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This is a small essay on special relativity, aimed at familiarizing an interested au-

dience at the level of first-year students of exact sciences with the main ideas from

special relativity. For a more trained audience this essay hopes to bring some ideas

under one title so that these notes can be used for own purposes or even to base a

lecture upon. The goal of writing this essay was to find a most lucid presentation of

some items concerning special relativity, such as time dilation, length contraction

and so on. The goal was not too present one single text about special relativity with

the most lucid presentation, but to present single items as clear possible, without

much ado. As a consequence, different approaches are tried in order to explain the

same aspects.

The main premises. The major breakthrough that initiated the theory of special

relativity comes from the measured invariance of the speed of light by Michelson

and Morley. This essay is neither an historical overview nor an essay on experi-

ment physics, so that we will not dwell on the exact peculiarities that accompanied

these experiments and this discovery. Another important ingredient, which in fact

seemed to have put Einstein on the right track, was the invariance of the Maxwell

under Lorentz transformations; the Maxwell equations are not compatible Galilean

coordinate transformations. However, again, we will not expand in this direction.

What we will use however is the following; we will assume invariance of the velocity

of light for any observer. Of course, when we speak of the velocity of light, we

mean the velocity of light in vacuum. Secondly, we will in fact assume that the

passage from one observer to another, moving with respect to each other at a

constant velocity, leaves the spatial directions perpendicular to the velocity inert.

This second assumption seems natural and one can wonder if it can be deduced

from other assumptions like rotation invariance; the author is however not aware of

any rigorous proof.

On some convections let us mention the following: An observer together with a set

of coordinates used by this observer, such that the spatial coordinates vanish at

the point where the observer sits, is called a frame. Two different frames are often
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indicated with capital roman letters. The relative velocity between two frames is

denoted v, whereas the speed of light is denoted c, unless we use units such that

c = 1. The Lorentz factor γ is defined by γ−1 =
√

1− v2

c2
.

Maximal velocity. If the velocity of light takes the same numerical value for

each observer, it is impossible to travel at the speed of light. If some observer B is

traveling with the speed of light with respect to some other observer J , then J can

send a light signal in the direction in which B is moving at the moment B passes

J . For B, the light signal is moving away from him and hence arriving earlier at

some distant point X . If we put some switch at point X , one could point a gun at

B and shoot B, so he will never reach X . For J the light signal and B arrive at

the same time at X ; the gun shoots in a void - eventually killing J , maybe. Thus

for the one observer B is alive, whereas for the other observer B is killed. Thus,

traveling at light speed seems to contradict the observed world.

But then, we must put the maximum attainable velocity at the speed of light. Let

some object travel at a speed exceeding that of light. If this object moves along a

line L, we can place an observer at a point P not contained in L.

A

B

C
L

P

We let the observer measure the velocity of the traveling object. If the points A, B

and C are chosen well enough, we will see that the traveling object must have some

velocity greater than the speed of light at A and C but some velocity smaller than

the speed of light at B. But by continuity we should be able to measure that the

object attains the speed of light at two points; one between A and B and another

between B and C. This seems to contradict the previous conclusion that the speed

of light cannot be attained.

The way out seems to be that the speed of light cannot be obtained in a uniform

way; in the above example the object does not have a constant velocity with respect

to P . However, the observer at P could perform a rotation such that the velocity

of the object in one coordinate direction of the observer is constant. Another point
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is that if no inertial frame can move with a velocity exceeding that of light it seems

impossible to write down laws of physics for the objects moving at these ultra-high

velocities. Also, it is impossible to break such an object down to zero velocity or to

accelerate an object to a velocity exceeding that of light. The only way out seems to

assume that these ultra-fast object cannot be seen or cannot interact with ordinary

observers. But if the latter is the case, we might as well assume they are not there.

Hence from now on, we assume that relative velocities are always smaller than the

speed of light.

Time dilation and length contraction. Imagine two observers A and B trav-

eling with relative velocity v. At the time of crossing, one of the observers, say A,

sends a light signal in a direction perpendicular to the relative motion. The figure

on the left shows the path of the light ray from A’s perspective and the figure on

the right shows the path of the light ray from the perspective of B.

AB AB

As we assumed that perpendicular directions are not altered under coordinate trans-

formations, we may conclude that if the light signal hits some object at a time t

measured in frame A, both observers will agree that the separation of this object

from the light source has the numerical value ct. However, in the second frame the

light signal has traveled a distance
√

(ct)2 + (vt′)2, which ought to be ct′. Hence

we find t′ = tγ > t, and thus time intervals transform linearly. But then space

intervals must also transform linearly. Indeed suppose that a bar of length l lies in

frame B. We suppose that the one end passes A at time t = 0 and that the other

end passes A at a time T . Hence the length in frame A is vT . But the event where

the second end passed A occurred in frame B at a time T ′ = Tγ, where T ′v = L.

Hence A measures a length vT ′/γ = L/γ < L.

A warning is at place; one cannot simply consider two events P and Q in different

frames and infer that the spatial interval gets dilated and that the temporal interval
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between P and Q gets contracted. More specifically, if P has coordinates (tP , xP )

in frame A and (t′P , x
′

P ) in frame B and if Q has coordinates (tQ, xQ) in frame

A and (t′Q, x
′

Q) in frame B, then one cannot conclude that the temporal intervals

|tP − tQ| and |t′P − t′Q| are related by a time dilation and that the spatial intervals

|xP − xQ| and |x′

P − x′

Q| are related by a length contractions. The question arises,

in which frame the length should be shortest and in which frame the time should

be longest. Time dilation takes place if two events take place at the same spatial

point in one frame and then the time interval measured in this frame is shortest.

Length contraction takes place if two events occur at the same time in one frame

and then the length in this frame is longest.

In the above examples, the light ray emanated by A stayed at coordinates x = 0

in frame A; the observer B measured the length of the bar by remaining at the

same place whereas observer A can measure the rod by measuring at the same time

(connecting the points by a ruler and looking at the indicated values.

How coordinates transform. First of all, linear space-time transformations ap-

pear to be so natural that they are usually more or less postulated. But as we

have seen, temporal and spatial intervals are changed in a linear fashion by going

from one observer to another observer. Now suppose that observers A and B syn-

chronized their clocks such that the two frames coincided at t = t′ = 0, where the

primed coordinates are used by B. In this case, the two frames are related by a

linear transformation.

This can be seen as follows: We may assume the velocity takes place in the x-

direction for A and the x′-direction forB, such thatB moves in the positive direction

for A - this assumption is justified by performing a rotation such that the spatial

axes are alined. The other spatial coordinates we can then leave out as they are

assumed to be inert. We also put c = 1.

Consider some event P having coordinates (t, x) in frame A and coordinates (t′, x′)

in frame B. Then P takes place a point a distance x from A; indeed, at time t A

can measure where P took place. Hence in the B-frame, in which A at time t′ is

at the point with x′-coordinate −vt′, this event took place at the point (t′, x′) such

that x′ + vt′ = γ−1x, as x′ + vt′ is the spatial distance between A and the event

measured in the B-frame, which becomes contracted. This length is contracted in

the B-frame, since we have two events: in frame A these events are (t, x) and (t, 0),

4



the latter being A measuring the distance to P .

However, as the case is symmetric, we can interchange v with −v, x with x′ and t

with t′ to obtain x−vt = γ−1x′. Thus x′ = γ(x−vt). Combining with γ(x′+vt′) = x

we obtain

x′ = γ(x− vt) , t′ = γ(t− vx) .

In particular, coordinates transform linearly.

Macdonald’s argument1. From the fact that a clock running in a moving frame

runs slower than the clocks of a frame it passes, we can deduce rather easily the

Lorentz transformations. Let us consider two frames A and B, where B moves with

a velocity in the positive x-direction with respect to B. Again, we only consider

one spatial and one temporal coordinate. We consider some event P marked by

coordinates (T,X) in frame A and designated with coordinates (T ′, X ′) in frame

B. We additionally consider two light waves both passing through P , but where

one, let’s call it L+, is moving in the positive x-, and hence also in the positive

x′-direction, and where the other, which we’ll call L− is moving in the negative x-

and x′-direction.

t

x

B

P

L−
L+

Since the speed of light is constant and P ∈ L+, in frame A all points along L+

satisfy the equation x − t = X − T , and similarly on L− we have x + t = X + T .

Similarly, x′ − t′ = X ′ − T ′ on L+ and x′ + t′ = X ′ + T ′ for B.

Along the worldline of B, we have x′ = 0, x = vt, t = γt′. The latter is, since

we can consider a fixed clock at the origin of B; due to time dilation, this clock

1This paragraph is based on Macdonald, A., Derivation of Lorentz transformation, Am. J.

Phys. 49, 493 (1981) and on Macdonald, arXiv 0606046.
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is running slower than the clocks in A that this clock in B is passing by. We can

conclude that on B’s worldline we have

x+ t = γ(1 + v)(x′ + t′) , x− t = γ(1− v)(x′ − t′) .

However, the light rays L± cross B’s worldline and go through P . Hence these

equations are also true in P . Therefore, we must have the following relation between

(T,X) and (T ′, X ′)

X + T = γ(1 + v)(X ′ + T ′) , X − T = γ(1− v)(X ′ − T ′) .

Solving for X and T we find the usual Lorentz transformations.

Time-dilation and Doppler. Suppose two observers A and B both equipped

with a clock travel at a constant speed relative to each other and for simplicity we

assume the motion takes place in one dimension. We assume that at the time where

the observers cross, both clocks are set to zero. The idea now is to introduce the

time dilation factor k as follows: If one of the observers, say A, sends a light signal

to B at a time t, then B will receive this signal when his time indicates that an

amount kt of time has passed, since time zero.

We can assume there is a linear relation between the two events. We have seen that

under Lorentz transformations coordinates transform linearly. Hence if t is enlarged

by a factor of two, B is a distance twice as large away and thus kt will also grow

by a factor of two.

Now suppose that at the moment where the second observer receives the light signal,

it immediately sends a light signal back - maybe using a mirror. As the situation is

symmetric, A will receive this signal at a time k(kt) = k2t. But now A can use this

information to know where and when B received its signal; indeed, the light signal

has traveled a distance twice the separation between the two observers at the time

the light signal was reflected by B. The elapsed time between sending and receiving

for A is k2t − t. The distance between the two observers is then 1

2
(k2 − 1)t. The

light signal was received by B at a time 1

2
(k2 − 1)t + t = 1

2
(k2 + 1)t - measured in

the frame of the first observer. But then we must have

v =
1

2
(k2 − 1)t

1

2
(k2 + 1)t

=
k2 − 1

k2 + 1

6



and solving for k we find

k =

√

1 + v

1− v
.

This gives an immediate derivation of the Doppler effect, since we can imagine that

some signal (crest of light wave) was sent at time t = 0 and later at a time t, 2t,

3t, ... The received signals arrive at times kt, 2kt, 3kt and so on. Hence the time

intervals between two signals is altered by a factor of k, so that the frequency gets

altered by a factor k−1.

The runner’s naive arguing. Suppose we have measured a track and concluded

it was a hundred meters. Now we let a runner run along the track and record an

official its time; 10 seconds. Its velocity was therefore 36 kilometers per hour. The

runner disagrees; there is a length contraction and a time dilation, and hence his

time is more that 10 seconds and the length of the track is less than hundred meters.

Therefore his velocity is less than 36 km/h.

The error of the runner lies in the fact that, although length contraction and time

dilation exist, the question remains, who sees the length contraction. The own time

of an object, running between points A and B, is always slower than the time an

observer measures as the objects runs from A to B. Hence the time of the official

measuring the time of the runner is the time which is dilated. Hence the time of

the runner is less than 10 seconds, and the velocity is agreed upon by both, official

and runner.

Doppler - using time dilation. A given source X sends out a signal at specific

intervals, with a frequency ν. An observer Y moves away from X with a velocity

v. We want to know the frequency ν ′ observed by the observer. All primed quan-

tities are the observed values for the observer Y that are the analogs of the same

observables for X .

We will focus on the time interval between two signals and use units where c = 1.

Let tE(1) and tE(2) be the times where signal 1 respectively signal 2 is emitted. Let

tA(1) and tA(2) be the times where signal 1 respectively signal 2 is absorbed by the

observer as measured in the frame of the source. We denote ∆Et = tE(2) − tE(2)

and ∆At = tA(2)− tA(1), which are the same for the source; ∆Et = ∆At.

In frame Y the second signal has to travel a distance v∆Et
′ more than the first signal;
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this enforces an additional time difference to the emission time difference ∆Et
′.

Hence tA(2)
′ = tA(1)

′+∆Et
′+v∆Et

′. Therefore we have ∆At
′ = (1+v)∆Et

′. But the

time differences ∆Et and ∆Et
′ are related by ∆Et

′ = γ∆Et, where γ−1 =
√
1− v2

since the process of emission takes place at rest in the frame of X and therefore is

dilated in the frame Y . Hence we obtain

∆At
′ =

√

1 + v

1− v
∆Et

and from these the frequency ν ′ as the reciprocal value of ∆At
′

ν ′ =

√

1− v

1 + v
ν .

Twin paradox - using Doppler effect. Suppose two persons A and B of the

same age - so let’s take them to be twins - take on the following experiment. Person

A stays at home for the next few years, whereas B undertakes a trip at constant

speed v to a distant place (let’s call it station ω) and then immediately returns to

home-sitting A. They agree upon the following; each day at 7:00 in the morning

A sends a text message with light speed containing the weather forecast to the

traveling twin B. Suppose that with traveling at speed v it takes a time interval of

t days to travel to station ω. Then on its way the traveling twin receives
√

1− v

1 + v
t

weather forecast messages from his twin A. On the way back B receives
√

1 + v

1− v
t .

Hence the total number of received messages is
√

1− v

1 + v
t+

√

1 + v

1− v
t =

2t√
1− v2

> 2t .

For the traveling twin 2t days have passed by, but for twin A the number of days

passed by is 2tγ. Thus sitting home makes you older.

Chasing twins. Suppose that the traveling brother B stays at station ω and the

other twin A comes over - with the same velocity and sending the same messages

each day and departing at the moment, which in his frame coincides with the arrival

of B at ω. During its travel to station ω the twin B receives again
√

1− v

1 + v
t ≡ κt
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messages.

Let us first focus on the total number of signals twin A is sending. Twin B needs

a time t in his own frame, hence the time it takes in the frame of A is γt. Hence

A has sent γt messages until B reaches station ω. We have agreed that a traveling

person needs t days to reach station ω. Hence A will send t messages on journey.

Therefore A sends in total (1+ γ)t messages. On logical grounds, this must also be

the number of messages B receives in total.

Let us now secondly focus on the number of messages B receives during the time

twin A takes to travel to him. In the frame of B already at station ω the traveling

time is dilated; in his frame the other twin A needs a time tγ. Hence B receives

during this time

tγ

√

1 + v

1− v
=

t

1− v2

messages of his brother in flight. The twin A sent γt messages during the flight of

B, from these only κt were received. Hence γt − κt are received at a frequency of

one day.

It is now tempting to add up the results so far obtained, but then one thinks that

B receives γt+ t
1−v2

> (1 + γ)t messages.

The error lies in the fact, that when A was flying over, B first received at a frequency

1 a day and only later at a frequency 1/κ a day. The signals received at a frequency

1 a day arrive at B during a time (γ − κ)t. The remaining time the signals are

received at a frequency 1/κ. Hence only

(γt− (γ − κ)t)κ−1 = t

are received at a frequency of κ−1 a day. This makes the addition work again.

Invariant line element - Minkowski metric. Let us consider the case where

a particle travels between two points A and B. Suppose that in a frame of some

observer O the distance between A and B is ∆x. Let τ be the time coordinate in

the frame of the traveling particle. If the particle measures a time ∆τ to travel from

A to B, then in the frame of O the time interval ∆, in which the particle moves

from A to B, is dilated and given by c∆τ = ∆t
√
c2 − v2, where v is the velocity of

the particle as measured in frame O. Squaring the latter relation and using that
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∆x = v∆t, we obtain

c2(∆τ)2 = c2(∆t)2 − (∆x)2 .

Any other observer O′ will have a similar relation as the one above;

c2(∆τ)2 = c2(∆t′)2 − (∆x′)2 ,

where the primes indicate the quantities related to observer O′. Hence we find that

for two events that can possibly be connected by a traveling particle, we have

c2(∆t)2 − (∆x)2 = c2(∆t′)2 − (∆x′)2 .

If two events can be connected by a traveling particle, the quantity s2 = c2(∆t)2 −
(∆x)2 is positive. Hence we conclude that if s2 > 0 in one frame O, then s′2 > 0

in all frames O′ and then they are equal. Our next goal is to prove that s2 = s′2

irrespective if it is negative or positive. As a first step, we can extend equality

between s2 and s′2 if one of them is nonnegative; the case s2 = 0 corresponds to a

light ray, which has a constant velocity in all frames.

Consider two general events A and B. In comparing the quantity s2AB = c2(tA −
tB)

2− (xA−xB)
2− (yA−yB)

2− (zA−zB)
2 in two frames O and O′ we may simplify

the matter a bit. First, we may assume that B is in fact at the origin for O and

for O′; this is just a shift and s2 is translation invariant. In other words, B is

coinciding with the event that the clocks in both frames have t = t′ = 0 at the

moment the two origins of the two frames pass each other. In this case we can

consider s2 as a quadratic function σ on the vector space R
4. We now set c = 1, so

that σ(t, x, y, z) = t2 − x2 − y2 − z2.

Let e1, e2, e3 and e4 be a basis of R4 as seen in frame O and we choose these

vectors such that σ(ei) ≥ 0 for all i. For example, we can take e1 = (1, 0, 0, 0),

e2 = (1, 1, 0, 0), e3 = (1, 0, 1, 0) and e4 = (1, 0, 0, 1). Suppose the map ϕ : R4 →
R

4 relates the coordinate frames O and O′. Then σ(t, x, y, z) = σ(ϕ(t, x, y, z))

whenever one of both sides is nonnegative. Any vector in R
4 can be written as

∑

i αiei for some real coefficients αi. The coefficients αi form a four-vector, thus

α = (α1, α2, α3, α4) ∈ R
4. Now we consider the quotient

F (α) =
σ(
∑

i αiei)

σ(
∑

i αiϕ(ei))
,
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which is a rational function on the four-dimensional real space in which α takes

its values. The set where σ(
∑

i αiei) ≥ 0 is a set of dimension 4 and on this set

F (α) = 1. Writing F = f/g for some polynomials f and g, we see that f and g are

equal as polynomials on a set that contains an open set in the Euclidean topology.

Hence f = g everywhere.

Concluding, whenever O and O′ are two frames and s2 = s′2 for all events for which

one side is nonnegative, then equality holds for all events. Thus two observers in

inertial frames are related by a linear transformation (linear as to have constant

velocity, for which we have seen that time dilations and length contractions are

linear) such that s2 takes equal values. All linear transformations that preserve

s2 are Lorentz transformations; they preserve the bilinear form determined by the

diagonal matrix with eigenvalues (−1,+1,+1,+1).

Invariance of light-cone. For this section we neglect two spatial dimension and

consider a two-dimensional spacetime. The reason is that two inertial frames differ

in the velocity with respect to each other and this relative velocity gives a preferred

spatial dimension; we expect that the coordinate transformation between two iner-

tial frames does not affect the dimensions perpendicular to the relative velocity.

The constancy of the velocity of light gives s2 = t2−x2 = 0 in each frame. If we try

to classify all coordinate transformations ϕ : (t, x) 7→ (t′, x′) such that t′2 − x′2 = 0,

we get too much coordinate transformations; the transformation t′ = x and x′ = t

is not a physical transformation, as it interchanges s2 > 0 with s2 < 0, so that

events that can be connected by a traveling particle are interchanged by events that

cannot be connected by a traveling particle. But also scaling transformations like

(t′, x′) = (λt, λx) for some λ 6= 0 are contained in the set of linear transformations

preserving the light-cone s2 = 0.

Factoring out the scaling transformations and requiring that we only consider in-

vertible transformations, we may suppose that det(ϕ) = 1. The reason why we

not chose to take the branch det(ϕ) = −1, is that these transformations cannot

be continuously connected to the identity - i.e., there is no way to smoothly de-

form a transformation ϕ with determinant minus one so as to become the identity

transformation, which has unit determinant. Hence, these negative determinant

transformations are not physical; diminishing the relative velocity should end with

the identity transformation.
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Let us write the general coordinate transformation as

ϕ :

(

t

x

)

7→
(

a b

c d

)(

t

x

)

,

and we require now that t′2−x′2 = 0, whenever x = ±t and in addition ad− bc = 1.

We then get three equations

a2 + b2 = c2 + d2 , ab = cd , ad− bc = 1 .

If a = 0, we get bc = −1 and thus we need d = 0, so we obtain the unphysical

transformation x′ = t and t′ = x, which we disregard and hence we may assume

a 6= 0. Solving b = cd
a
from the second equation and inserting this in the third, we

get d(a2−c2) = a, which we can solve for d. Using these relations, the first equation

becomes

a2 +
c2

(a2 − c2)2
= c2 +

a2

(a2 − c2)2
,

which can be simplified and we get a2 − c2 = 1 - we disregard solutions a = ±c,

since these enforce a = 0. We then find a = d and b = c. As a2 = 1 + c2 ≥ 1, we

have two options a ≥ 1 or a ≤ −1 and since we want the solution to be a continuous

deformation of the identity transformation, we consider only those solutions that

have a ≥ 1. This being such, we can now introduce a parameter β and write

a = cosh β and c = sinh β. Hence the admissible transformations are precisely the

transformation

ϕ :

(

t

x

)

7→
(

cosh β sinh β

sinh β cosh β

)(

t

x

)

.

We now consider the measurement of a given length L′ (of some rod, say, stretching

between x′ = −L′ and x′ = 0) residing in the moving frame, where coordinates are

indicated by a prime. We let the first end pass the origin of the fixed (unprimed)

frame and then wait, till the other end of the rod passes the origin and measure the

time interval. We get two events, given by

measuring one end : x′ = x = t = t′ = 0

and

measuring the other end : x = 0 , x′ = −L′ , t = L/v , t′ = L′/v .
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Hence we have L′/v = cosh βL/v and −L′ = sinh βL/v. Comparing with the known

formulas for length contraction we see that

cosh β =
1√

1− v2
, sinh β =

−v√
1− v2

.

Given v, these solutions can always be solved for β and conversely, given any β,

there exists a unique v, such that the above relations between v and β are fulfilled.

Hence we have found all coordinate transformation and shown that they have the

usual parametrizations

x′ =
x− vt√
1− v2

, t′ =
t− vx√
1− v2

.

Using dimensional analysis, one can recover the factors of x as

x′ =
x− vt
√

1− v2

c2

, t′ =
t− vx

c2
√

1− v2

c2

.

Searching observers. There exist two kinds of pairs events: spacelike separated

events and timelike separated events. Let us fix an observer S who uses coordinates

(t, x) and let us take event P to take place at t = 0 and x = 0 in some frame and let

Q be an event taking place at t = T and x = X , with T,X > 0. If X2 > c2T 2 then

light is not fast enough to connect P and Q. Hence nobody can travel at a velocity

such that both P and Q take place at the origin of the frame of the observer; no

observer can connect these events. In this case we call the separation of the events

spacelike.

If X2 < c2T 2 we call the separation of the events timelike and in this case it is

possible that an observer connects the two events; in the frame of the observer that

passes at t = 0 the point x = 0 and travels at a speed of v = X/T < c in the

direction of x = X , both P and Q take place at the origin.

Let us return to the spacelike case; we cannot find an observer, which sees that the

two events take place at the same place, but can we find an observer, who sees both

events taking place at the same time? Well, yes we can! Below we show how.

Let us imagine the following experiment. The event P coincides with the emision

of a ray of light in the direction of x = X . The event Q coincides with the emission

of a ray of light in the direction of x = 0. Also, we imagine an observer to travel
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along the line connecting x = 0 and x = X , such that at t = 0 the observer passes

x = 0.

We thus consider the following four events: (I) A ray of light is emitted at (t, x) =

(0, 0). (II) A ray of light is emitted at (x, t) = (X, T ). (III) At (t, x) = (X/c,X)

the ray of light from (I) arrives at the point x = X . (IV ) The light ray of (II) hits

the travelling observer.

The travelling observer sees the two events at the same time if and only if events

(III) and (IV ) coincide for S. Although at first this seems trivial, it is tricky, since

we require simultaneity in the frame of S! The real test comes from the Lorentz

transformations.

If the ray of light from (I) hits x = X it has travelled a distance v ·X/c more than

the ray of light from (II). The time it took to do so was T , and since as the speed

of light equals c, we get

c =
v ·X/c

T
=⇒ v =

c2T

x
.

Let us test this result with Lorentz transformations. As vX/c2 now equals T , we

see that indeed T ′ = γ(T − vX
c2
) = γ(T − T ) = 0. Of course, we could have also

gotten this result from the Lorentz transformations directly.

Another derivation of this velocity goes as follows. Clearly, the sought for velocity

depends on the fraction X/T . The obvious candidate v = X/T does not work,

as this exceeds c. The other combinations of c and X/T we can make that have

dimensions of velocity and not exceed c are of the form cn+1 Tn

Xn
for integers n > 0.

For simplicity reasons, the best guess is n = 1.

Twins in a periodic universe2 . We have seen that the twin paradox is resolved

by observing that one observer has to make the return and thus, this observer is

not always in an inertial frame. But what if topology is such that no observer needs

to make the turn to return to the twin observer? For simplicity we assume that

spacetime is two-dimensional and has the topology of a circle. We will consider

the circe as the real line with an equivalence relation ∼ which identifies points

periodically.

We would like to impose an equivalence condition like (t, x) ∼ (t, x + L), but this

2This section is based on The twin paradox in compact spaces, Phys. Rev. A 63, 044104 (2001).
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already makes clear what will enforce the asymmetry in this case; in order to get the

periodicity into the spacetime at hand, we use a frame to impose the equivalence

relations. It is clear that there is one unique frame for which the identification of

points has no time-components. In more dimensions there will be a larger class of

preferred frames, all related by simple rotations - without Lorentz boosts!

So let us fix a frame S in which the equivalence relations read (t, x) ∼ (t, x + L)

where L is a positive prescribed length. If S ′ is another frame, moving with positive

velocity v with respect to S, the Lorentz transformations are

x′ = γ(x− vt) , t′ = γ(t− vx) .

The equivalence relations then give (γt − γvx, γx − γvt) ∼ (γt− γvx− γvL, γx +

γL− γvt), and hence we have

in S ′ (t′, x′) ∼ (t′ − γvL, x′ + γL) .

The fact that in S ′ the equivalence relation has time components makes it impossible

that S ′ has synchronized clocks; it is impossible to place a clock at each point of

the compact space such that all clocks run with equal time. Supposed that in frame

S ′ one puts clocks at points in space (thus along the circle) starting at x′ = 0, then

walking in the positive direction put a second clock synchronized with the first clock

and so on. The observer in S ′ will notice that the last clock is out off pace with the

clock at x′ = 0 and has a mismatch of γvL.

The best he can do to remedy this is to use two overlapping patches to cover

spacetime and to glue the coordinates together on the cross-section. This is similar

to the construction of the Möbius strip. Indeed, consider the two patches U0 =

{x′ | − γL/2 < x′ < γL/2} and U1 = {x′ | 0 < x′ < γL}. Then, at the

overlap 0 < x′ < γL/2 we can use the identity function (t′, x′) 7→ (t′, x′) but on

γL/2 < x′ < γL we have to use the function (t′, x′) 7→ (t′ − γvL, x′) to glue the

patches together. On each patch we can have synchronized clocks.

This being discussed, let us now show how the twin paradox resolves in this case.

First, the observer in S will see the traveling person S ′ move with velocity v in the

positive direction and returning from the other side after a time L/v. However, as

both have been moving in inertial frames and S ′ moved with a velocity with respect

to S, the observer in S will see that the clock in S ′ has only shifted by an amount

of L/γv; a typical case of time dilation - moving clocks run slower.
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Secondly, the observer in S ′ sees a larger compact dimension; he will measure a

distance γL. This again is typical for Lorentz contraction; lengths contract in going

from the moving frame to the resting frame. Thus, S ′ sees S travel at a velocity

−v to the point −γL, indeed in the opposite direction from that in which S sees

that S ′ is traveling. But the point (t′,−γL) ∼ (t′ − γvL,−γL+ γL) = (t′ − γvL, 0)

and thus S ′ sees S reappear at the origin with an additional time shift of −γvL.

Therefore S ′ will agree that he meets S again at the time

t′ = γL/v − γvL =
γL

v
(1− v2) = vL/γ .

Thus S ′ will also agree that his clock shows a time vL/γ; both agree that S ′ is

younger.

From the above discussion we see that in all cases the twin that is the oldest at re-

meeting again is the one whose frame is characterized by the following: in his frame

the equivalence relation that renders the compactness has no time components and

in this frame the compact dimension has the smallest size.

The above discussion can be clarified using spacetime diagrams. In S ′ the iden-

tifications are done as is indicated by the arrows. The observer S moves from

(t′ = 0, x′ = 0) in the direction of −γL along the dotted line - the dotted line is the

worldline of S as seen in S ′. The fat vertical line is the worldline of the observer of

S ′. Every time the worldlines of S and S ′ cross they meet at the origin of S ′.

Epilogue. In all cases we see that naive thinking is the source of all paradoxes.
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Taking into account what is really simultaneous and which time intervals are really

dilated, or which spatial intervals are really contracted, one saves himself from

running into erroneous conclusions. However, the statement of Kant, that geometry

is a manifestation of the mind, must be taken as less absolute. Apparently we need

a different way of thinking in order to describe the world that is accessible through

experiment. Hence, spacetime is not only a product of the mind; or we can change

our minds and fit in new experiences.
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