; its direction indicates the

axis of rotation and the magnitude gives the speed of rotation – the direction of

rotation is dictated by the right-hand rule. This can be seen from the relation

ṙ(t) = ω× r(t). The vector ω is the angular velocity as measured in K. The vector

ω′ = Rω is the angular velocity in K ′. Since R is an orthogonal matrix, ω and ω′

have the same magnitude. The speed of rotation is the same in K and K ′.

Consider a point P which is comoving in frame K ′, that is, the point P has fixed

coordinates in K ′. Thus if r′ denotes its position in K ′, it does not depend on time.

We thus have for this point

0 = Ṙ(t)r(t) +R(t)ṙ(t)

which leads to

ṙ(t) = −R−1(t)Ṙ(t)r(t) . (4)

We therefore define ω by the relation −R−1(t)Ṙ(t)v = ω × v for any vector v.

The matrix T = −R−1Ṙ is an antisymmetric matrix, so that T is an element of

the Lie algebra so(3), and the group SO(3) acts on T by conjugation. Besides T

we introduce the second so(3)-element S = −ṘR−1. We have S = RTR−1. The

following relations are easily satisfied

Ṡ = S2
− R̈R−1 , Ṫ = T 2

−R−1R̈ . (5)

We also find, using the definitions of S and T , that Ṡ = RṪR−1, thus Ṡ = 0 if and

only if Ṫ = 0.

The relation −R−1(t)Ṙ(t)v = ω × v implies Tij = −ǫijkωk. For the indices on ma-

trices we use the Einstein convention. In fact, switching from T to ω is a realization

of a map from the adjoint representation of SO(3) to the vector representation of

SO(3), as is indicated in the appendix. Since the map T 7→ ω commutes with the

group action, as is proven in the appendix, and since S = RTR−1, we know we can

write Sij = −
1

2
ǫijkω

′
k, where ω′ = Rω. From the definitions of S and T we have

Tv = ω × v and Sv = ω′
× v. Since Ṡ = 0 if and only if Ṫ = 0, the notion of

2



an accelerated rotation is frame-independent. We also find that Ṫ v = ω̇ × v and

similar for S and ω′.

Interpreting the terms in eqn.(2). Now we consider the right-hand side of

equation (2) and express the right-hand side in terms of r′ and ṙ′ and r̈. We obtain

r̈′ = (R̈R−1)r′ + 2ṘR−1ṙ′ − 2ṘR−1ṘR−1r′ +Rr̈ (6)

We can express R̈R−1 and ṘR−1 in terms of S and Ṡ giving rise to

r̈′ = Rr̈ − Ṡr′ − 2Sṙ′ − S2r = Rr̈ − ω̇′ × r′ − 2ω′
× ṙ′ − ω′

× (ω′
× r′) . (7)

The first term Rr̈ has the interpretation of the non-inertial forces (modulo mass);

as r̈ is the acceleration in an inertial frame, we can write it as F
m
, where F is the

force. Multiplying with R does no more than transforming the vector quantity F
m

to the frame K ′. This term thus denotes the real forces.

The second term −ω̇′ × r′ denotes the acceleration of the frame K ′. If an object

is at a fixed position r′ and the rotation is accelerated, then the object has the

acceleration ω̇′
× r′. In the system K ′ this is noted as a tendency to accelerate in

the opposite direction as the acceleration of the frame, hence the minus sign.

The third term −2ω′
× ṙ′ is the Coriolis force. It can be seen to play a role when

people throw a ball at each other on a rotating merry-go-round. It is also the force

that lets the wind rotate around low-pressure areas and high-pressure areas.

The fourth term −ω′
× (ω′

× r′) can be simplified to ω′2r− (ω′
· r)ω′ = ω2r⊥. Thus

the fourth term is the centrifugal force; it points outwards and its magnitude is

ω′2 = ω2 times the orthogonal distance to the axis of rotation.

Appendix: Some mathematical details

(1). The Einstein convention is a convention often used in physics when group

theoretic arguments are used. The convention is as follows: On does in general not

write summation symbols, since only contracted indices are group invariants, which

implies that only indices that are repeated are summed over. Thus xiyi is
∑

i xiyi

and in an expression like xijkyklm only the index k is summed over; the others are

free and hence not summed over. Although it might take some time to get used

to this convention, often it comes handy. The first index on a matrix indicates the
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row, the second the column. Multiplying matrices A and B results in a matrix with

ij-entry AikBkj .

(2). Let U : t 7→ U(t) be a matrix-valued function, i.e., a matrix whose entries

depend on the parameter t. We assume that for all values of t the inverse of U(t)

exists. We wish to have an expression for the derivative of U−1(t) = U(t)−1. From

U(t)U−1(t) = 1 we get U̇(t)U−1(t) + U(t) d

dt
U−1(t) = 0. Thus

d

dt
U−1(t) = −U−1(t)U̇(t)U−1(t) . (8)

(3). The group SO(3) can be described as those 3×3-matrices G with determinant

1 satisfying G−1 = GT , i.e., GGT = 1. We call the elements of SO(3) rotation

matrices. Any matrix satisfying GGT = 1 is called orthogonal; any matrix with unit

determinant is called special – the abbreviation SO stands for special orthogonal. If

a matrix is orthogonal its determinant can only equal ±1. Since the determinant is a

continuous function of the entries of the matrix, the group SO(3) can be considered

as an algebraic set in some abstract higher-dimensional space consisting of two

disconnected pieces. SO(3) is a group because the identity matrix is orthogonal and

has determinant 1, the product is associative and the product of orthogonal matrices

is again orthogonal and furthermore, the determinant of a product is the product of

the determinants. The group SO(3) has a natural action on R
3 whereby the SO(3)-

element G maps any vector v to Gv. Such an action is called a representation of

SO(3). This particular representation is called the vector representation.

For some conventions it is useful to use the indices explicitly. We can write the

identity GGT = 1 = GTG as GiaGja = δij = GaiGaj . For orthogonal matrices G we

thus have (G−1)ij = Gji.

(4). Assume we have a trajectory G : t 7→ G(t) from some real interval to SO(3).

We thus have G(t)G(t)T = 1G(t)TG(t). Differentiating this relation, and leaving

the argument t away, we get

(GĠT )T = ĠGT = −GĠT , (GT Ġ)T = ĠTG = −GT Ġ . (9)

Thus the matrices G−1Ġ = GT Ġ and ĠG−1 = ĠGT are antisymmetric matrices.

For more general matrix groups, in this way one obtains the tangent space at the

identity element, i.e., the Lie algebra. Indeed, Ġ is a tangent vector at G(t), and
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by multiplying with G−1 on maps it to the identity. For the group SO(3) we see

that the tangent space at the identity consists of antisymmetric matrices.

The Lie algebra so(3) can be described as those 3 × 3-matrices M satisfying M +

MT = 0, i.e. they are antisymmetric. The commutator [M,N ] = MN − NM

of two antisymmetric is again antisymmetric and the commutator is precisely the

Lie product. Any Lie algebra is a vector space. The group SO(3) acts on the Lie

algebra by conjugation as follows: If G ∈ SO(3) and M ∈ so(3), then GMG−1 is

again an element of so(3). Such an action also defines a representation of SO(3),

called the adjoint representation.

(5). There are only three linearly independent antisymmetric 3× 3-matrices. One

can for example take as a basis

X1 =









0 0 0

0 0 1

0 −1 0









X2 =









0 0 −1

0 0 0

1 0 0









X3 =









0 1 0

−1 0 0

0 0 0









. (10)

The matrices can easily described by the completely antisymmetric symbol on three

indices ǫijk, which only takes the values ±1 and 0 and is defined as follows: If ijk is

a cyclic permutation of 123, then ǫijk = 1, if ijk is a cyclic permutation of 213 then

ǫijk = −1 and for any other values of ijk it is zero. With this definition we have

(Xi)jk = ǫijk .

(6). Any element M ∈ so(3) can be written as M = mkXk, thus Mij = ǫijkmk.

This equation can be solved for the ,k as follows: mk = 1

2
ǫijkMij . We have the

identity ǫijkǫijl = 2δkl. The symbol δkl is like the identity matrix, only if k = l it

takes the value 1, elsewise it is 0.

(7). The determinant of a 3×3-matrixM can be calculated by detM = ǫijkM1iM2jM3j =

ǫijkMi1Mj2Mj3. By permuting the indices 1, 2 and 3 one obtains the useful for-

mula ǫijkMaiMbjMcj = ǫabcdetM . If G is an element of SO(3) we thus have

ǫijkGaiGbjGcj = ǫabc.

(8). Now we can prove the following fact: Mapping an antisymmetric matrix M

to a vector m with components mi = 1

2
ǫijkMjk defines a map from the adjoint

representation of SO(3) to the vector representation that commutes with the group

action.
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To prove this statement we assume G ∈ SO(3), and let it act on both theM ∈ so(3)

and on m ∈ R
3, where m is defined by mi =

1

2
ǫijkMjk. On M , G acts by GMG−1.

On m the element G acts by Gm. We have to check that GMG−1 is mapped to Gm.

This is not too hard: We write m′ for the vector with indices m′
i =

1

2
ǫijk(GMG−1)jk

and then calculate, inserting the identity matrix

m′
i =

1

2
ǫijkGjaMabGkb =

1

2
ǫmjkGjaGkbδimMab , (11)

which can be simplified by δim = GmcGic and using the determinant identity

ǫijkGaiGbjGcj = ǫabc. We find

m′
i =

1

2
ǫmjkGjaGkbGmcGicMab =

1

2
ǫabcGicMab = Gicmc . (12)

This was to be proven.

(9). If n is some given vector and v is a second, then v|| =
v·n
n·n

n is the component

of v parallel to n. Hence v⊥ = v − v·n
n·n

n is the component of v perpendicular to n.

Indeed, v⊥ · n = 0.

(10). Let a, b and c be three vectors, then b× c has components (b× c)i = ǫijkbjck.

Thus the ith component of a× (b× c) equals

ǫijkaj(b× c)k = ǫijkǫkmnajbmcn = (δimδjn − δinδjm)ajbmcn = (a · c)b− (a · b)c . (13)

In this calculation we used ǫijkǫkmn = δimδjn − δinδjm, which can be seen to be true

as follows: ǫijk is only zero if all three i, j and k are different. Thus the summation

only includes one nonzero term. For this term, we need thus that either i = m and

j = n or the other way around i = n and j = m.
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