Smith reduction and sublattices of finite rank with an application to toric varietes

DBW

November 21, 2010

Abstract

In this note I give a proof of the existence of a Smith normal form for matrices with integer entries. The existence of a good basis for a lattice with a finite index sublattice is a consequence of the Smith normal form. I conclude with an easy application to toric varieties.

Theorem 1. Let A be a matrix with integer entries. Then there exist integer-values invertible matrices C and B such that $A=C D B$, where D is a diagonal integervalued matrix.

Proof. We call an elementary operation on a matrix the addition of an integer multiple of one row (or column) to another row (or column). By means of a combination of elementary operations one can exchange two rows or columns, at the cost of a minus sign. An elementary operation on a matrix A corresponds to the multiplication from the left or the right of A with an elementary matrix, which is a matrix that has 1 along the diagonal and vanishing entries off the diagonal, except at one off-diagonal entry, where it is integer-valued. Thus elemetary matrices are invertible and have unit determinant; in particular, a product of a finite number of elementary matrices is an integer-valued invertible matrix.

Let now $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ be an integer-valued matrix. By exchanging rows and or columns, we may assume that $a_{11} \neq 0$. The greatest common divisor of the elements in the first row and the first column (i.e. all $a_{i j}$ with i or j equal to 1) is an integer combination of the latter; hence we may arrive at the situation (by using the Euclidean algorithm) where a_{11} divides all elements of the first column and of the first row, by only using elemtary operations on A. Since now a_{11} divides all elements in the first row and first collumn, we can sweep the first row and column clean, and arrive at the following form of the matrix A :

$$
A=L A^{\prime} M, \quad A^{\prime}=\left(\begin{array}{ll}
d & 0 \tag{1}\\
0 & \tilde{A}
\end{array}\right)
$$

But then the proof is finished by induction, as we can now focus on \tilde{A}.

Remark 1. The previous theorem states that for any integer-valued matrix, there exists a Smith normal form. This normal form is not unique however. The process described in the proof to obtain the Smith normal form is known as Smith reduction.

Remark 2. In the literature the above theorem is stated and proved in greater generality: For any integer-valued $n \times n$-matrix A there exist matrices $C, B \in \mathrm{SL}_{n}(\mathbb{Z})$ and integers d_{1}, \ldots, d_{r} such that d_{i} divides d_{j} for $i \leq j$ and $A=C D B$ with $D=$ $\operatorname{diag}\left(0, \ldots, 0, d_{1}, d_{2}, \ldots, d_{r}\right)$. The proof is similar; if at the step where one obtains the desired form (1) one $a_{i j}$ cannot be divided by a_{11}, one adds the ith column to the first and repeats the Euclidean algorithm to the first column, then after a finite number of steps a_{11} divides $a_{i j}$.

Corollary 1 (Existence of a good basis). Let Λ be a lattice inside \mathbb{Z}^{n}, such that the quotient Λ / \mathbb{Z}^{n} is a finite abelian group; thus Λ is a sublattice of finite index. Then there exists a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of \mathbb{Z}^{n} and nonzero integers k_{1}, \ldots, k_{n} such that the elements $k_{1} e_{1}, \ldots k_{n} e_{n}$ form a basis of Λ.

Proof. Take any basis $\left\{m_{1}, \ldots, m_{n}\right\}$ of Λ. Note, that any basis of Λ must have n elements, since there exist at most n linearly independent elements in \mathbb{Z}^{n} and since $\Lambda \otimes_{\mathbb{Z}} \mathbb{R}$ must be a real vector space of dimension n. Write A for the matrix whose columns are the basis vectors m_{1}, \ldots, m_{n}. Then we can write $A=B K C$ with B and C invertible integer-valued matrices and K is a diagonal integer-valued matrix $K=\operatorname{diag}\left(k_{1}, \ldots, k_{n}\right)$. The matrix $A C^{-1}$ is a matrix whose columns are a basis for Λ. The matrix B is a matrix whose columns are a basis of \mathbb{Z}^{n}. Let us write b_{1}, \ldots, b_{n} for the columns of B. Then the columns of $B K$ are the vectors $b_{1} k_{1}, \ldots, b_{n} k_{n}$. This proves the corollary.

Proposition 1. Any finitely generated abelian group is of the form $\mathbb{Z}^{m} \times \mathbb{Z}_{r_{1}} \times \cdots \times$ $\mathbb{Z}_{r_{k}}$.

Proof. If G is a finitely generated group, there is an epimorphism $\mathbb{Z}^{n} \rightarrow G$. The kernel of this morphism is a sublattice Λ in \mathbb{Z}^{n}. Hence $G \cong \mathbb{Z}^{n} / \Lambda$. Let e_{1}, \ldots, e_{n} be the standard basis vectors of \mathbb{Z}^{n} and let b_{1}, \ldots, b_{r} be any set of generators of Λ, where $r=\operatorname{dim}_{\mathbb{R}} \Lambda \otimes_{Z} \mathbb{R}$. Then we can adjoin $m=n-r$ elements of the e_{i} such that these together with the b_{j} form a basis for $\mathbb{Z}^{n} \otimes_{\mathbb{Z}} \mathbb{R}$. Thus we can decompose $\mathbb{Z}^{n}=\mathbb{Z}^{m} \times \mathbb{Z}^{k}$, with $k=n-m$ and where Λ lies in the second factor and is of finite index in \mathbb{Z}^{k}. We can find a basis f_{1}, \ldots, f_{k} of \mathbb{Z}^{k} and integers r_{1}, \ldots, r_{k} such that $r_{1} f_{1}, \ldots, r_{k} f_{k}$ form a basis of Λ. But then $\mathbb{Z}^{n} / \Lambda=\mathbb{Z}^{m} \times\left(\mathbb{Z}^{k} / \Lambda\right)$ and in the obtained basis it is obvious to see that $\mathbb{Z}^{k} / \Lambda=\mathbb{Z}_{r_{1}} \times \cdots \times \mathbb{Z}_{r_{k}}$.

We now discuss a simple application of the Smith normal form to toric varieties; we show the one-to-one correspondences between integral commutative semigroups and affine toric varieties. All our semigroups are commutative and we will work over an algebraically closed field k, with arbitrary characteristic though.

If S is a semigroup, we write $k[S]$ for the k-algebra generated by all elements x^{s} where s runs over all elements of S. We will restrict to finitely generated semigroups,
so that the k-algebras $k[S]$ will always be finitely generated, hence noetherian. Even more, we will assume our semigroups are integral, by which we mean that they can be embedded into \mathbb{Z}^{n}. Then automatically $k[S]$ will always be finitely generated and admits an embedding $k[S] \rightarrow k\left[Z^{n}\right]=k\left[X_{1}, X_{1}^{-1}, \ldots, X_{n}, X_{n}^{-1}\right]$. It follows that $k[S]$ is a domain, thus $X_{S}=\operatorname{Spec}(k[S])$ is an integral scheme over k.

Definition 1. For any integral semigroup S we define the universal enveloping group of S to be a group $G(S)$ with an injective morphism $i_{S}: S \rightarrow G(S)$ such that for any morphism of semigroups $f: S \rightarrow H$, where H is a group, there exists a unique morphism $j: G(S) \rightarrow H$ such that $f=j \circ i_{S}$.

Theorem 2. For any integral semigroup S the universal enveloping group exists and is unique up to isomorphism.

Proof. Uniqueness of $G(S)$ is obvious by the requirement of the uniqueness of the morphism $i_{S}: S \rightarrow G(S)$ announced in the definition, hence existence is all that is required to prove. We first fix some embedding $S \rightarrow \mathbb{Z}^{n}$ and consider then the subgroup $G(S)$ in \mathbb{Z}^{n} generated by all elements of S. That is, $G(S)$ consists of all elements $s-s^{\prime}$, where $s, s^{\prime} \in S$. If $f: S \rightarrow H$ is some morphism of semigroups with H a group, then $j\left(s-s^{\prime}\right)$ has to be $j(s)-j\left(s^{\prime}\right)$, which is unambiguously defined as the image of S necessarily lies in the centre of H. Thus uniqueness is proved.

Hence for any semigroup S we have a canonical morphism of affine k-schemes $\operatorname{Spec}(k[G(S)]) \rightarrow \operatorname{Spec}(k[S]$. The object $\operatorname{Spec}(k[G(S)])$ is a torus.

Lemma 1. Let S be an integral semigroup. The morphism of k-schemes $\operatorname{Spec}(k[G(S)]) \rightarrow$ $\operatorname{Spec}(k[S]$ is an open embedding.

Proof. We have to prove that the image of $\operatorname{Spec}(k[G(S)]) \rightarrow \operatorname{Spec}(k[S]$ is an open subset in $X_{S}=\operatorname{Spec}\left(k[S]\right.$. If S is generated by elements s_{1}, \ldots, s_{n}, then $G(S)$ is as a group generated by elements s_{1}, \ldots, s_{n} and $y=-\left(s_{1}+\ldots+s_{n}\right)$. Hence $k[G(S)]=$ $k[S]_{y}$, which is a localization at y, and hence $\operatorname{rmSpec}(k[G(S)])$ is a principal open subset of X_{S}.

Corollary 2. The dimension of $\operatorname{Spec}(k[S])$ is the rank of the group $G(S)$.
Definition 2. We define the category of affine toric varieties as the category with objects $\operatorname{Spec}(k[S])$, where S is an integral semigroup, and where the morphisms are the morphisms of k-schemes $\operatorname{Spec}\left(k\left[S^{\prime}\right]\right) \rightarrow \operatorname{Spec}(k[S])$ induced by a morphism of semigroups $S \rightarrow S^{\prime}$.

It is not hard to paraphrase the above definition in terms of objects $T \rightarrow X$, where X is the spectrum of a k-algebra $k[S]$ with S an integral semigroup and with T a torus and with morphisms $(T, X) \rightarrow\left(T^{\prime}, X^{\prime}\right)$ a commuting diagram

So we have seen that integral semigroups induce a couple (T, X) where X is an affine variety with an open embedding of the torus T in X, such that the action of T on itself extends to an action of T on X; we have a morphism of k-algebras $k[X] \rightarrow k[T] \otimes k[X]$ given by $x^{s} \mapsto x^{s} \otimes x^{s}$, for any $s \in S$. Now we proceed to prove that given an affine variety X with an open embedding of a torus T in X, such that the action of T on itself extends to an action of T on X, there is a semigroup such that $X=\operatorname{Spec}(k[S])$ and $T=\operatorname{Spec}(k[G(S)]$. This is where the usage of the Smith normal form will appear.

Theorem 3. Let X be an affine variety over k and $T \rightarrow X$ an open embedding of a torus T in X, such that the action of T on itself can be extended to an action of T on X. Then there is an integral semigroup S such that $T \cong \operatorname{Spec}(k[G(S)])$ and $X=\operatorname{Spec}(k[S])$, and the open embedding $T \rightarrow X$ is induced by the morphism of algebras $k[S] \rightarrow k[G(S)]$.

Proof. We can always write $T=\operatorname{Spec}\left(k\left[\mathbb{Z}^{n}\right]\right)$ for some n. Since X is affine it is the spectrum of some k-algebra A. Since the action of the torus extends, we have a commutative diagram

where the vertical maps are embeddings. Hence $A \subset k\left[\mathbb{Z}^{n}\right]$ and if $\sum a_{\alpha} x^{\alpha}$ is in A, the morphism $A \rightarrow A \otimes k\left[\mathbb{Z}^{n}\right]$ is given by $\sum a_{\alpha} x^{\alpha} \mapsto \sum a_{\alpha} x^{\alpha} \otimes x^{\alpha}$. But then it follows that $A=\bigoplus k x^{\alpha}$, where the sum runs over all α, such that x^{α} is in A. Since A is a ring, it follows that A is of the form $k[S]$ with S some sub-semigroup of \mathbb{Z}^{n}.

The proof is thus finished if we can show that $G(S)=\mathbb{Z}^{n}$. As the dimensions of T and X must match, we see that S must generate a rank n sublattice Λ. If this is a proper lattice, then by the existence of a good basis we can find a basis e_{1}, \ldots, e_{n} of \mathbb{Z}^{n} such $k_{1} e_{1}, \ldots, k_{n} e_{n}$ is a basis of Λ, where $k_{i} \geq 1$ are not all equal to one. On the level of coordinates inside some affine space, the morphism $k[S] \rightarrow k\left[\mathbb{Z}^{n}\right]$ then corresponds to $x_{i} \mapsto x_{i}^{k_{1}}$, which is not an embedding unless all k_{i} are equal to one. Hence $\mathbb{Z}^{n}=\Lambda$ and $G(S)=\mathbb{Z}^{n}$.

