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Syzygies are fascinating objects; they contain important information of mod-
ules and they have the advantage that they can be calculated. In this expository
text we give a brief introduction and prove an important theorem of Hilbert.

Syzygies were introduced by David Hilbert in his seminal paper [1] already
in 1890. Hilbert wanted to use his syzygies for invariant theory, but nowadays,
syzygies are of general importance in algebraic geometry. Again, Hilbert was
ahead of his time. The reader might then ask, “ok, nice, but what are these
syzygies?” (and how do I pronounce the word?) In short, a syzygy of a module
is a kernel appearing in a free resolution. (The pronunciation is si-si-gee.) In
the text below we give a longer definition with some more preparation.

We will give a proof of Hilbert’s syzygy theorem that does not use the more
advanced notions as Tor and Koszul complexes. The proof is not the author’s
own proof, but can be found in the formidable book written by Zariski and
Samuel[4]. First we give a brief introduction to free resolutions and syzygies.

1 Syzygies and free resolutions

We will assume that the reader knows what rings and modules are. For those
who get frightened, we recommend to read a few section in the nicely written
book by Miles Reid [2], or read some parts in the first chapters of the (almost
exhaustive) book by Serge Lang [3]. Furthermore we will assume that the reader
knows what a Noetherian ring is, what a finitely generated module is, what a free
module is and the basic fact that any submodule of a finitely generated module
of a Noetherian ring is again finitely generated. All our rings are commutative,
associative and have a 1. We shortly give the definition of an exact sequence,
since that will be of crucial importance: a chain of modules connected by maps
M1 →M2 →M3 → ... is called exact at M2 if the kernel of the map M2 →M3

is precisely the image of the map M1 → M2. In particular, the map M1 →M3

which is the concatenation of the maps M1 →M2 and M2 →M3 maps all of M1

to zero in M3. A sequence is called exact if it is exact at each module that has
an arrow on its left and on its right (to exclude the endpoints). Some exercises
to get a feeling for what happens: (i) a sequence 0 →M1 →M2 is exact if and
only if M1 →M2 is injective, (ii) a sequence M1 →M2 → 0 is exact if and only
of M1 →M2 is a surjective, (iii) a sequence 0 →M1 →M2 → 0 is exact if and
only if M1

∼= M2. (iv) For vector spaces 0 → V1 → V2 → V3 → 0 is exact if and
only if V2

∼= V1 ⊕ V3.
The starting point is a Noetherian ring R. All finitely generated free modules

are of the form Rq for some integer q ≥ 1. Elements of Rq we will denote
r = (r1, . . . , rq), where the ri are elements of R. If a module M is finitely
generated, then there are some generators m1, . . . ,ms in M such that each
m ∈ M can be written as m = r1m1 + . . . + rsms for some ri ∈ R. These ri
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might not be unique. Thus, a finitely generated module M that is generated by
s generators m1, . . . ,m2, admits a surjective map Rs → M , where (r1, . . . , rs)
is mapped to r1m1 + . . .+ rsms. In terms of exact sequences, this is written as

Rs −→M −→ 0 .

The kernel of this map Rs → M is called a first syzygy of M . We see that a
first syzygy depends on the choice of the generators, and that for a fixed choice
of generators m1, . . . ,ms, the first syzygy measures how nonunique the ri in an
expansion m = r1m1 + . . .+ rsms are.

Let us now introduce some more notation, since it will get messy: we write
K1 for the kernel of the map Rs →M , and for Rs we write F1. We thus are in
the situation where there is a surjective map ϕ1 : F1 → M , with F1 a finitely
generated free module.

Next we consider the kernel of this map F1 →M . We know that the kernel
is a submodule of Rs and thus finitely generated. Hence there exists a surjective
map F2 → K1, where F2 is a finitely generated free module. We combine this
map F2 → K1 with the inclusion of K1 into F1 to get ϕ2 : F2 → F1. The map
ϕ2 is neither surjective, nor injective, but the following sequence is exact

F2 −→ F1 →M −→ 0 .

The kernel K2 of the map F2 → F1 is called a second syzygy; since it depends on
the choice of the generators of the kernel K1. The procedure we just performed
to attach F2 to the chain can be repeated again and again: for the kernel K2 we
can attach a finitely generated free module F3 that maps onto the generators
of K2, and we combine this with the inclusion K2 → F2 to get a map F3 → F2.
Then the sequence

F3 −→ F2 −→ F1 →M −→ 0 ,

is exact. Proceeding in this way we obtain a so-called free resolution of M :

... −→ Fi+1 −→ Fi −→ ... −→ F1 −→M −→ 0 .

The kernel of the map Fi → Fi−1 is called an ith syzygy of M . With a slight
abuse of language one also calls the free resolution of M a syzygy.

Since both the free resolution and the precise form of the syzygies depend on
choices of generators at each step of the process of adding a free module to the
chain, one might wonder whether these resolutions and syzygies are of any use
at all. Another question might be, whether the free resolution is finite under
some circumstances. The answer to the last question is yes for local regular
rings and for free polynomial rings. For this last case we give a proof below
(for the other case, we refer to Zariski and Samuel [4]). To answer the first
question, we actually need to require that the reader knows more. For example,
free resolutions are a particular example of projective resolutions, which are
needed to calculate the mysterious Tori(M,N) and which are ubiquitous in the
literature (and hence important). What actually counts here is the homology
of a sequence one obtains by tensoring a free resolution with N : after tensor-
ing with N the obtained sequence might no longer be exact and the Tori(M,N
measure how nonexact this sequence is, and thus how nonflat N is. A more
geometric application is given by considering an algebraic variety X embedded
in Cn. When we want to know the dimension of X , we can do it by calculating
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the Hilbert function of the associated coordinate ring, which in practice can be
a horrendous task. If we know a free resolution, life becomes easier, since we
know the Hilbert functions of free polynomial rings - they are rather easy. To
summarize: yes, there are case where free resolutions are useful and in fact,
the information one uses is not so much in the precise form of the free modules
appearing in the free resolution as well as in the chain as a whole. This infor-
mation is not changed when we find another free resolution. (Note: this kind of
thinking initialized the birth of triangulated categories and the general theory
of derived functors, leading to complicated issues like Grothendieck duality.)

2 Equivalences of first syzygies

The presentation of Zariski and Samuel starts with an observation that is rather
useful and that ends with a lemma that is of general interest.

The observation is captured in the statement:

for two different first syzygies S and S′, there exist free modules T
and T ′ such that S ⊕ T ∼= S′ ⊕ T ′.

To see this, we consider what happens when we choose a different set of
generators for M . Suppose, we have two sets of generators B = {m1, . . . ,ms}
and B′ = {n1, . . . , nt} giving rise to two maps: ϕ : F → M and ϕ′ : F ′ →
M , where F = Rs, F ′ = Rt and ϕ : (r1, . . . , rs) 7→ m1r1 + . . . + msrs and
ϕ′(r1, . . . , rt) :7→ n1r1 + . . .+ntrt). Let K be the kernel of ϕ and K ′ the kernel
of ϕ′. We then consider the map ψ : F⊕F ′ →M given by ψ(x,y) = ϕ(x)+ϕ(y)
and call L the kernel of ψ. Clearly, K ⊕K ′ ⊂ L. Since both B and B′ are sets
of generators, we have an expression of the form

ni =
∑

k

cikmk .

We now define the s-vectors ci = (ci1, , . . . , cis) ∈ F and the elements ti ∈ F⊕F ′

by
ti = (ci, ei) ,

where ei ∈ F ′ is a t-vector with zeros everywhere, except at the ith entry, where
there is a 1. The ti generate a submodule T of L and one easily sees that T is a
free module. Let now (x,y) be an element of T , then

∑

i ximi +
∑

j yjnj = 0.
But then

0 =
∑

(xi + yjcji)mi ,

and thus x +
∑

yjcj lies in S. We can then write any element of L as

(x,y) = (x +
∑

yjcj , 0) −
∑

yjtj ,

which means that L = T ⊕ S. Interchanging the S and S′, we see that there
exists a free module T ′ such that L = T ′ ⊕ S′. We conclude that for two first
syzygies S and S′ there exist two finitely generated free modules T and T ′ such
that S ⊕ T ∼= S′ ⊕ T ′.

We now show that the observation gives rise to an equivalence relation on
the class of finitely generated R-modules. We define two modules M and M ′ to
be equivalent if there exist free modules F and F ′ such that M ⊕F ∼= M ′ ⊕F ′.
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If M and M ′ are equivalent we write M ∼M ′. Trivially we have M ∼M ; just
take the zero-module. Furthermore, if M and M ′ are isomorphic, then M ∼M ′.
By the definition of being equivalent, ifM ∼M ′ then also M ′ ∼M - because we
defined the equivalence in a symmetric way. Now let M ∼ M ′ and M ′ ∼ M ′′,
then there are free modules F , F ′, G′ and G′′ such that M ⊕F ∼= M ′ ⊕ F ′ and
M ′ ⊕G′ ∼= M ′′ ⊕G′′. Hence we have

M ⊕ F ⊕G′ ∼= M ′ ⊕ F ′ ⊕G′ ∼= M ′′ ⊕G′′ ⊕ F ′ ,

and it follows that M ∼M ′′.
To prove that all further syzygies are equivalent in the sense mentioned

above, it suffices to show that if two modules are equivalent then their first
syzygies are also equivalent. Let therefore M and M ′ be equivalent modules, so
that there are free modules L and L′ with M ⊕ L ∼= M ′ ⊕ L′. Let F and F ′ be
two finitely generated free modules such that

0 −→ S −→ F −→M −→ 0 , 0 −→ S′ −→ F ′ −→M ′ −→ 0 ,

are exact. Thus S is a first syzygy of M and S′ is a first syzygy of M ′. Let us
denote the surjective map F →M by ϕ and the surjective map F ′ →M ′ by ϕ′

so that S = Kerϕ and S′ = Kerϕ′. It is easily verified that the map

F ⊕ L→M ⊕ L , (f , l) 7→ (ϕ(f), l) ,

has kernel S and the map

F ′ ⊕ L′ →M ′ ⊕ L′ , (f ′, l′) 7→ (ϕ′(f ′), l′) ,

has kernel S′. Since M ⊕ L ∼= M ′ ⊕ L′ the first syzygies are equivalent, hence
S ∼ S′. So we conclude that no matter how the choices are made in obtaining
a free resolution of M , all the syzygies (the kernels of the maps appearing in
the free resolution) are equivalent.

Now we will take a step ahead. We want to prove that for modules of nice
rings, the free resolutions are finite. By finite we mean that the free resolution
contains only a finite number of nonzero free modules. In order that the free
resolution terminates at the (n+1)th step it is necessary and sufficient that the
nth syzygy is a free module. To prove that the statement that the resolution
terminates at the (n+1)th step is independent of the choices made, it is sufficient
to prove that when two modules are equivalent to each other and one of them
is a free module, then so is the other. Indeed, suppose that the nth syzygy K
in a free resolution is free, so that the (n+ 1)th free module is zero in the free
resolution. Then in any other free resolution the nth syzygy K ′ is equivalent
to K by the above and hence also free. Thus the other free resolution also
terminates at the (n + 1)th step. So we are set to prove the following: let
M be any module such that there is a finitely generated free module F such
that M ⊕ F is a free module, then M is free. Unfortunately, the statement
does not hold for all rings. We therefore restrict from now to the case where
R = k[x1, . . . , xn] for some n. Since R is now canonically Z-graded, we also
require that our modules are Z-graded and that the action of R preserves the
grading. The assumptions now imply that finitely generated graded modules
are generated by homogeneous elements. In this case we are better off than in
the general case. So, we make the milder statement:



3 Finitely many syzygies 5

Consider R = k[x1, . . . , xn] as a Z-graded ring and suppose M is a
Z-graded finitely generated R-module. Then M is free if and only if
there exists a free module F so that M ⊕ F is free.

If M is free, then also M ⊕ R is free. For the converse, we note that the
statement is proven if we have proven the following: M is free if and only if
M ⊕ R. Indeed, we look at the modules M ⊕ R, M ⊕ R2, and so on. When
we reach M ⊕ F , we conclude that at the previous step we already had a free
module, and thus at the step before that we also had a free module and so on,
till we have traced back our path to M .

Assume M ⊕ R is generated by homogeneous generators f1, . . . , fs, so that
M ⊕ R ∼= Rs. Any m ∈ M we can inject into M ⊕ R and then there are ri so
that m =

∑

rifi. We decompose the fi as fi = mi + aie, where the mi are in
M , the ai are in R and e is the generator of the R-summand (so to say, the 1).
Since the fi are homogeneous and e is homogeneous, so the ai are homogeneous.
We then have for m

m =
∑

i

rimi +
(

∑

j

rjaj

)

e .

As the sum is direct, we thus have
∑

j rjaj = 0 and we conclude that the
mi generate M . As (0, e) ∈ M ⊕ R there are homogeneous ti ∈ R so that
e =

∑

tifi =
∑

timi +
∑

j tjaje from which it follows that
∑

i tiai = 1. This
equation can only be fulfilled in R if there is a ti whose constant part is nonzero.
As the ti are homogeneous, it follows that at least one ti must be in k, and is
thus invertible. So we assume t1 is invertible. From the equation

∑

i

timi = 0 ,

it follows that M can be generated bym2, . . . ,ms. The amazing step is now that
we claim that the generators m2, . . . ,ms are independent; that is, the canonical
map Rs−1 → M sending (r2, . . . , rs) to r2m2 + . . . rsms has zero kernel. This
implies that M is a free module. So we consider any relation of the form
∑

cimi = 0 and we are interested in the existence of solutions c with c1 = 0.
We calculate

0 =
∑

i

cimi =
∑

i

ci(fi − aie) =
∑

i

cifi −
(

∑

j

cjaj

)(

∑

i

tifi

)

,

from which it follows that ci = ti
∑

j cjaj . But, then if c1 = 0, then since t1 is
invertible, we must have

∑

j cjaj = 0 and then all ci vanish. Hence, there is no
nontrivial c with c1 = 0 and

∑

cimi = 0. Thus the m2, . . . ,ms generate a free
module and thus M is free. This concludes the proof of the statement, and we
are ready to deal with the proof that all free resolutions are finite.

We remark that the above proof also works for more general Z-graded rings
and for local rings. For these cases we refer to [4].

3 Finitely many syzygies

We again make the simplifying assumption that R = k[x1, . . . , xn]. We consider
the ideals mj = (x1, . . . , xj). The ideal

(mj−1 : mj) = {r ∈ R|rmj ⊂ mj−1}
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clearly contains mj−1. If p is any polynomial depending nontrivially on xj , then
pq also depends nontrivially on xj , for any nonzero q. Thus (mj−1 : mj) = mj−1.
With this observation in mind, we are ready to prove the following:

Let R be the Z-graded ring k[x1, . . . , xn] and M be a finitely gener-
ated Z-graded module of R. Then the nth syzygy is a free module.

The theorem is due to David Hilbert and is known as the Hilbert Syzygy
Theorem. Actually, Hilbert proved its theorem in a slightly more general form,
whose proof is virtually the same. We again refer to [4] for a more complete
discussion. Below we give the proof of the statement, which will also be the end
of this exposition.

We may assume that M is a submodule of a free module. Indeed, if not we
can find a free module F so that F → M is surjective and the kernel S of such
a map is a first syzygy and S is a submodule of a free module. A free resolution
of M is then constructed by making a free resolution of S.

Given a free resolution

... −→ Fi+1 −→ Fi −→ ... −→ F1 −→M −→ 0 ,

we call ϕi the map Fi+1 → Fi and we call Si the kernel of ϕi−1. Then Si ⊂ Fi.
Now suppose that y is an element of Sk ∩m1Fk for k ≥ 1. Then y = x1a for

some a ∈ Fk and ϕk−1(y) = 0 so that x1ϕk−1(a) = 0. Since all the modules in
the resolutions are free or submodules of a free module, this equation can only
be solved if ϕk−1(a) = 0 and thus y ∈ m1Sk. It follows that Sk ∩ m1Fk = m1Sk

for all k ≥ 1.
In a next step we suppose that y is an element of Sk ∩m1Fk for k ≥ 2. Then

we can write y = x1a1 + x2a2 for some a1, a2 ∈ Fk and we have x1ϕk−1(a1) +
x2ϕk−1(a2) = 0. It follows that

x2ϕk−1(a2) ∈ m1Fk−1 .

Using the preparing remark that (mj−1 : mj) = mj−1, we deduce that ϕk−1(a2)
is in m1Fk−1. Since furthermore ϕk−1(a2) ∈ Sk−1 we have ϕk−1(a2) ∈ m1Sk−1.
Since Sk−1 = Im(ϕk−1) there is a b ∈ Fk with ϕk−1(a2) = x1ϕk−1(b). We then
write

y = x1(a1 + x2b) + x2(a2 − x1b) ,

from which we see that y ∈ m2Sk. Hence it follows that Sk ∩ m2Fk = m2Sk for
all k ≥ 2. Now the reader might already see the pattern! We will do one more
step...

Suppose that

y = x1a1 + x2a2 + x3a3 ∈ m3Fk ∩ Sk

for k ≥ 3. Then it follows that x3ϕk−1(a3) lies in m2Fk−1. We conclude by
the preparing remark that ϕk−1(a3) lies in m2Fk−1. Since ϕk−1(a3) also lies in
Sk−1 we see that ϕk−1(a3) is an element of m2Sk−1 = m2Im(ϕk−1). We thus
can write

ϕk−1(a3) = x1ϕk−1(b1) + x2ϕk−1(b2) ,

for some b1, b2 ∈ Fk. Expressing y as

y = x1(a1 + x3b1) + x2(a2 + x3b2) + x3(a3 − x1b1 − x2b2) ,
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shows that y ∈ m3Sk. Hence m3Fk ∩ Sk = m3Sk for all k ≥ 3. We can repeat
this procedure till we reach

mnFn ∩ Sn = mnSn .

Now, let s1, . . . , st be a set of homogeneous generators of Sn−1 and assume
that no si can be expressed in terms of the other generators. There is a surjective
map Rt = Fn → Sn−1. Suppose y is in the kernel of this map. Then there is a
relation ϕn−1(y) =

∑

i yisi = 0 for some yi ∈ R. Since the si are homogeneous,
all the homogeneous components of

∑

i yisi have to vanish. In particular this
implies that all ai have to lie in mn: Assume conversely that y1 = α(1− p) with
α ∈ k and p ∈ mn. We then write

(1 − p)s1 = −α−1
∑

i>1

yisi .

Looking at the left-hand side and knowing that the degrees of the homogeneous
parts of ps1 are higher than the degree of s1, we see that s1 can be expressed
in terms of the si with i > 2, which is a contradiction to the assumption that
no sj can be expressed in terms of the others. Therefore all yi are in mn and
we have Sn ⊂ mnFn. Combining this with the equality mnFn ∩ Sn = mnSn we
obtain

Sn = mnSn .

But then, Sn must be zero: Let y be a homogeneous element of lowest degree
d in Sn, then y ∈ mnSn and thus there must be some xi ∈ (Sn)d−1 and ri ∈ R

so that y =
∑

i rixi. But since by assumption (Sn)d−1 = 0, we can only have
xi = 0 and thus y = 0. Hence Sn = 0 and thus Sn−1 is free, which is what we
wanted to prove.

Any comments, remarks and questions can be sent to dbwestra@gmail.com.
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