SRT Addendum: Accelerations

In this very short note you will find the following derivation: If an object X experiences some force F^{\prime} and hence undergoes some acceleration a^{\prime}, then an observer O sees the following parallel and perpendicular accelerations $a_{\|}$and a_{\perp} given by:

$$
a_{\perp}^{\prime}=\gamma^{2} a_{\perp}, \quad a_{\|}^{\prime}=\gamma^{3} a_{\|},
$$

where $\gamma=\frac{1}{\sqrt{1-\beta^{2}}}$ is the usual Lorentz factor.
We take K^{\prime} to be an instantaneous rest frame for the object X, and the coordinates in K^{\prime} are primed. K^{\prime} is chosen to coincide at time $t^{\prime}=0$ with the object $X . K$ is the rest frame of an observer, which we also take to coincide with K^{\prime} at time $t=0$ - the coordinates in K are unprimed. In K the object has a velocity v in the x-direction at time $t=0$. We thus have the following transformation rules between K^{\prime} and K :

$$
x^{\prime}=\gamma(x-\beta t), \quad y^{\prime}=y, \quad z^{\prime}=z, \quad t^{\prime}=\gamma(t-\beta x) .
$$

We work in units such that $c=1$, and thus replace v by β. Later we can restore units by putting $\beta=v / c$ and $t \mapsto c t$. Let us first consider the case in which the acceleration a^{\prime} is in the x-direction. Then X follows a trajectory $x^{\prime}=\frac{1}{2} a^{\prime} t^{\prime 2}$ in K^{\prime}. Inserting the expressions for x^{\prime} and t^{\prime} one arrives at the following quadratic equation for x :

$$
a^{\prime} \gamma \beta^{2} \cdot x^{2}-2\left(1+a^{\prime} \gamma \beta\right) \cdot x+a^{\prime} \gamma t^{2}+2 \beta t=0 .
$$

Calculating the discriminant one finds $D=4\left(1+2 a^{\prime} \gamma \beta t\left(1-\beta^{2}\right)\right)=4\left(1+2 \frac{a^{\prime} t \beta}{\gamma}\right)$. Therefore we find

$$
x=\frac{1+a^{\prime} \gamma \beta t \pm \sqrt{1+\frac{2 a^{\prime} \beta t}{\gamma}}}{a^{\prime} \gamma \beta} .
$$

In order to recover $x=0$ at $t=0$, we need the minus sign in the solution for x, so we only have one solution. Writing out to second order in t we find

$$
x=\beta t+\frac{1}{2} \cdot \frac{a^{\prime}}{\gamma^{3}} \cdot t^{2}+O\left(t^{3}\right)
$$

in which we recognize the linear motion of $K^{\prime} x=\beta t$ and the second order contains the acceleration a in the frame $K: a=\frac{a^{\prime}}{\gamma^{3}}$. This proves the second of the identities to be proven.

Now consider the motion $y^{\prime}=\frac{1}{2} b^{\prime} t^{\prime 2}$. Putting in the expressions for y^{\prime} and t^{\prime} from the Lorentz transformations we find

$$
y=\frac{b^{\prime}}{2} \gamma^{2}(t-\beta x)^{2} .
$$

Now we put in the previous expression for x but, as we are only interested in second order contributions, we may safely put $x=\beta t+O\left(t^{2}\right)$, and thus find

$$
y=\frac{b^{\prime}}{2} \gamma^{2} t^{2}\left(1-\beta^{2}\right)^{2}+O\left(t^{3}\right)
$$

Since $1-\beta^{2}=\gamma^{-2}$ we find

$$
y=\frac{b^{\prime}}{2} \gamma^{-2} t^{2}+O\left(t^{3}\right)
$$

Reading of, we see $a_{\perp}=\frac{b^{\prime}}{\gamma^{2}}$, but $b^{\prime}=a_{\perp}^{\prime}$ and thus both equations follow.
The use of these formulae is for example in extending the Larmor formula for the power radiated by a nonrelativistic accelerating charged particle to a relativistic particle. Larmor's formula states that the radiated power P radiated by a charged accelerating particle is given by a formula of the form $P=k a^{3}$. Since this formula only holds for $\beta \ll 1$ it can be extended by using this formula to obtain the power P in the instantaneous rest frame K^{\prime} and using that $P^{\prime}=P$, since the energies $d W$ and $d W^{\prime}$ transform in the same way as the time intervalls $d t$ and $d t^{\prime}$. Then one uses $P=P^{\prime}=k a^{\prime 3}=k\left({a^{\prime}}_{\perp}^{2}+a_{\|}^{\prime 2}\right)=k \gamma^{4}\left(a_{\perp}^{2}+\gamma^{2} a_{\|}^{2}\right)$. Furthermore

$$
a_{\perp}^{2}+\gamma^{2} a_{\|}^{2}=\gamma^{2}\left(a_{\perp}^{2}+a_{\|}^{2}-\left(\gamma^{2}-1\right) a_{\perp}^{2}=\gamma^{2}\left(a^{2}-\beta^{2} a_{\perp}^{2}\right)\right.
$$

and $a_{\perp}^{2}=\frac{(\mathbf{a} \times \beta)^{2}}{\beta^{2}}$ resulting in

$$
P=k \gamma^{6}\left(a^{2}-(\mathbf{a} \times \beta)^{2}\right) .
$$

