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In this text we try to give a proof of a version of a theorem dating back to 1927 due to Van
der Waerden. Let us state the theorem first:

Theorem 1. Let the set of natural integers be colored using r colors. Then for any k, we
can find a number W (r, k), such that if N > W (r, k) we can find an arithmetic progression
of length k in the set {1, 2, 3, . . . , N}.

The theorem thus states if the natural numbers are divided into r classes, one can find a an
arithmetic progression of length k in one class. Independent of how the division is made,
one can give a number W (r, k), dependent on r and k, such that one is sure to find the
arithmetic progression among the first N natural numbers if N is larger than W (r, k). The
proof shown below does not give a value for W (r, k); it only shows a very bad upper bound
for W (r, k) and thus proves existence.

The proof is surely not a grant new proof, neither is it shorter, nor uses new concepts, nor
provides new insights; we just found it more natural, or easier to understand. We definitely
think it is completely equivalent to an already existing proof - see for example the works of
Graham, Rothschild and Khinchin for more complete accounts and references. We wrote it
down to provide a kind of notes that can be read by everyone; it also is a way to archive
our knowledge.

Let us define some of the objects:

A coloring of N is any map c : N → C, where the set C is equivalent to the set {1, 2, . . . , r}.
We will call C the set of colors. If two numbers x and y have equal color, we write c(x) =
c(y). If A and B are two subsets of N, we will write c(A) = c(B) only if B = A+d for some
integer d, so that B is a translate of A, B ∩ A = ∅ and c(a) = c(a+ d) for all a ∈ A.

We use the short-hand k-progression for arithmetic progression of length k, that is, a set
{a1, a2, a3, . . . , ak} such that ai+1 − ai = d for some positive integer d; aj = a1 + (j − 1)d.
We call a monochromatic k-progression any such set whose members all have equal color.
To simplify reading, we use the word integer and number for natural numbers.

To find a monochromatic 1-progression is trivial. If N is colored with r colors, then any
set of r + 1 elements will contain a monochromatic 2-progression. This is just an easy
application of the pigeon-hole principle, a principle that will play an important role in the
sequel.

We have not tried to make this text as compact as possible. Due to our almost nonexistent
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knowledge in this branch of mathematics, we have spelled out more details than necessary.
Our hope is that others find in this text an easy to read account of a well-known fact from
a branch algebra called Ramsey theory.

1 Finding a monochromatic 3-progression: two colors

Let us try with a rather easy exercise: We assume that N is colored with two colors and
we want to find a monochromatic 3-progression. In fact, we show that a monochromatic 3-
progression can always be found among the first 325 numbers. This result is rather poor; the
number 325 is much too high; already among the first 9 natural numbers a monochromatic
3-progression can be found. However, the method provides a way to get a general proof.
Although the number 325 might first seem rather arbitrary, we will shortly see the logic
behind this choice.

We divide the set {1, 2, 3, . . . , 325} into 65 blocks1 of 5 consecutive integers. A block of
5 integers can be colored in 25 = 32 ways. Therefore we can find at least two identically
colored blocks of five integers among the first 33 blocks. Let us call the first block A1, the
second A2 can be written as A1 + d for some integer d bounded by 32 · 5, since A1 and A2

are among the first 33 blocks of five. Therefore the block X = A2 + d = A1 +2d is a subset
of {1, 2, 3, . . . , 325}.

1 33 · 5 325

A1 A2 X
+d +d

If the color of one element x ∈ X equals the color of x− d ∈ A2 then we have a monochro-
matic 3-progression. But this need not be the case. Let us first consider the structure in
A1.

Since A1 has five elements, among the first three at least two must be equally colored. Thus
we can find three elements a1, a2 = a1+ e, and a3 = a1+2e in A1 such that a1 and a2 have
the same color. If the color a3 is equal to this color, we are done, so assume the contrary.

We know that a1+d is an element of A2 and since A1 and A2 are colored the same way, the
colors of a1 and a1 + d are identical. Similarly, the colors of a2 and a2 + d = a1 + d+ e are
identical, hence c(a1) = c(a1 + d + e). Also c(a3) = c(a3 + d). Now consider the following
3-progressions:

N1 = {a1, a1 + d+ e, a2 + 2(d+ e)} , N2 = {a3, a3 + d, a3 + 2d} .

Since a3 = a1 + 2e the final elements of N1 and N2 are equal; they focus on the same
element so to say. Since there are only two colors, the color of a1 + 2d+ 2e must equal one

1A block of integers we understand in the sequel as a set of consecutive integers.
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of the two c(a1) and c(a3). Furthermore, a1 +2(d+ e) lies in the set X . Hence we are sure
to find a monochromatic 3-progression among the first 325 integers.

1 33 · 5 325

A1 A2 X
+d +d

The solid lines represent the progressions N1 and N2. Both end in the same black solid
line. Since there are only two colors, the solid black line needs to be either red or blue,
completing one of the two of N1 and N2 to a monochromatic 3-progression.

The above proof used that a block of five is necessary to get a 3-progression whose first
two members are of equal color. Also, a block of five can be colored in 32 two ways, thus
2 · 32+ 1 = 65 of such blocks are needed to get a system of the type AAX , where the three
sets form a 3-progression and the first two blocks are colored identically.

2 Finding a monochromatic 3-progression: three colors

We can mimic the above strategy to find a monochromatic 3-progression if N is colored
using 3 colors. Since there are now 3 colors, we need to find 3 3-progressions with their first
two elements of the same color that end in the same point. We thus need one step more
compared to the strategy above.

In order to find two numbers with the same color, we need to consider at least 4 elements.
To complete these two to a 3-progression at most 7 numbers are required. Blocks of 7 can
be colored in 37 ways. To get a 3-progression of such blocks where the first two blocks
are identically colored, takes thus at most 2 · 37 + 1 such blocks, with a total of N1 =
7 · (2 · 37 + 1). A super-block of N1 integers can be colored in 3N1 ways. To find a 3-
progression of such super-blocks with the first two super-blocks colored identically, we thus
consider N ′

1 = 2 · 3N1 + 1 such superblocks. We define N = N1N
′

1.

Divide the set {1, 2, 3, . . . , N} with N = N1N
′

1 into N ′

1 superblocks of N1 = 7 · (2 · 37 + 1)
consecutive integers. Since N ′

1 = 2 ·3N1 +1 we can find three superblocks A1, B1 = A1+d1,
C1 = A1 + 2d such that A1 and B1 are colored in the same way. Thus for each a ∈ A1 we
have c(a) = c(a+ d1).

Consider the set A1. It has size N1 = 7 · (2 · 37 + 1). We can divide it into 2 · 37 + 1 blocks
with 7 consecutive numbers each. To B1 and C1 this division can be applied as well. Since
we have 2 · 37 + 1 of these blocks of seven, we can find a 3-progression of these blocks A2,
B2 = A2 + d2 and C2 = A1 + 2d2, such that A2 and B2 are colored identically. But then
the blocks A2, A2 + d1, A2+ d2 and A2 + d2+ d1 are all colored identically; adding d2 to an
element of A2 preserves the color, and adding d1 to an element of A1 also preserves color,
but A2 ⊂ A1.

Now we consider the block A2. It consists of seven elements. Hence we can find a 3-
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progression x, y = x + d3 and z = x + 2d3 inside A2 such that c(x) = c(y). Now we can
work our way back up to A1, B1 and C1.

1 N1N
′

1

A1 B1 C1

+d1 +d1

+d2 +d2

A2 B2 C2

1 7 · (2 · 37 + 1)

+d3 +d3

x y z

1 7

If we have c(x) = c(z), then x, y and z define a monochromatic 3-progression and we are
done. So assume the contrary, then we consider the following 3-progressions

N1 = {x, x+ d2 + d3, x+ 2(d2 + d3)} ⊂ A1

N2 = {x+ 2d3, x+ d2 + 2d3, x+ 2d2 + 2d3} ⊂ A1 .

We already know that c(x) = c(x+d3). Furthermore, for all u ∈ A2, we have c(u+d2) = c(u).
Hence c(x) = c(x+ d2 + d3) and c(x+ 2d3) = c(x+ d2 + 2d3). Thus the first two elements
of N1 are colored identically and also N2 has its first two elements colored identically. The
common final element may be colored in the same color as x or x + 2d3, in which case we
are done. So we assume the contrary; c(x), c(x+ 2d3) and c(x+ 2d2 + 2d3) are of different
color, which already exhausts all colors.

Now we consider the 3-progressions

M1 = {x, x+ d1 + d2 + d3, x+ 2(d1 + d2 + d3)}

M2 = {x+ 2d3, x+ d1 + d2 + 2d3, x+ 2d1 + 2d2 + 2d3}

M3 = {x+ 2d2 + 2d3, x+ d1 + 2d2 + 2d3, x+ 2d1 + 2d2 + 2d3} .

We have already seen that x and x+d2+d3 are of equal color. But since both are elements
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of A1, adding d1 preserves color. Thus M1 is a 3-progression whose first two elements have
the same color. By the same reasoning c(x+ 2d3) = c(x+ d2 + 2d3) = c(x+ d1 + d2 + 2d3)
and thus M2 is a 3-progression with its first two elements equally colored as well. The
same conclusion holds for M3. But then we have three 3-progressions with a common final
element such that the first two elements of any of them are equally colored but all three
progressions differ in the colors of their first two elements. Since their are only three colors,
the common final element must complete one of the three to a monochromatic 3-progression.

3 Finding a monochromatic 3-progression: four colors

By now the picture might have become clear, so let us consider the case of 3-progressions
in N colored with 4 colors as an exercise to get the notation for the general case.

We first put N3 = 9, N2 = N3N
′

3 with N ′

3 = 2 · 4N3 + 1 = 2 · 49 + 1, N1 = N2N
′

2 with
N ′

2 = 2 · 4N2 + 1, N0 = N1N
′

1 with N ′

1 = 2 · 4N1 + 1. We thus have sequence of numbers
(N3, N2, N1, N0) defined by a recurrence relation: Nr = Nr+1(2 · 4Nr+1 +1) and N3 = 9. In
any case, we have N0 = N1N

′

1 with

N1 = 9 · (2 · 49 + 1) ·
(

2 · 49·(2·4
9+1) + 1

)

, N ′

1 = 2 · 4N1 + 1 .

We divide the set {1, 2, . . . , N0} into N ′

1 blocks of N1 consecutive integers. We then find a
3-progression of sets A1, A1 + d1, A1 + 2d1, where A1 and A1 + d1 are colored identically.
Thus for any x ∈ A1 we have c(x) = c(x+ d1).

Any block of size N1 = N2N
′

2 can be divided into N ′

2 blocks of N2 consecutive numbers.
Since N ′

2 = 2 · 4N2 + 1 we find another 3-progression of blocks A2, A2 + d2, A2 + 2d2, all
contained in A1 such that A2 and A2 + d2 are colored identically.

Any block of size N2 = 9 · (2 · 49 + 1) can be divided into 2 · 49 + 1 blocks of 9 consecutive
integers. We can thus find inside A2 a 3-progression of blocks of size 9 whose first two
elements are equally colored: A3, A3 + d3 and A3 + 2d3 and c(A3) = c(A3 + d3).

Inside A3, which contains 9 elements, we find a 3-progression

α0 = {x, x+ d4, x+ 2d4} ⊂ A3 ,

with c(x) = c(x + d4). We will call such a 3-progression a 2-strand, since its first two
elements are of the same color, its final element might have a different color. If the final
element has the same color as the other two, the 2-strand is a 3-progression. If α0 is a
monochromatic 3-progression we are done, so we assume the contrary.

Since c(y) = c(y+ d3) for any y ∈ A3, we have c(x) = c(x+ d3) = c(x+ d3 + d4). Choosing
y = x+ 2d4 we also have c(x+ 2d4) = c(x+ d3 + 2d4). Therefore we find two 2-strands

α1 = {x, x+ d3 + d4, x+ 2(d3 + d4)} ⊂ A2

β1 = {x+ 2d4, x+ d3 + 2d4, x+ 2d3 + 2d4} ⊂ A2

with a common final element. Such a system of strands we will call a net. Since these strands
differ in the colors of their first two elements, we call such a system a heterochromatic net.
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What image we have in mind is given pictorially below; with more and more strands it
becomes like a complicated net.

If the color of the final element x+2d3+2d4 equals c(x) or c(x+2d4) we have a monochro-
matic 3-progression and we are done. So assume the contrary.

Consider the 3-progressions

α2 = {x, x+ d2 + d3 + d4, x+ 2(d2 + d3 + d4)} ⊂ A1

β2 = {x+ 2d4, x+ d2 + d3 + 2d4, x+ 2d2 + 2d3 + 2d4} ⊂ A1

γ2 = {x+ 2d3 + 2d4, x+ d2 + 2d3 + 2d4, x+ 2d2 + 2d3 + 2d4} ⊂ A1

with a common final element. Since c(y) = c(y + d2) for all y ∈ A2 and since c(x) =
c(x+ d3 + d4) and c(x+ 2d4) = c(x+ d3 + 2d4) – from the above 2-strands α1 and β1 – we
see that these 3-progressions are 2-strands. Since the initial elements have different colors
we have a heterochromatic net of 3-strands. If the common final element has a color equal
to one of the initial elements, we have a monochromatic 3-progression and we are done, so
we asumme the contrary.

Consider the 3-progressions

α3 = {x, x+ d1 + d2 + d3 + d4, x+ 2(d1 + d2 + d3 + d4)}

β3 = {x+ 2d4, x+ d1 + d2 + d3 + 2d4, x+ 2d1 + 2d2 + 2d3 + 2d4}

γ3 = {x+ 2d3 + 2d4, x+ d1 + d2 + 2d3 + 2d4, x+ 2d1 + 2d2 + 2d3 + 2d4}

δ4 = {x+ 2d2 + 2d3 + 2d4, x+ d1 + 2d2 + 2d3 + 2d4, x+ 2d1 + 2d2 + 2d3 + 2d4}

with a common final element. Comparing with the strands α2, β2 and γ2 and using c(y) =
c(y + d1) for all y ∈ A1 we see that these 3-progressions define a heterochromatic net of
strands. Since there are only 4 colors available, the common final element must complete
one of the strands to a monochromatic 3-progression.

4 j − k-Nets, k-strands and all that

Let us try to formalize the concepts we have seen so far:
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Definition 1. A k-strand is a (k+1)-progression whose first k elements define a monochro-
matic k-progression. The last element of a k-strand is called its final element.

If the color of the final element of a k-strand equals the color of the first element, it defines
a monochromatic (k + 1)-progression.

Definition 2. We call a j− k-net a set of j different k-strands A1, . . . , Aj such that Aa∩Ab

equals the final element of Aa and Ab, if a 6= b.

The k-strands in a j−k-net only have their final elements in common. Therefore a j−k-net
has jk + 1 elements.

Definition 3. We call a j − k-net heterochromatic if the colors of the first elements of the
k-strands are all different.

If N is colored using r colors, a heterochromatic r − k-net must contain a monochromatic
(k + 1)-progression; the color of the common final element must equal the color of the first
elements of one of the k-strands as there are only r colors.

We now define some claims, which we want to prove to be true. These claims are to be
seen as Boolean variables. Each of these claims states that a certain finite number N exists,
such that among the N integers, one can find a desired structure.

Definition 4. We call Λ(r, k) the claim: If N is colored using r colors, there exists a number
W (r, k) < ∞ such that among the first W (r, k) integers we can find a monochromatic k-
progression.

Definition 5. We call Λk the claim: Λ(r, k) is true for all r.

In the examples above, we have used a strategy of the form “either we already have a
k-progression and we are done, or we proceed and find a net with another strand with a
different color”. To formalize this, we need:

Definition 6. We call Σ(r, j, k) the claim: If N is colored using r colors, there exists a num-
ber S(r, j, k) < ∞ such that among the first S(r, j, k) integers we can find a monochromatic
(k + 1)-progression or a heterochromatic j − k-net of k-strands.

We have already seen that Λ(r, 2) is true. We can take W (r, 2) = r + 1. We have also
seen that Λ(2, 3) = Λ(3, 3) = Λ(4, 3) is true. Let us now collect some results about these
statements and their relations.

Lemma 1. Σ(r, 1, k) ⇐⇒ Λ(r, k).

A 1 − k-net is a k-strand. A k-strand starts with a monochromatic k-progression and is
followed by final element in any color. Thus if one can find a k-strand, one surely can find
a monochromatic k-progression and S(r, 1, k) ≥ W (r, k). Conversely, any monochromatic
k-progression can be completed to a k-strand. We can give a bound for S(r, 1, k) as follows:
If we have a monochromatic k-progression among the integers 1 upto W (r, k), then the
difference between any two elements is at most (W (r, k) − 1)/(k − 1). Even more, if this
number is not an integer, we should round down to the next nearest integer, which has
a fancy name, the floor value denoted by brackets ⌊ ⌋. But then S(r, 1, k) ≤ W (r, k) +
⌊(W (r, k)− 1)/(k − 1)⌋. For k = 2 we indeed find S(r, 1, 2) ≤ r + 1+ ⌊(r + 1)/1⌋ = 2r + 1.
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Lemma 2. If Λk is true, then Σ(r, j, k) =⇒ Σ(r, j + 1, k).

Assume that Σ(r, j, k) and Λk are both true. Denote S(r, j, k) by N . Any block of N
consecutive integers can be colored in r′ = rN ways. Since Λ(r′, k) is true, also Σ(r′, 1, k) is
true. Thus there is a number M such that if we divide the integers 1 upto NM into blocks
of size N , we can find a k-strand of the blocks of size N . That is, we have blocks A, A+ d,
. . ., A+ kd such that the first k blocks are colored identically. Since A has size N , we can
find either a monochromatic (k + 1)-progression or a heterochromatic j − k-net. If we find
a monochromatic (k + 1)-progression, we are done. So assume the contrary, then we have
j k-strands α(1), . . ., α(j) with a common final element but whose first members all have
a different color. Since we do not have a (k + 1)-progression, the final element has a color
different from all the first elements.

Let us consider any k-strand of the net

α(l) = {a, a+ δ, a+ 2δ, . . . , a+ kδ} ⊂ A , 1 ≤ l ≤ j ,

and let us write z for the common final element; z = a+kδ. We modify α(l) to the following
(k + 1)-progression

β(l) = {a, a+ (δ + d), a+ 2(δ + d), . . . , a+ (k − 1)(δ + d), a+ k(δ + d)} .

Since adding d, 2d, upto (k−1)d to an element of A preserves the color, we see that β(l) is a
k-strand with final element a+ k(δ+ d) = z+ kd. We can modify all α(l) in this way, which
all will have z+kd as their final element and in addition consider the new (k+1)-progression

β(j+1) = {z, z + d, z + 2d, . . . , z + kd} .

The color of z is different from all the initial elements of any k-strand β(1), . . . , β(j). Thus
we have a heterochromatic (j + 1)− k-net. In fact S(r, j + 1, k) ≤ NM .

z′x

y

z′x′

y′

z′′

+d +d

In the picture we have tried to present the idea of how to extend Σ(r, j, k) to Σ(r, j +
1, k) for the case j = 2 and k = 2. The new sequence are denoted {x, x′, z′′}, {y, y′, z′′}
and {z, z′, z′′}. Since the third block might be completely different colored, we have used
lightgray to display an unknown coloring.

Lemma 3. If Λk is true, then so is Λk+1.

If Λk is true, then for any r also Σ(r, 1, k) is true. By induction then also Σ(r, r, k) is true.
So either we have a monochromatic (k + 1)-progression or we can find a heterochromatic
r − k-net. But since there are only r colors available, the common final element must
complete one of the k-strands to a monochromatic (k + 1)-progression.
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Proof of Van der Waerden’s theorem: We already know that Λ2 is true and W (r, 2) =
r + 1. This serves as the induction start, and the induction step is then provided by the
last lemma 3. �

5 Final details

Let us first comment on a proof of Λ(r, 3): We already saw in sections 1, 2 and 3 how to
construct a 2-strand among the first 2r + 1 integers. Then we found we can construct a
heterochromatic 2 − 2-net or a monochromatic 3-progression among the first N2 = (2r +
1) · (2 · r2r+1 + 1) integers. If r = 2 this will suffice, if r > 2, we can go on and be sure to
be able to find a 3− 2-net or a monochromatic 3-progression among the first N3 = N2 · (2 ·
rN2 + 1) integers. If we then find a monochromatic k-progression we are done. Proceeding
inductively, suppose we have a number Nj such that either we find a monochromatic 3-
progression or a heterochromatic j − 3-net. Assuming we don’t have a monochromatic
3-progression, we divide the first Nj+1 = Nj(2 · rNj + 1) integers into 2 · rNj + 1 blocks of
size Nj . Among the first rN2 + 1 of these blocks, two of them must be colored identically,
and thus we find a 3-strand of blocks of size Nj : A, A + d and A + 2d. Within A we find
either a monochromatic 3-progression or a heterochromatic j − 3-net. Assuming we have
no monochromatic 3-progression, we find j 3-strands

{a1, a1 + δ1, z} , . . . , {aj , aj + δj , z}

inside A with common final element z = al+2δl for all 1 ≤ l ≤ j and such that z has a color
different from all c(al) for 1 ≤ l ≤ j. Since A + d is colored identically as A, we consider
the 3-progressions

{a1, a1 + δ1 + d, z + 2d} , . . . , {aj , aj + δj + d, z + 2d}

and
{z, z + d, z + 2d} ,

and conclude that they are 3-strands with common final element z+2d. Since they all differ
in the color of their first element, we have found a heterochromatic (j + 1)− 3-net.

Hence we can go on up to r − 3-nets, which must contain a monochromatic 3-progression
as there are only r colors available. Hence Λ3 is true.

Thus we can also use Λ(r, 3) as a start for the induction step. But indeed, having understood
this proof amounts to the construction of the proof of the general case.

There exists the following version of Van der Waerden’s theorem:

Theorem 2. Let N be colored using r colors. Then we can find a color, in which monochro-
matic k-progressions exists for any k.

It is clear that this version implies theorem 1. To see the converse, we first remark that
a monochromatic k-progression contains several monochromatic k′-progressions for k′ < k;
indeed, we can just truncate a k-progression down to a k′-progression. Now, for each k
we can find a color, so that we have a monochromatic k-progression in this color. We can
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view this as a map w : N → {1, 2, . . . , r}. However, since there are only r colors, for at
least one color α ∈ {1, 2, , . . . , r} we must have infinitely k with w(k) = α. But then we
can find a monochromatic k-progression in color α for any k – if necessary we truncate a
monochromatic K-progression of color α for K > k.

The theorem of Van der Waerden can be extended to a result called Szemerédi’s theorem
(1975), which generalizes the (finite) colors to subsets with a certain property, which goes
under the name of positive upper density. This result was first generalized and then further
used by Green and Tao in 2004 to prove that among the set of prime numbers, arbitrarily
long arithmetic progressions can be found.
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