An application of the Segre embedding

Dennis Westra, Eleonore Faber

November 9, 2008

Abstract

We pose and answer a question concerning rational functions on a surface in \mathbb{P}^{3} once raised during an algebra class.

1 The question

Consider the surface X defined in \mathbb{P}^{3}, where we use coordinates $\left(z_{0}: z_{1}: z_{2}\right.$: z_{3}), defined as the zero locus of the following equation:

$$
\begin{equation*}
X: \quad z_{0} z_{3}-z_{1} z_{2}=0 \tag{1}
\end{equation*}
$$

Define the following open sets in \mathbb{P}^{3} :

$$
\begin{equation*}
U_{i}=\left\{\left(z_{0}: z_{1}: z_{2}: z_{3}\right) \in \mathbb{P}^{3} \mid z_{i} \neq 0\right\}, \quad i=0,1,2,3 \tag{2}
\end{equation*}
$$

We define the following open sets on X :

$$
\begin{equation*}
X_{i}=X \cap U_{i}, \quad i=0,1,2,3 \tag{3}
\end{equation*}
$$

We denote \mathcal{O}_{X} the structure sheaf on X, that is, $\mathcal{O}_{X}(V)$ is the algebra of regular functions on V, where V is an open set on X.

Consider the following regular functions:

$$
\begin{equation*}
f \in \mathcal{O}_{X}\left(X_{1}\right), \quad f=\frac{z_{0}}{z_{1}}, \quad \text { and } \quad g \in \mathcal{O}_{X}\left(X_{3}\right), \quad g=\frac{z_{2}}{z_{3}} . \tag{4}
\end{equation*}
$$

On the intersection $X_{1} \cap X_{3}$ they define the same element:

$$
\begin{equation*}
\left.f\right|_{X_{1} \cap X_{3}}=\left.g\right|_{X_{1} \cap X_{3}} \in \mathcal{O}_{X}\left(X_{1} \cap X_{3}\right) . \tag{5}
\end{equation*}
$$

Hence f and g define a single regular function F on $X_{1} \cup X_{3}$. The question is whether there exists a rational function of the z_{i} that equals f on X_{1} and g on X_{3}. In other words, can't we get a single expression for F ?

2 The answer

We define $V=X_{1} \cup X_{3}$ and we will look for a description of the regular functions on V.

Consider the Segre map $\varphi: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$ defined by

$$
\begin{equation*}
\varphi:\left(x_{0}: x_{1}\right) \times\left(y_{0}: y_{1}\right) \mapsto\left(x_{0} y_{0}: x_{1} y_{0}: x_{0} y_{1}: x_{1} y_{1}\right) \tag{6}
\end{equation*}
$$

Then clearly the image of φ is contained in X. But in fact, the image of φ is precisely X. We can set up a biregular equivalence between X and $\mathbb{P}^{1} \times \mathbb{P}^{1}$ by means of φ; the inverse of φ is on X_{0} given by:

$$
\left.\varphi^{-1}\right|_{X_{0}}:\left(z_{0}: z_{1}: z_{2}: z_{3}\right) \mapsto\left(z_{0}: z_{1}\right) \times\left(z_{0}: z_{2}\right)
$$

on X_{1} the inverse is given by

$$
\left.\varphi^{-1}\right|_{X_{1}}:\left(z_{0}: z_{1}: z_{2}: z_{3}\right) \mapsto\left(z_{0}: z_{1}\right) \times\left(z_{1}: z_{3}\right)
$$

on X_{2} the inverse is given by

$$
\left.\varphi^{-1}\right|_{X_{2}}:\left(z_{0}: z_{1}: z_{2}: z_{3}\right) \mapsto\left(z_{2}: z_{3}\right) \times\left(z_{0}: z_{2}\right)
$$

and on X_{3} the inverse is given by

$$
\left.\varphi^{-1}\right|_{X_{3}}:\left(z_{0}: z_{1}: z_{2}: z_{3}\right) \mapsto\left(z_{2}: z_{3}\right) \times\left(z_{1}: z_{3}\right)
$$

Clearly X is the union of all the X_{i} and the complement of $X_{1} \cup X_{3}$ consists of all the set where $z_{1}=z_{3}=0$, the inverse image of which is the set where $x_{1}=0$. Hence V is biregular to $\mathbb{C}^{1} \times \mathbb{P}^{1}$. A regular function on V thus pulls back to a regular function on $\mathbb{C}^{1} \times \mathbb{P}^{1}$. The set of regular functions on $\mathbb{C}^{1} \times \mathbb{P}^{1}$ are in the given setting the elements of $\mathbb{C}\left[\frac{x_{0}}{x_{1}}\right]$. Using the inverse maps of φ we see that any polynomial in $\frac{x_{0}}{x_{1}}$ pulls back to a polynomial function of $\frac{z_{0}}{z_{1}}$ on X_{1} and to a polynomial function of $\frac{z_{2}}{z_{3}}$ on X_{3}. Hence we cannot meet both requirements of having neither powers of z_{1} nor powers of z_{3} in the denominator either of the two subsets X_{1} or X_{3}. The answer to the question thus is: NO.

