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Abstract

In these notes we give some elementary definitions and properties in-
volving super Hopf algebras. For simplicity we only treat complex super
Hopf algebras, but the extension to super Hopf algebras over other fields
is straightforward. With linear we mean C-linear.

1 Definitions

With Exp(a) we mean (−1)a. The notion of a super algebra over C is
assumed to be understood. If A, B are super algebras then also A ⊗ B
with product given by x ⊗ y · z ⊗ w = Exp(|y||z|)xz ⊗ yw. If A,B, C, D
are superalgebras and f : A → C and g : B → D are linear maps, then
f ⊗ g : A⊗B → C ⊗D is given by f ⊗ g(x⊗ y) = Exp(|x||g|)f(x)⊗ g(y).

1.1 Super co-algebras

A super co-algebra (SCA) is a super vector space C over C together with
a coproduct ∆ : C → C ⊗ C and a co-unit ǫ : C → C such that ∆ and ǫ
are both linear and even and satisfy:

id ⊗ ǫ ◦ ∆ = ǫ ⊗ id ◦ ∆ = id , (1)

where we identify C ⊗ C ∼= C ⊗ C ∼= C. In Sweedler notation the last
property means: f = f ′ǫ(f ′′) = ǫ(f ′)f ′′, ∀f ∈ C - we will always omit the
summation signs in Sweedler notation -; for more on Sweedler notation
see e.g. [1],[2].

We will always assume that a coalgebra is co-associative, which means:
∆ ⊗ id ◦ ∆ = id ⊗ ∆ ◦ ∆.

One defines a co-ideal as a super sub vector space I ⊂ C such that
∆(I) ⊂ I ⊗ C + C ⊗ I and ǫ(I) = 0.

1.2 Super bi-algebras

A super bi-algebra (SBA) is an associative super algebra B (over C) that
is at the same time a co-associative SCA, such that the comultiplication
and the co-unit are even super-algebra morphisms: ∆(xy) = ∆(x)∆(y)
and ǫ(xy) = ǫ(x)ǫ(y).

A bi-ideal in an SBA is a super sub vector space I that is an ideal of
the super algebra and a co-ideal of the SCA.
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1.3 Super Hopf algebra

A super Hopf algebra (SHA) is an SBA H together with an even linear
map S : H → H , called the antipode, such that for all x ∈ H we have
x′S(x′′) = S(x′)x′′ = ǫ(x).

A Hopf-ideal is a bi-ideal that is stable under the action of S.

2 Constructions

2.1 Cosets of SCA’s

If C is an SCA with an co-ideal I , then one defines π : C → C/I as a
map of super vector spaces, which is well-defined since I is assumed to be
a graded ideal. Then one can give C/I the structure of a SCA when one
finds a way to define a comultiplication ∆̄ : C/I → C/I⊗C/I . If a ∈ C/I
then there is an x ∈ C such that π(x) = a, we then define

∆̄(a) = π⊗ ◦ ∆(x) , (2)

where π⊗ is the canonical projection

π⊗ : C/I →
C

I
⊗

C

I
∼=

C ⊗ C

C ⊗ I + I ⊗ C
. (3)

It is easy to check that this definition is independent of the choice of x.
One defines for the same pair x, a the map ǭ : C/I → C by

ǭ(a) = ǫ(x) , (4)

of which it is also easily verified that it is independent of the choice of x
(hint: ǫ(I) = 0).

2.2 Quotients of SHA’s

If H is super Hopf algebra and I a Hopf ideal, then ∆I ⊂ I ⊗H + H ⊗ I ,
ǫ(I) = 0 and S(I) ⊂ (I). The quotient H/I is again a super Hopf algebra
with the obvious maps (indicated with a bar): ∆̄([x]) = ∆xmod(I ⊗
H + H ⊗ I), ǭ([x]) = ǫ(x) and S̄([x]) = [S(x)], where we denoted the
equivalence classes of x by [x]. Later we will see that the antipode is
unique and hence S̄ is the only choice to make H/I into a super Hopf
algebra.

2.3 Tensor products of SCA’s and SBA’s

The tensor product of two super algebras we already gave a super algebra
structure. Now we will do this for SCA’s.

Let C and D be two SCA’s (we will write ∆ and ǫ for the maps

in both C and D), then we introduce the even linear operator T
(4)
23 :

C ⊗ C ⊗ D ⊗ D → C ⊗ D ⊗ C ⊗ D by:

T
(4)
23 : x ⊗ y ⊗ z ⊗ w → Exp(|y||z|)x ⊗ z ⊗ y ⊗ w . (5)

We then define the map ∆⊗ : C ⊗ D → C ⊗ D ⊗ C ⊗ D by

∆⊗ = T
(4)
23 ◦ ∆ ⊗ ∆ . (6)

For x, y ∈ C, D we thus have ∆⊗(x⊗ y) = Exp(|x′′||y′|)x′ ⊗ y′ ⊗ x′′ ⊗ y′′.
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The map ǫ⊗ : C ⊗ D → C we define by ǫ⊗(x ⊗ y) = ǫ(x)ǫ(y)
The above definitions of ∆⊗ and ǫ⊗ we also want to extend to SBA’s,

but then we need to check that they are super-algebra morphisms. There-
fore we calculate ∆⊗(a ⊗ b · c ⊗ d):

∆⊗(a ⊗ b · c ⊗ d) = ∆⊗(Exp(|b||c|)ac ⊗ bd)

= Exp(|b||c|)T
(4)
23 ◦ ∆ ⊗ ∆(ac ⊗ bd)

= Exp(|b||c|)T
(4)
23 ∆(ac) ⊗ ∆(bd)

= Exp(|b||c|)T
(4)
23 ∆a∆c ⊗ ∆b∆d

= Exp(|b||c|)T
(4)
23 ((a′ ⊗ a′′ · c′ ⊗ c′′)⊗

(b′ ⊗ b′′ · d′ ⊗ d′′))

= T
(4)
23 Exp(|b||c| + |a′′||c′| + |b′′||d′|)

a′c′ ⊗ a′′c′′ ⊗ b′d′ ⊗ b′′d′′

= L a′c′ ⊗ a′′c′′ ⊗ b′d′ ⊗ b′′d′′

where L = Exp(|b||c| + |a′′||c′| + |b′′||d′|+

(|a′′| + |c′′|)(|b′| + |d′|)) .

(7)

On the other hand we have:

∆⊗(a ⊗ b)∆⊗(c ⊗ d) = Exp(|a′′||b′| + |c′′||d′|)a′ ⊗ b′ ⊗ a′′ ⊗ b′′·

c′ ⊗ d′ ⊗ c′′ ⊗ d′′

= R a′c′ ⊗ b′d′ ⊗ a′′c′′ ⊗ b′′d′′

where R = Exp(|a′′||b′| + |c′′||d′| + |c′||b′′| + |c′||a′′|

+ |c′||b′| + |d′||b′′| + |d′||a′′| + |c′′||b′′|)

(8)

After comparing the terms in exponents one concludes R = L and hence
∆⊗ is a super algebra morphism. That ǫ⊗ is a super algebra morphism is
trivial.

2.4 The algebra of linear maps

Let B1 and B2 be two SBA’s. In both SBA’s we denote multiplication by
µ; µ : a ⊗ b 7→ ab. We consider the C-linear maps from B1 to B2 and we
provide this super vector space with a product structure:

f ∗ g = µ ◦ f ⊗ g ◦ ∆ , f ∗ g(x) = Exp(|g||x′|)f(x′)g(x′′) (9)

We view the map ǫ : B1 → C as a map to B2 by considering the image
within B2. We have

f ∗ ǫ(x) = f(x′)ǫ(x′′) = f(x′ǫ(x′′)) = f(x) , (10)

and similarly ǫ ∗ f = f , hence ǫ is an identity element with respect to the
product ∗. We denote by A(B1, B2) the algebra of linear maps from B1

to B2 with the product ∗ and identity element ǫ.
We claim that A(B1, B2) is an associative algebra. We will show this
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in two ways. The first approach:

(f ∗ g) ∗ h = µ ◦ (f ∗ g) ⊗ h ◦ ∆

= µ ◦ (µ ◦ f ⊗ g ◦ ∆) ⊗ h ◦ ∆

= µ ◦ µ ⊗ id ◦ f ⊗ g ⊗ id ◦

∆ ⊗ id ◦ id ⊗ h ◦ ∆

= µ ◦ µ ⊗ id ◦ f ⊗ g ⊗ id ◦

id ⊗ h ◦ ∆ ⊗ id ◦ ∆

= µ ◦ µ ⊗ id ◦ f ⊗ g ⊗ h ◦ id ⊗ ∆ ◦ ∆

= µ ◦ id ⊗ µ ◦ f ⊗ g ⊗ h ◦ id ⊗ ∆ ◦ ∆

= µ ◦ id ⊗ µ ◦ id ⊗ g ⊗ h ◦

f ⊗ id ◦ id ⊗ ∆ ◦ ∆

= µ ◦ id ⊗ µ ◦ id ⊗ g ⊗ h ◦ id ⊗ ∆ ◦ f ⊗ id ◦ ∆

= µ ◦ id ⊗ (g ∗ h) ◦ f ⊗ id ◦ ∆

= µ ◦ f ⊗ (g ∗ h) ◦ ∆

= f ∗ (g ∗ h) .

(11)

For the second approach we first note that:

|f ∗ g(x)| = |f(x′)|+ |g(x′′)| = |f |+ |g|+ |x′|+ |x′′| = |f |+ |g|+ |x| , (12)

from which it follows that |f ∗ g| = |f | + |g| and hence A(B1, B2) is even
a super algebra. For associativity we observe:

f ∗ (g ∗ h)(x) = Exp((|g| + |h|)|x′|)f(x′)(g ∗ h)(x′′)

= Exp((|g| + |h|)|x′| + |(x′′)′||h|)

f(x′)g((x′′)′)h((x′′)′′)

= f ⊗ g ⊗ h (x′ ⊗ (x′′)′ ⊗ (x′′)′′)

= f ⊗ g ⊗ h ((x′)′ ⊗ (x′)′′ ⊗ x′′)

= Exp(|(x′)′|(|g| + |h|) + |(x′)′′||h|)

f((x′)′)g((x′)′′)h(x′′)

= Exp(|(x′)′||g| + |(x′)′|(|h| + |g|) + |(x′)′′||h|)

(f ∗ g)(x′)h(x′′)

= Exp(|x′||h|(f ∗ g)(x′)h(x′′))

= (f ∗ g) ∗ h(x) .

(13)

We conclude that A(B1, B2) is an associative superalgebra with identity.
This implies that a left inverse of an element is at the same time a right
inverse (hence one can omit the prefix left/right) and that inverses are
unique.

From the above we conclude that an SBA H is an SHA if there is an
inverse to the element idH : h 7→ h;

S ∗ idH(x) = S(x′)x′′ = ǫ(x) , idH ∗ S(x) = x′S(x′′) = ǫ(x) , (14)

which is consistent with the requirement that the antipode S be even.

3 Properties

Lemma 3.1. The antipode is unique.
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Proof. This follows from the uniqueness of inverses.

Theorem 3.2. The antipode S of an SHA H satisfies: S(xy) = Exp(|x||y|)S(y)S(x),
∀x, y ∈ H.

Proof. We consider the algebra A(H ⊗ H, H) and claim that ρ : x ⊗
y 7→ S(xy) is a left inverse of µ : x ⊗ y 7→ xy and that ν : x ⊗ y 7→
Exp(|x||y|)S(y)S(x) is a right inverse to µ. The claim then follows from
the uniqueness of inverses and equality of left and right inverses.

We have

ρ ∗ µ(x ⊗ y) = Exp(|x′′||y′|)ρ(x′ ⊗ y′)x′′y′′

= Exp(|x′′||y′|)S(x′y′)x′′y′′

= Exp(|x′′||y′|)S ⊗ id(x′y′ ⊗ x′′y′′)

= S ⊗ id (x′ ⊗ x′′ · y′ ⊗ y′′)

= S ⊗ id (∆x∆y)

= S ⊗ id (∆(xy))

= S ⊗ id (xy)′ ⊗ (xy)′′

= S((xy)′)(xy)′′

= ǫ(xy) ,

(15)

and

µ ∗ ν(x ⊗ y) = µ ◦ µ ⊗ ν ◦ ∆⊗(x ⊗ y)

= Exp(|x′′||y′|)µ ◦ µ ⊗ ν(x′ ⊗ y′ ⊗ x′′ ⊗ y′′)

= Exp(|x′′||y′| + |x′′||y′′|)µ(x′y′ ⊗ S(y′′)S(x′′))

= Exp(|x′′||y|)x′y′S(y′′)S(x′′)

= Exp(|x′′||y|)x′ǫ(y)S(x′′)

= x′S(x′′)ǫ(y)

= ǫ(x)ǫ(y)

= ǫ(xy) ,

(16)

where we used that |ǫ(y)| = |y|. This might look a bit strange since if y is
odd ǫ maps it to zero, but one must keep in mind that in every equation
where primes are involved the summation signs are implicit. Hence it is
a fancy way of keeping up with the book keeping.

Proposition 3.3. Let H be an SHA. Then we have S(1) = 1.

Proof. idH ∗ S(1) = 1 · S(1) = ǫ(1) = 1.

Proposition 3.4. In an SHA we have ǫ ◦ S = ǫ.

Proof.

ǫ(S(x)) = ǫ(S(x′ǫ(x′′)))

= ǫ(S(x′)ǫ(x′′))

= ǫ(S(x′))ǫ(x′′)

= ǫ(S(x′)x′′)

= ǫ(ǫ(x)) = ǫ(x) .

(17)
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Proposition 3.5. If H is a commutative SHA - meaning that it is com-

mutative as a super algebra -, then S2 = idH .

Proof. We show that in A(H, H) the map S2 is also an inverse to S,
implying it must be idH .

S ∗ S2(x) = S(x′)S2(x′′)

= S(Exp(|x′||x′′|)S(x′′)x′)

= S(x′S(x′′))

= S(ǫ(x))

= ǫ(x)S(1) = ǫ(x) .

(18)

Lemma 3.6. Let x be an element of an SBA, then we have the identity:

(x′)′ ⊗ (x′)′′ ⊗ (x′′)′ ⊗ (x′′)′′ = x′ ⊗ ((x′′)′)′ ⊗ ((x′′)′)′′ ⊗ (x′′)′′ (19)

Proof. The equality follows from:

∆ ⊗ ∆ ◦ ∆ = ∆ ⊗ id ⊗ id ◦ id ⊗ ∆ ◦ ∆

= ∆ ⊗ id ⊗ id ◦ ∆ ⊗ id ◦ ∆

= (∆ ⊗ id ◦ ∆) ⊗ id ◦ ∆

= (id ⊗ ∆ ◦ ∆) ⊗ id ◦ ∆

= id ⊗ ∆ ⊗ id ◦ ∆ ⊗ id ◦ ∆

= id ⊗ ∆ ⊗ id ◦ id ⊗ ∆ ◦ ∆ ,

(20)

and applying the derived equality to x, we obtain the desired result.

Theorem 3.7. Let H be an SHA, then for all x ∈ H we have:

∆(S(x)) =
X

(−1)|x
′||x′′|S(x′′) ⊗ S(x′) . (21)

Proof. We consider A(H, H ⊗ H) and claim that ρ = ∆ ◦ S is a left
inverse to ∆ and that ν = S ⊗ S ◦ T ◦ ∆ is a left inverse to ∆, where
T : x ⊗ y 7→ Exp(|x||y|)y ⊗ x. The theorem then follows. Multiplication
in H ⊗ H will also be denoted µ.

We have:

ρ ∗ ∆(x) = ρ(x′)∆(x′′)

= ∆(S(x′))∆(x′′)

= ∆(S(x′)x′′)

= ∆(ǫ(x)) = ǫ(x) .

(22)
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On the other hand we have

∆ ∗ ν(x) = ∆(x′)ν(x′′)

= Exp(|(x′′)′||(x′′)′′|)∆(x′)S((x′′)′′) ⊗ S((x′′)′)

= Exp(|(x′′)′||(x′′)′′|)µ ◦ x′ ⊗ x′′ ⊗ S((x′′)′′) ⊗ S((x′′)′)

= Exp(|(x′′)′||(x′′)′′|)µ ◦ id2 ⊗ S ⊗ S
`

(x′)′ ⊗ (x′)′′
´

⊗ (x′′)′′ ⊗ (x′′)′

= µ ◦ (id2 ⊗ S ⊗ S) ◦ T
(4)
34

`

(x′)′ ⊗ (x′)′′ ⊗ (x′′)′ ⊗ (x′′)′′
´

= µ ◦ (id2 ⊗ S ⊗ S) ◦ T
(4)
34

`

x′ ⊗ ((x′′)′)′ ⊗ ((x′′)′)′′ ⊗ (x′′)′′
´

= Exp(|((x′′)′)′′||(x′′)′′|)µ ◦ (id2 ⊗ S ⊗ S)
`

x′ ⊗ ((x′′)′)′ ⊗ (x′′)′′ ⊗ ((x′′)′)′′
´

= Exp(|((x′′)′)′′||(x′′)′′|)·

µ
`

x′ ⊗ ((x′′)′)′ ⊗ S((x′′)′′) ⊗ S(((x′′)′)′′
´

= Exp(|(x′′)′′||(x′′)′|)x′S((x′′)′′) ⊗ ((x′′)′)′S(((x′′)′)′′)

= Exp(|(x′′)′′||(x′′)′|)x′S((x′′)′′) ⊗ ǫ((x′′)′′)

= x′S(ǫ((x′′)′)(x′′)′′)

= x′S(x′′) = ǫ(x) ,

(23)

where we used id2 to denote the linear map in H ⊗ H sending x ⊗ y to
x ⊗ y and the map T

(4)
34 is the exchange map T

(4)
34 : x ⊗ y ⊗ z ⊗ w 7→

Exp(|z||w|)x ⊗ y ⊗ w ⊗ z.
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