
SUPERSYMMETRY AND SUPERGEOMETRY

DENNIS

Abstract. Dissertantenkolloquium at the university of Vienna on 29
November 2007. Some references are given, without attemtping to be
complete or correct.

1. On the title and the motivation

The title of this talk consists of a mathematical part and of a physical
part. Supergeometry is mathematical and originated from the works of
Berezin, Leites, Kostant (see e.g. in [1, 2, 3, 4]) and many others from 1960-
1970. Supersymmetry is a tool in theoretical physics developped by Salam,
Strathdee, Wess, Zumino (see e.g. [5, 6, 7, 8, 9]) and many many others.
Since their origin both worlds have contributed to each other and one can
say in a certain sense that one without the other does not make sense.

I am from the physics world; I am just a simple theoretical physicist by
education. The reason I am studying supergeometry now is that I am inter-
ested in supersymmetry from a mathematical point of view. Supersymmetry
is an interesting symmetry that has many facets and surprises, by my hum-
ble opinion. Also from a pure mathematical point of view supersymmetry is
interesting; choosing the right supersymmetrical model might give a grip on
some fundamental mathematical problem. Among others, supersymmetry
helped in giving insight into some index theorems and helped in proving
other theorems [10] [11, 12]. In that area I am not an expert, but you might
try to look at the work of Witten to see what I mean.

Nonetheless, since the tight interplay between physics and mathematics
in the playground area of supersymmetry, I will start the talk with saying
some words on supersymmetry. After the supersymmetry part, I will give
a definition of a superalgebra, give examples and give an example of a su-
pergroup. Then, if time permits, I will say some words on supervarieties.
In this talk I will avoid the rich area of super differential geometry - see for
example the book by Varadarajan[13], the notes of Nelson [14], Deligne and
Morgan[15], the book of Tuynman[16],. . .

2. Supersymmetry

I have to start with an apology since time is to short to give all details.
Hence I cannot give a more or rigorous and coherent construction of where
supersymmetry comes from and what it means. Simply because time does
not permit to treat all the physics necessary to understand all details, and
I am afraid I must admit I don’t know all details myself. Hence, the part
on supersymmetry is done with a lot of handwaving and pictorial talking. I
hope to convey a picture, not a framework.
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It is a long-standing history in physics to try and combine different theo-
ries in one single theory, that is, to describe seemingly different phenomena
by one theory. Let me shortly mention some of the famous and at the same
time simple examples.

In the 18th century magnetism and electricity were known, more or less,
but seen as different things 1. After the work of among others Faraday and
Maxwell, it was recognized that electricity and magnetism were best seen as
two different sides of one object electromagnetism. Through this combined
framework it was Maxwell who predicted the existence of light on theoretical
grounds.

Another example is special relativity. To all of us it is known that the
universe around as has in principle some fundamental symmetries. Transla-
tion in time, rotations around an axis or translating in space are supposed
not to give different outcomes of the same experiment. But, in all these
symmetries we treat space and time differently. It was Einstein who tried to
combine both and investigated what happened when space and time coordi-
nates were rotated in to each other with some symmetry. By doing this he
brought a whole world of new physics to us. GPS and space-shuttles would
not work without the framework of special relativity.

The two examples above show us to things: first, combining different
theories into a single theory can be useful and marks progress in physics
and second, a way to combine different theories is by using symmetries.
At first glance it might not be clear, but the unification of electricity and
magnetism can be seen as a same manifestation of the symmetry underlying
special relativity, which is called Lorentz symmetry. In fact more is true, the
Lorentz covariance of Maxwell’s theory of electromagnetism pushed Einstein
to invent special relativity.

So we have reached an intermediate conclusion; a guideline for (the useful
hobby of) combining theories can be symmetry. That the two combined the-
ories then appeared before as different has to be explained by some symmetry
breaking process. The approached outlined I will now sketchily present for
supersymmetry.

Nature has fermions and bosons. In the sixties of the 20th century the
big particle accelerators found many elementary particles; it turned out that
there are way more particles than the electrons, protons and neutrons. The
particles fell into two classes, fermions and bosons. It is difficult to explain
in simple language what makes a particle a fermion or a boson. But, every
elementary particle is either a fermion or a boson, and the difference lies
in the collective behavior; bosons are social particles and fermions are anti-
social particles. Two fermions cannot be in the same physical state whereas
for bosons this is no problem. As examples, electrons are fermions, and
as you might remember from high school, electrons fill out shells in atoms.
Electrons in particular do not fit into one shell and this is not only due to
the fact that electrons repell each other. On the other hand, light particles,
photons, are bosons; you can put as much light together as you want and
this is precisely used in constructing lasers.

1The treatment in high schools (in the Netherlands at least) does mainly highlight the
different behavior and not the similarity.
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In order to describe the aforementioned difference, we look at it from a
quantum mechanics point of view. In quantum mechanics, one works with
vectors in a Hilbert space (just think of finite-dimensional vector spaces).
A vector describes a state of a physical state. There is one special vector,
the vacuum, the state with no particles present. To create particles one
uses creation operators (think of matrices). Let us be simple-minded and
think of just two kinds of particles, one of which is a fermion and the other
kind is a boson. I denote with QF (x) the operator that creates a fermion
at place x. Similarly, QB(x) creates a boson at place x. It turns out that
these operators have to satisfy some relation like

QB(x)QB(y) − QB(y)QB(x) = 0

QB(x)QF (y) − QF (y)QB(x) = 0

QF (x)QF (y) + QF (y)QF (x) = 0 .

(1)

Note that of x = y we see that creating two fermions at the same time
gives zero; a forbidden proces. We see a clear problem if we want to have
symmetry that rotates the fermionic creation operators into bosonic cre-
ation operators. How to go from commuting operators to anticommuting
operators? What the problem in this example seems to be is that complex
numbers commute, so do we need anticommuting numbers??? This is where
supersymmetry starts with: numbers that do not commute.

Remark 2.1. Of course, superalgebras are already used without supersym-
metry; fermions have to be quantized using Grassmann algebras.

To finish the physics part of the talk, let me mention some areas where
supersymmetry is used. The prime example is string theory, the new candi-
date for a grand unification theory, is inconsistent without supersymmetry.
You might sometimes heard about string theory predicting 26 dimensions,
or ten, or 11. String theory without fermions and supersymmetry gives 26
dimensions, with supersymmetry gives 10 dimensions and it is speculated
that super string theory is a limit of another theory, M-theory, which lives
in 11 theory. The standard model of elementary particles has been extended
with supersymmetry; in this way it turns out to be more consistent ... Also
in condensed matter physics, supersymmetry is found; in trying to describe
vortices in superfluids some models with supersymmetry are proposed.

An interesing idea from physics is to enrich our four-dimensional world
with some directions in which the coordinated do not commute. The ap-
proach using this idea is marked with the name ’superspace’-techniques,or
’superspace’-approach. Supersymmetry then becomes just a rotational sym-
metry in this enriched superspace. In order to make sense of superspace, we
need some superalgebras ...

3. Superalgebras

Definition 3.1. A superalgebra is: We have a vector space A over some field
k (take C) with a Z2-grading A = A0 ⊕A1. Elements of A0 are called even,
elements of A1 are called odd, and a homogeneous element is an element that
is either even or odd. We have a map | · | defined on homogeneous elements
and given by |a| = 1 if a is odd and |a| = 0 if a is even. To make the
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We require this multiplication to be associative and to satisfy the following
rule for homogeneous elements |ab| = |a| + |b|. The mentioned ingredients
define a superalgebra.

Remark 3.2. Note that the direct sum means that all elements are uniquely
decomposed in an even and an odd part. Therefore it suffices to determine
and give properties on homogeneous elements and then extend by linearity
to the rest.

Furthermore I require some additional properties to make life easy for me
(us). I want the superalgebras to contain a 1. I want the superalgebras to
be finitely-generated (if you don’t understand this, skip the requirement).
Last but not least, I want the superalgebras to be commutative, and in the
superalgebra setting that means that

(2) ab = (−1)|a||b|ba ,

on homogeneous elements and extended by linearity on inhomogeneous ele-
ments.

Definition 3.3. An ideal in a superalgebra is a Z2-graded ideal I = (I ∩
A0) ⊕ (I ∩ A1) such that I is a superalgebra itself and IA ⊂ I.

Every superalgebra A has a canonical ideal JA given by the ideal generated
by all the odd elements. That is, the ideal JA consists of all the elements
x ∈ A such that there exists a finite number of odd elements ξi and an equal
number of xi ∈ A such that

(3) x =
∑

xiξi .

It is not too hard to check that JA is indeed an ideal. We have a corre-
sponding canonical projection and quotient:

(4) π : A → A/JA ≡ Ā .

The algebra Ā is called the body of A and is an ordinary commutative
algebra.

Example 3.4. Grassmann algebras. Consider the algebra over the com-
plex numbers generated by generators ξi 1 ≤ i ≤ n with the relations

(5) ξiξj + ξjξi = 0 .

This is called a Grassmann algebra and denoted by ΛC[ξ1, . . . , ξn]. We can-
not get arbitrarily high degree, at most n since multiplying ξ1 · · · ξn by any
element not in C1 we get zero. Hence we have a 2n-dimensional algebra overC. The body is contains all polynomials of degree bigger than 1. Therefore
the body is C.

Example 3.5. Consider now the C-algebra

(6) A = C[X] ⊗ ΛC[ξ1, ξ2] ,

which is an infinite-dimensional algebra, but the expansion in the ξi stops
rather quickly. Let us consider the ideal I generated by x2 − ξ1ξ2 and define

(7) B = A/I .
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The superalgebra B is rather simple. It is in particular finite dimensional
with basis

(8) 1 , x , ξ1 , ξ2 , xξ1 , xξ2 , xξ1ξ2 .

Note that x3 = xξ1ξ2, and x4 = 0.

4. Example: Supergroup GLn|m

I would like to use matrices with entries in some superalgebra A (with
the properties listed above). Actually, one has to develop a theory for that
first since one has to know what a module is. And it turns out that one
has to be rather precise in the definitions, since multiplying from the left
and the right is not the same. Unfortunately, I don’t have time for that.
For those interested, I will put something on my website, or just ask me, or
read in the lecture notes of Leites[3], or the book of Berezin[1]. Since when
you work with matrices, you can hide the differences, I will just proceed as
would I have already told you the nasty details; it will look like natural, I
hope ...

Consider the set of ’matrices’ of the form

(9)

(

A B
C D

)

,

where A is an n × n matrix with even elements in some superalgebra A,
B is an n × m matrix with odd elements, C is an m × n matrix with odd
elements and D is an m × m matrix with even elements. Matrices of this
kind I will call even n|m×n|m matrices. One can add such matrices as one
is used to and also ordinary matrix multiplication works in the usual sense
and one checks easily that the product of two even matrices is again even.

Definition 4.1. The group GLn|m(A) is the group of invertible n|m× n|m
matrices.

Let us show a criterion to see when an even n|m×n|m matrix is invertible.

Lemma 4.2. An n|m×n|m matrix X of the form 9 is invertible if and only
if X̄ is, where X̄ is the matrix with the entries (X̄)ij = (X̄ij), that is, it is
the body of the matrix X.

Proof. If X is invertible, we have that there is a matrix Y (same size, also
even ...) with XY = Y X = 1, where the last symbol 1 now means unit
matrix. Than XY = X̄Ȳ = 1. On the other hand, if X̄Ȳ = 1, there
is a matrix Y with XY = 1 − N where N only contains elements in JA.

But all elements in JA square to zero, thus N (n+m)2 has entries such that
at least one of the entries of N appears twice; thus N is nilpotent. Thus
(1 − N)−1 =

∑M
k=0 Nk for some finite M and XY (1 − N)−1 = 1. �

Corollary 4.3. It follows that a matrix of the form 9 is invertible if and
only if Ā and D̄ are, thus if and only if A and D are invertible.

Remark 4.4. Define the map

(10) Ber : GLn|m(A) → (A0)
∗, , Ber

(

A B
C D

)

=
det(A − BD−1C)

detD
,
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where (A0)
∗ means the invertible elements of A0. The map Ber satisfies

Ber(XY ) = Ber(X)Ber(Y )[1]. The map Ber is called the Berezinian. The
Berezinian is a representation of the group GLn|m(A), but it is not tensorial!

5. Varieties

This is the last part of the talk, here I need to see how much time I have.
Then I will decide what I will treat.

In ordinary algebraic geometry one defines an algebraic variety more or
less as the zero locus of a set of polynomial equations. For superalgebras
the approach of classical algebraic geometry clearly is less sensible. But, to
every algebraic variety V there is a ring of functions k[V ] and the category
of algebraic varieties is contra-equivalent to the category of affine algebras
(affine = reduced and finitely generated). Using algebras is something we
can do with superalgebras.

The points on an algebraic variety with “coordinates” in a certain field k
correspond to morphisms from k[V ] to k. Varying k not only over fields but
also over algebras we get the functor of points Hom(k[V ], ·). Knowing the
functor is enough to recover all information of V . This approach we take
for supergeometry.

Definition 5.1. An affine superalgebra is one that is finitely generated and
the body contains no nilpotents.

Definition 5.2. An affine algebraic supervariety is a representable functor
from the category of commutative superalgebras with 1 to sets such that the
representing superalgebra is affine.

Definition 5.3. An algebraic supervariety is a representable functor from
the category of commutative superalgebras with 1 to sets.

We obtain a category in a certain way. The morphisms are the natural
maps between the representing superalgebras. A nontrivial example of an
affine algebraic supervariety:

Example 5.4. The functor A → GLn|m(A) is an affine algebraic superva-
riety and the representing superalgebra is a Hopf superalgebra:

(11) k[GLn|m] =
k[A,D, λ, µ|B,C]

(λdetA − 1, µdetD − 1)
.

see e.g. [18, 19].

We get the so-called underlying varieties by considering

(12) V u = Hom(k[V ],C) ,

for some affine algebraic supervariety V with representing superalgebra k[V ].

Example 5.5. Let us consider an algebraic variety with underlying variety
the sphere. We take the polynomial ring in even variables X1, X2 and X3,
and odd variables ξ1, ξ2 and ξ3 modulo some ideal;

k[V ] = k[X1,X2,X3, ξ1, ξ2, ξ3] ,

I = (X2
1 + X2

2 + X2
3 − 1,X1ξ1 + X2ξ2 + X3ξ3) .

(13)
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To each open set U on the underlying sphere one can associate a certain
ring of functions:

(14) A(U) =

{

p

q
|Big|p ∈ k[V ] , q ∈ k[V ]0, q̄(u) 6= 0∀u ∈ U

}

.

Thus we get a ringed space.

More generally, for a superalgebra A we can study SpecA0 and then con-
sider the sheaf of superalgebras determined by A as in the example.

Birational supergeometry. Let now A be a superalgebra, such that
JA is prime. Then Ā is an integral domain. Then we can form the following
superalgebra of fractions:

(15) Frac(A) ≡

{

p

q

∣

∣

∣
p ∈ A, q ∈ A0, q̄ 6= 0

}

/ ∼

where the equivalence relation is the usual one

(16)
p

q
∼

a

b
↔ ∃s ∈ A0, s̄ 6= 0 , s(pb − aq) = 0 .

We call an affine algebraic supervariety irreducible if Ā is an integral domain.
The underlying variety is then irreducible. We can define a subcategory
of irreducible affine algebraic supervarieties with morphisms the dominant
maps, that is, the maps between the superalgebras is injective.

End of talk
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