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Abstract

In these notes we give some elementary definitions and properties in-
volving super Hopf algebras. For simplicity we only treat complex super
Hopf algebras, but the extension to super Hopf algebras over other fields
is straightforward. With linear we mean C-linear.

1 Definitions

With Exp(a) we mean (—1)®. The notion of a super algebra over C is
assumed to be understood. If A, B are super algebras then also A ® B
with product given by z ® y - z ® w = Exp(|y||z|)zz @ yw. If A,B,C, D
are superalgebras and f : A — C and ¢g : B — D are linear maps, then
f®g:A®B — C®D is given by f® g(x®y) = Exp(|z||g]) f(z) ® g(y).

1.1 Super co-algebras

A super co-algebra (SCA) is a super vector space C' over C together with
a coproduct A : C — C ® C and a co-unit € : C — C such that A and €
are both linear and even and satisfy:

id®eoA=e®ido A =id, (1)

where we identify C @ C =2 C @ C = C. In Sweedler notation the last
property means: f = f'e(f") = e(f')f", Vf € C - we will always omit the
summation signs in Sweedler notation -; for more on Sweedler notation
see e.g. [1],[2].

We will always assume that a coalgebra is co-associative, which means:
A®idoA=id® Ao A.

One defines a co-ideal as a super sub vector space I C C such that
A(I)CcI®C+C®I and e(I) =0.

1.2 Super bi-algebras

A super bi-algebra (SBA) is an associative super algebra B (over C) that
is at the same time a co-associative SCA, such that the comultiplication
and the co-unit are even super-algebra morphisms: A(zy) = A(z)A(y)
and e(zy) = e(x)e(y).

A bi-ideal in an SBA is a super sub vector space I that is an ideal of
the super algebra and a co-ideal of the SCA.



1.3 Super Hopf algebra

A super Hopf algebra (SHA) is an SBA H together with an even linear
map S : H — H, called the antipode, such that for all x € H we have
2'S(z") = S(z")z" = e(z).

A Hopf-ideal is a bi-ideal that is stable under the action of S.

2 Constructions

2.1 Cosets of SCA’s

If C is an SCA with an co-ideal I, then one defines 7 : C' — C/I as a
map of super vector spaces, which is well-defined since I is assumed to be
a graded ideal. Then one can give C/I the structure of a SCA when one
finds a way to define a comultiplication A : C/I — C/I®QC/I. Ifa € C/I
then there is an « € C such that w(x) = a, we then define

Ala) = 7% 0 A(z), (2)
where 7® is the canonical projection
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It is easy to check that this definition is independent of the choice of x.
One defines for the same pair x,a the map €: C/I — C by

é(a) = e(x), (4)

of which it is also easily verified that it is independent of the choice of x
(hint: ¢(I) =0).

2.2 Quotients of SHA’s

If H is super Hopf algebra and I a Hopf ideal, then AT CIQ H+ H® I,
e(I) =0and S(I) C (). The quotient H/I is again a super Hopf algebra
with the obvious maps (indicated with a bar): A([z]) = Azmod(I ®
H+H®I), &[z]) = e(x) and S([z]) = [S(z)], where we denoted the
equivalence classes of z by [z]. Later we will see that the antipode is
unique and hence S is the only choice to make H/I into a super Hopf
algebra.

2.3 Tensor products of SCA’s and SBA’s

The tensor product of two super algebras we already gave a super algebra
structure. Now we will do this for SCA’s.
Let C and D be two SCA’s (we will write A and e for the maps

in both C and D), then we introduce the even linear operator Tég) :
CRCR®D®D—-C®D®C®D by:

Tz @y®z0w— Exp(lyllz)r @20y @w. (5)
We then define the map A® :C® D - C® D®C® D by
A® =T o ARA. (6)

For z,y € C, D we thus have A®(z ®y) = Exp(|z” ||y’ )2’ @y @ 2" @y".



The map €® : C ® D — C we define by ¢®(z ® y) = e(x)e(y)

The above definitions of A® and €® we also want to extend to SBA’s,
but then we need to check that they are super-algebra morphisms. There-
fore we calculate A®(a ®b-c® d):

A®(a®@b-c®d) = A®(Exp(|b||c|)ac ® bd)
= Exp(|bl|e]) T4 0 A ® Aac ® bd)
= Exp(|ble) 753" Alac) © A(bd)
= Exp(|b]|c)) TS5 AaAc @ AbAd
= Exp(|bl|e]) 785 (0 @ " - ¢ @ ¢")®
Wb -dod)) (7)
= Ty Bxp(lbllc] + [a”|Ic'] +6"]|d'])
dd ®@d'd @bd @b'd"
=Ldd®ddobdob'd
where L = Exp(|b||c| + |a"||¢'| + |b”||d’|+
(la"[+ 1" DAY| +1d'])) -
On the other hand we have:
A®P(a@b)A®(c® d) = Exp(|a”||t)| + |¢"||d|)a’ @b @ a” @b
deded od
=Rdd@bd ®d @b'd’ (8)
where R = Exp(|a”||t'| + [¢"[|d"| + [¢'[]b"]| + |c'[|a”]
+ I+ (6" + 1d lla”] + [<"[[b"])
After comparing the terms in exponents one concludes R = L and hence

A® is a super algebra morphism. That €® is a super algebra morphism is
trivial.

2.4 The algebra of linear maps

Let By and Bz be two SBA’s. In both SBA’s we denote multiplication by
w; b a®b— ab. We consider the C-linear maps from B; to Bz and we
provide this super vector space with a product structure:

frg=pofogol, fxg(x)=Exp(glle')f(")g(z") )

We view the map € : By — C as a map to B2 by considering the image
within B2. We have

fre(@) = f@)e(a") = f(2'e(a")) = f(2), (10)

and similarly e * f = f, hence € is an identity element with respect to the
product x. We denote by A(B1, B2) the algebra of linear maps from B
to By with the product % and identity element e.

We claim that A(Bi1, B2) is an associative algebra. We will show this



in two ways. The first approach:

(fxg)xh=po(frg)®hoA
=po(pof®goA)®hoA
=pou®ido fRg®id o

A®idoid®ho A
=popu®ido fRg®Id o
id®hoA®ido A
=popu®ido fRg®hoid®@ Ao A
=poid@uofRg®hoid®@AocA
=poid®@uoid®g®h o
f®idoid® Ao A
=poid®@uoid®g®hoid® Ao f®ido A
=poid® (gxh)o f®ido A
=pof®(gxh)oA
=fx(gxh).

For the second approach we first note that:

(11)

If xg(@) = £ (") +lg(@)] = £+ gl + 2| + |2"| = | F] +1gl + x|, (12)

from which it follows that |f % g| = | f| + |g| and hence A(B1, B2) is even
a super algebra. For associativity we observe:

[ (g% h)(x) =Exp((lg| + [a])|2']) f (") (g * h) (")
= Exp((lg| + [A)="| + (") ||A])
F@)g(("))h((=")")
=f®g®h(' ®@") ® (x")")
=feg®h(() ® @) @)
= Exp(|(z")'|(lg| + IR]) + (z")"[|A]) (13)
J((@"))g((2")")h(z")
= Exp(|(=")'llg] + [(")'[(IR] + 1g]) + (=) "[|h])
(f * 9)(@")h(=")
= Exp(|2'[[A|(f * g)(z")h(z"))
= (fxg)*h(z).
We conclude that A(B1, B2) is an associative superalgebra with identity.
This implies that a left inverse of an element is at the same time a right
inverse (hence one can omit the prefix left/right) and that inverses are
unique.

From the above we conclude that an SBA H is an SHA if there is an
inverse to the element idgy : h — h;

Sxidg(z) = S(x)z" =e(x), idw*S(x)=2'S(z") =€(x), (14)

which is consistent with the requirement that the antipode S be even.

3 Properties

Lemma 3.1. The antipode is unique.



Proof. This follows from the uniqueness of inverses. O

Theorem 3.2. The antipode S of an SHA H satisfies: S(xy) = Exp(|z||ly])S(y)S(x),
Ve,y € H.

Proof. We consider the algebra A(H ® H,H) and claim that p : 2 ®
y +— S(zy) is a left inverse of 4 : z® y — xy and that v : z @y
Exp(|z||ly|)S(y)S(x) is a right inverse to u. The claim then follows from
the uniqueness of inverses and equality of left and right inverses.

We have

"1

pxp(z ®y) = Exp(|z”[ly')p(z" @ y')z"y
= Exp(|2”|ly'|)S(2"y")z"y"
= Exp(lfv”lly'l)s ® id(w y' @y
—S®1d(m Rz -y ey
(AzAy) (15)
=S ®id (A(zy))
id (zy)' @ (zy)"
= S((xy)')(fvy)"

and

prv(z@y)=pop@volA®(z®y)

= Exp(|z”|ly)nop v @y @z" @y")

= Exp(|z”[ly| + =" |ly" ="y’ @ S(y")S(z"))
= Exp(|2”[|y))z"y'S(y")S (=)
= Exp(|2”[|y)2"e(y) S (=)
=a'S(z")e(y)
= e(z)e(y)
= e(zy),

(16)

where we used that |e(y)| = |y|. This might look a bit strange since if y is
odd € maps it to zero, but one must keep in mind that in every equation
where primes are involved the summation signs are implicit. Hence it is
a fancy way of keeping up with the book keeping. O

Proposition 3.3. Let H be an SHA. Then we have S(1) =
Proof. idg *S(1) =1-5(1) =¢(1) =1. |
Proposition 3.4. In an SHA we have eo S = e.
Proof.
e(S(x)) =€

I
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Proposition 3.5. If H is a commutative SHA - meaning that it is com-
mutative as a super algebra -, then S% = idy.

Proof. We show that in A(H,H) the map S? is also an inverse to S,
implying it must be idg.

S % S%(x)

S(a')8*(«")

(Exp(|a[|z"])S (z")2")

(z'S(z")) (18)
(e())

e(x)S(1) = ¢(x).

S
S
S

O
Lemma 3.6. Let x be an element of an SBA, then we have the identity:
(x/)/ ® (x/)// ® (x//)/ ® (x//)// — "L’/ ® ((m//)/)/ ® ((x//)/)// ® (m//)// (19)
Proof. The equality follows from:

ARAcA=ARidRidoid® Ao A
=ARid®idocA®ido A

=(A®idoA)®ido A

=(d®AoA)®ido A
=id® A®RidocA®ido A
=idRA®idoid® Ao A,

and applying the derived equality to x, we obtain the desired result. [

Theorem 3.7. Let H be an SHA, then for all x € H we have:

A(S(2) =S (- 52" @ S(') . (21)

Proof. We consider A(H,H ® H) and claim that p = Ao S is a left
inverse to A and that v = S® SoT o A is a left inverse to A, where
T:2Qy+— Exp(|z||ly|)y ® . The theorem then follows. Multiplication
in H ® H will also be denoted p.

We have:

(22)



On the other hand we have
Axv(z) = A"y (")
(") NI")"
= Exp(|(«")"||(z")"
= Exp(|(«”)'[|(z")"Npoidz2 ® S® S
(@) @ (=")") @ @) & (")
=po(ide®S®8) 0Ty () ® (2')" ® (a") ® (a")")
=po(id®S®S) 0Ty (¢ ® (")) @ ((«"))" @ («)")
= Exp(|((«")")"[|(z")")po (ide ® S ® S)
(@' @ (")) ® (") @ ((«"))")
= Exp(|((z")")"[|(z")"])-
p( @ (")) @ S((@")") @ S((="))"

= Exp (@)S((x ")")®S((fv”)’)

hA
Duoa'®a" @ S((z")") ® S((=")")
)

)
= Exp(|(=")"|I(z")"N="S((=")") & (")) S(((=")")")
= Exp(|(=")"|l(=z") N="S((=")") @ e((=")")
= 2'8(e((="))(=")")

(23)

where we used id2 to denote the linear map in H ® H sending = ® y to
x ® y and the map Tg(i) is the exchange map Tg(i) TTRYRZRW
Exp(z|]lw)z @y @ w ® z. |
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