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Abstract

In this note I give a proof of the existence of a Smith normal form for matrices with

integer entries. The existence of a good basis for a lattice with a finite index sublattice

is a consequence of the Smith normal form. I conclude with an easy application to

toric varieties.

Theorem 1. Let A be a matrix with integer entries. Then there exist integer-values

invertible matrices C and B such that A = CDB, where D is a diagonal integer-

valued matrix.

Proof. We call an elementary operation on a matrix the addition of an integer multi-

ple of one row (or column) to another row (or column). By means of a combination of

elementary operations one can exchange two rows or columns, at the cost of a minus

sign. An elementary operation on a matrix A corresponds to the multiplication from

the left or the right of A with an elementary matrix, which is a matrix that has 1

along the diagonal and vanishing entries off the diagonal, except at one off-diagonal

entry, where it is integer-valued. Thus elemetary matrices are invertible and have

unit determinant; in particular, a product of a finite number of elementary matrices

is an integer-valued invertible matrix.

Let now A = (aij)1≤i,j≤n be an integer-valued matrix. By exchanging rows and

or columns, we may assume that a11 6= 0. The greatest common divisor of the

elements in the first row and the first column (i.e. all aij with i or j equal to 1) is an

integer combination of the latter; hence we may arrive at the situation (by using the

Euclidean algorithm) where a11 divides all elements of the first column and of the

first row, by only using elemtary operations on A. Since now a11 divides all elements

in the first row and first collumn, we can sweep the first row and column clean, and

arrive at the following form of the matrix A:

A = LA′M , A′ =

(

d 0

0 Ã

)

. (1)

But then the proof is finished by induction, as we can now focus on Ã.
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Remark 1. The previous theorem states that for any integer-valued matrix, there

exists a Smith normal form. This normal form is not unique however. The process

described in the proof to obtain the Smith normal form is known as Smith reduction.

Remark 2. In the literature the above theorem is stated and proved in greater gen-

erality: For any integer-valued n × n-matrix A there exist matrices C, B ∈ SLn(Z)

and integers d1, . . . , dr such that di divides dj for i ≤ j and A = CDB with D =

diag(0, . . . , 0, d1, d2, . . . , dr). The proof is similar; if at the step where one obtains the

desired form (1) one aij cannot be divided by a11, one adds the ith column to the first

and repeats the Euclidean algorithm to the first column, then after a finite number of

steps a11 divides aij.

Corollary 1 (Existence of a good basis). Let Λ be a lattice inside Z
n, such that the

quotient Λ/Z
n is a finite abelian group; thus Λ is a sublattice of finite index. Then

there exists a basis {e1, . . . , en} of Z
n and nonzero integers k1, . . . , kn such that the

elements k1e1, . . . knen form a basis of Λ.

Proof. Take any basis {m1, . . . , mn} of Λ. Note, that any basis of Λ must have n

elements, since there exist at most n linearly independent elements in Z
n and since

Λ ⊗Z R must be a real vector space of dimension n. Write A for the matrix whose

columns are the basis vectors m1, . . . , mn. Then we can write A = BKC with B

and C invertible integer-valued matrices and K is a diagonal integer-valued matrix

K = diag(k1, . . . , kn). The matrix AC−1 is a matrix whose columns are a basis for

Λ. The matrix B is a matrix whose columns are a basis of Z
n. Let us write b1, . . . ,

bn for the columns of B. Then the columns of BK are the vectors b1k1, . . . , bnkn.

This proves the corollary.

Proposition 1. Any finitely generated abelian group is of the form Z
m ×Zr1

× · · ·×

Zrk
.

Proof. If G is a finitely generated group, there is an epimorphism Z
n → G. The

kernel of this morphism is a sublattice Λ in Z
n. Hence G ∼= Z

n/Λ. Let e1, . . . , en

be the standard basis vectors of Z
n and let b1, . . . , br be any set of generators of Λ,

where r = dimRΛ ⊗Z R. Then we can adjoin m = n − r elements of the ei such

that these together with the bj form a basis for Z
n ⊗Z R. Thus we can decompose

Z
n = Z

m × Z
k, with k = n −m and where Λ lies in the second factor and is of finite

index in Z
k. We can find a basis f1, . . . , fk of Z

k and integers r1, . . . , rk such that

r1f1, . . . , rkfk form a basis of Λ. But then Z
n/Λ = Z

m × (Zk/Λ) and in the obtained

basis it is obvious to see that Z
k/Λ = Zr1

× · · · × Zrk
.

We now discuss a simple application of the Smith normal form to toric varieties;

we show the one-to-one correspondences between integral commutative semigroups

and affine toric varieties. All our semigroups are commutative and we will work over

an algebraically closed field k, with arbitrary characteristic though.

If S is a semigroup, we write k[S] for the k-algebra generated by all elements xs

where s runs over all elements of S. We will restrict to finitely generated semigroups,
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so that the k-algebras k[S] will always be finitely generated, hence noetherian. Even

more, we will assume our semigroups are integral, by which we mean that they can

be embedded into Z
n. Then automatically k[S] will always be finitely generated and

admits an embedding k[S] → k[Zn] = k[X1, X
−1

1
, . . . , Xn, X−1

n ]. It follows that k[S]

is a domain, thus XS = Spec(k[S]) is an integral scheme over k.

Definition 1. For any integral semigroup S we define the universal enveloping group

of S to be a group G(S) with an injective morphism iS : S → G(S) such that for any

morphism of semigroups f : S → H, where H is a group, there exists a unique

morphism j : G(S) → H such that f = j ◦ iS.

Theorem 2. For any integral semigroup S the universal enveloping group exists and

is unique up to isomorphism.

Proof. Uniqueness of G(S) is obvious by the requirement of the uniqueness of the

morphism iS : S → G(S) announced in the definition, hence existence is all that

is required to prove. We first fix some embedding S → Z
n and consider then the

subgroup G(S) in Z
n generated by all elements of S. That is, G(S) consists of all

elements s − s′, where s, s′ ∈ S. If f : S → H is some morphism of semigroups with

H a group, then j(s − s′) has to be j(s) − j(s′), which is unambiguously defined as

the image of S necessarily lies in the centre of H . Thus uniqueness is proved.

Hence for any semigroup S we have a canonical morphism of affine k-schemes

Spec(k[G(S)]) → Spec(k[S]. The object Spec(k[G(S)]) is a torus.

Lemma 1. Let S be an integral semigroup. The morphism of k-schemes Spec(k[G(S)]) →

Spec(k[S] is an open embedding.

Proof. We have to prove that the image of Spec(k[G(S)]) → Spec(k[S] is an open

subset in XS = Spec(k[S]. If S is generated by elements s1, . . . , sn, then G(S) is as

a group generated by elements s1, . . . , sn and y = −(s1 + . . .+ sn). Hence k[G(S)] =

k[S]y , which is a localization at y, and hence rmSpec(k[G(S)]) is a principal open

subset of XS .

Corollary 2. The dimension of Spec(k[S]) is the rank of the group G(S).

Definition 2. We define the category of affine toric varieties as the category with ob-

jects Spec(k[S]), where S is an integral semigroup, and where the morphisms are the

morphisms of k-schemes Spec(k[S′]) → Spec(k[S])induced by a morphism of semi-

groups S → S′.

It is not hard to paraphrase the above definition in terms of objects T → X,

where X is the spectrum of a k-algebra k[S] with S an integral semigroup and with

T a torus and with morphisms (T, X) → (T ′, X ′) a commuting diagram
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X X ′

T T ′

So we have seen that integral semigroups induce a couple (T, X) where X is an

affine variety with an open embedding of the torus T in X, such that the action

of T on itself extends to an action of T on X; we have a morphism of k-algebras

k[X] → k[T ] ⊗ k[X] given by xs 7→ xs ⊗ xs, for any s ∈ S. Now we proceed to prove

that given an affine variety X with an open embedding of a torus T in X, such that

the action of T on itself extends to an action of T on X, there is a semigroup such

that X = Spec(k[S]) and T = Spec(k[G(S)]. This is where the usage of the Smith

normal form will appear.

Theorem 3. Let X be an affine variety over k and T → X an open embedding of

a torus T in X, such that the action of T on itself can be extended to an action of

T on X. Then there is an integral semigroup S such that T ∼= Spec(k[G(S)]) and

X = Spec(k[S]), and the open embedding T → X is induced by the morphism of

algebras k[S] → k[G(S)].

Proof. We can always write T = Spec(k[Zn]) for some n. Since X is affine it is the

spectrum of some k-algebra A. Since the action of the torus extends, we have a

commutative diagram

A A ⊗k k[Zn]

k[Zn] k[Zn] ⊗k k[Zn]

where the vertical maps are embeddings. Hence A ⊂ k[Zn] and if
∑

aαxα is in

A, the morphism A → A ⊗ k[Zn] is given by
∑

aαxα 7→
∑

aαxα ⊗ xα. But then it

follows that A =
⊕

kxα, where the sum runs over all α, such that xα is in A. Since

A is a ring, it follows that A is of the form k[S] with S some sub-semigroup of Z
n.

The proof is thus finished if we can show that G(S) = Z
n. As the dimensions of

T and X must match, we see that S must generate a rank n sublattice Λ. If this is

a proper lattice, then by the existence of a good basis we can find a basis e1, . . . , en

of Z
n such k1e1, . . . , knen is a basis of Λ, where ki ≥ 1 are not all equal to one. On

the level of coordinates inside some affine space, the morphism k[S] → k[Zn] then

corresponds to xi 7→ xk1

i , which is not an embedding unless all ki are equal to one.

Hence Z
n = Λ and G(S) = Z

n.
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