SUPERMATRICES

DENNIS

ABSTRACT. This text is devoted to develop a consistent set of rules
for operations in modules of commutative superalgebras. Most of
the definitions can also be found in [1], but there are some small
differences; our definition of supertransposition is different (and
better). For other expositions on superalgebras see e.g. [2, 3, 4].

1. SUPERALGEBRAS

A vector space V' is a super vector space (over a field k) if it admits a
decomposition V = V5@ Vi. The elements of VU V7 are called homoge-
neous elements and we have a map Vg U Vi — Zy defined by |v| = i for
vE Vi €Zy IfveVgwe call V even (of even parity) and if v € V;
we call v odd (of odd parity). If we use parity assignments in formu-
las and definitions, it is understood that it is meant for homogeneous
elements and extended by linearity to inhomogeneous elements.

The morphisms between super vector spaces are the vector space
morphisms that preserve the parity assignment. If V" and W are super-
spaces then the space of linear maps from V' to W gets the structure of
a super vector space when we take the even elements to be the linear
maps that preserve the parity and the odd elements to be the linear
maps that change the parity. The vector space V ® W becomes a super
vector space when we set (V @ W); = @y Vk ® W;. For the direct
product V @& W we take the grading (V @ W), =V, & W;.

A superalgebra A is a super vector space A = Ay & A7 with a map
A x A — A called multiplication, written (x,y) — =zy, that satisfies
|lzy| = [z| + |y, Yz, y € A

The tensor product of two superalgebras A; and A, is as a vector
space the tensor product defined as above, with the following multipli-
cation rule:

(1) (a@b)(c®d) = (=)"ac®bd a,ce Ay, bydecA,.
We call a superalgebra commutative if
(2) ab = (—1)l"Plpg |

In the sequel A always denotes a commutative superalgebra with iden-
tity element 1.
We define Ny to be the ideal generated by the odd part Aj. By

definition, the elements of Ay are finite sums of elements of the form
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an, with a € A and n € A;. The body of A is the quotient algebra A
defined by

(3) A=A/N,.

The body of an element a is the image under the projection A — A
and is denoted a. It is easy to see that A # 0 « 1 # 0.

A superalgebra is finitely generated if there exists a set of elements
ai,...,ay of homogeneous elements such that the a; generate the su-
peralgebra as an algebra. A superalgebra is called affine if it is finitely
generated and the body is an affine algebra. Note that the body of
a finitely generated superalgebra is finitely generated, hence the body
of a finitely generated superalgebra is affine if the body contains no
nilpotent elements.

The polynomial algebra (over k) in n even variables X;, 1 < in, and
m odd variables ©,, 1 < a < m, is defined to be the free algebra over
k generated by the X; and ©, subject to the relations X;X; = X,;X;,
X0, = 0,X,; and 6,035 = 030, for all ¢, j, o, 5.

2. MODULES AND MATRICES

Let M be an abelian group M that decomposes into an odd and even
subgroup M = Mg @ M;. We call M a left A-module if there is a map
AXx M — M, (a,m) — am for a € A and m € M, such that the parity

of am is given by: |am| = |a| + |m| and such that for any a,b € A and
m,n € M:

(4) alm+n) = am+an,

(5) (a+bm = am+bm,

(6) (ab)m = a(bm),

(7) Im = m.

The definition of a right A-module is similar. Given a left A-module
M, we can define a right action of A on M by ma = (—1)"ll“lam for
a € A and m € M. The right action of A is then compatible with
the left action a(mb) = (am)b, for a,b € A and m € M. Hence we
call a left A-module with a right multiplication defined in this way a
A-module.

If M and N are A-modules then a linear map from M to N is a
map F' : M — N such that F(my + me) = F(mq) + F(ms) and
F(ma) = (F(m))a, for all m,m;,my € M, a € A. The set of linear
maps from M to M is denoted by End(M). The set of linear invertible
maps from M to M is denoted GL(M).

Among the modules a special place is taken by the free modules.
Let I be an index set I = Ij @ I; such that [y NIy = 0. A set of
homogeneous elements {m;|i € I'} with parity assighment |m;| = 0 for
m; € Iy and |m;| = 1 for ¢ € I3, is a basis for the module M if every
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element x € M can be uniquely expressed as

(8) r=) mi,
iel

such that only a finite number of terms is nonzero. The module M
is free if it possesses a basis. We only consider finite-dimensional free
modules, for which the index set I is finite. The dimension of a free
module is denoted p|q where p is the number of elements in [j and ¢ is
the number of elements in ;. The elements m; are called basis elements
or generators. For convenience we give the set I a parity assignment;
i = |mil.

Note that the A-elements in the expression (8) have been written
to the right of the generators m;. Therefore the u; are called right-
coordinates. Similarly there exist unique left-coordinates v; such that
x = v;m;and v; = (—1)lmallmal

We call a set of generators standard if mi,...,m, are even and
My, - .-, Mprq are odd. To each element x = ), m;u; we assign a
column vector and a row vector as follows;

(9)
1

velp) = | we = ), v = (1),
Hp+q

If F: M — M is a linear map we assign to F' a matrix (F};) by
F(m;) = > m;F;;. With this rule we obtain the usual matrix multi-
plication for the composition of linear maps. The parity of a matrix is
its parity as a linear transformation.

When given a standard basis for a p|¢-dimensional A-module M the
matrices can be decomposed into block matrices as follows

(10) X = (é g) ,

where A is a p X p-matrix, B a p X g-matrix, C' a ¢ X p-matrix and D a
q X ¢ matrix. In the sequel a block-decomposition as in (10) is always
according to a standard basis. If X is even the elements of A and D
are even and those of C' and B odd. When X is odd the elements of A
and D are odd and those of C' and B even. The set of (p+¢q) X (p+q)-
supermatrices with entries in A is denoted Mat(p, ¢|A). The subset of
Mat(p, g|A) of invertible supermatrices is denoted G L(p, q|A).

We denote the invertible elements of Ay by As. We define the
Berezinian Ber : GL(p, ¢|A)s — A as

(A B det(A — BD™'C)
(11) Ber : (C’ D) — D

The Berezinian satisfies[3, 1]: Ber(XY) = Ber(X)Ber(Y).
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Let {m;} and {m} be bases for M. Then there is a matrix (Cj;)
such that m; = > m}.Cy;. The matrix (C;;) is even and invertible. If
we write x = Y mpu; = Y miul, then pp = > . Cyip; and the left-
coordinates v; and v, are related by

(12) V= Z v, 3T CST = (=)Wl

The equation (12) defines the supertranspose of an even matrix. For
any homogeneous matrix X = (X;;) we define

(13) XET = (—1) DDy
It then follows that (v;| = (|u;))°T and we have
(14> (XY)ST — (_1)\X||Y|YSTXST.

The Berezinian is inert under composition with supertransposition:
Ber X°T = BerX.

We note further that the action of A on Homy (M, N) is given by
(CLF)Z'J' = (—1)‘“||i|aFij, and (CLF)Z'J' = (—1)‘“||j‘Fija.

3. GRASSMANN ENVELOPE AND GRASSMANN HULL

Given a super vector space V' of dimension p|q over a field k, we can
turn it into a super vector space over A by considering its Grassmann
envelope V. The Grassmann envelope of V' is defined as

(15) Va=A®, V.
The parity assignment is as follows:
(16) Vio=MoVio AV, Vii=MeVioAV].

Multiplication from the left by A-elements is defined by a(b ® v) =
(ab) ®v and multiplication from the right by (b@v)a = (—1)™lelpa@v.
With this structure the right and left multiplication are compatible. If
V' is an algebra the multiplication in V) is as in (1); (c®v)(d ®@ w) =
(=)l ed @ vw.

The Grassmann hull of a vector space is the even part of the Grass-
mann envelope.

(17) VINl=Vasg =M@ Vg B A1 ® Vi,

Later we will see that the Grassmann hull of the Lie algebra osp(m|2n)
is isomorphic to the Lie algebra associated to the group OSp(m|2n).

We now turn to the description of relating the endomorphisms of Vj,
with dimV = p|g, to the set Mat(p, ¢|A) = End(V}) of (p+¢) x (p+q)-
matrices with entries in A.

If V' has standard-basis elements e; - 1 < i < p 4+ ¢ and such that
le;| = bar0 for 1 < i < pand |e| =1forp+1<i<p+gq-, then
Vi is a free module with standard-basis elements é; = 1 ® e¢;. Matrix
elements with respect to the basis {é;} are given by F'(é;) = >, &;Fj;.
In End(V) we define the basis elements E*) by £ (e;) = 6Fe;.
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We define the map 7 : End(V) — A®End(V) by

(18) O F = (Fy) o SO(— )OSR g g8
Kl
With the definition (18) we can formulate the following easy result:

Theorem 3.1. The map 7 : End(Vy) — AQEnd(V) is an isomorphism
of superalgebras.

Proof. 1t is clear that the map is surjective and injective. It only needs
to be checked that 7(xy) = 7(z)7(y), which is a direct calculation. [

Next we define the map o : A@End(V) - AQEnd(V) by oc® X +—
c® X5 Tt is to be understood that the matrices in End(V) have
real entries and hence the off-diagonal parts are odd; therefore the
choice of the minus sign is as that for an odd supermatrix. The map o
fulfills the relation o (xy) = (—1)¥lg(y)o(x) and we have the following
commutative diagram:

End(V,) —— A®End(V)

End(V}) — A®End(V)
We can therefore safely identify the maps ST" and o, and supertrans-
position in End(V') with supertransposition in End(Vj).
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