Planungsblatt Mathematik für die 7A

Woche 11 (von 16.11 bis 20.11)

Hausaufgaben ¹

Donnerstag 19.11:

Lerne bzw. erledige die Aufgaben 3.23(a)(d), 3.24, 3.26(c), 3.28(g).

Nimm die GK-Präsentationen mit! Donnerstag will ich die Präsentationen sehen, und mit euch die Aufgaben besprechen, also bitte, das Material dazu mitnehmen!

Bis Freitag 20.11:

Ich bin den Freitag mal wieder auf Ausflug! Ich bitte euch aber, die GK-Aufgaben, die ausgeteilt wurden, gut zu analysieren. Jetzt sind wir noch einigermaßen in der Probephase, aber die Fehler, die wir jetzt machen, sollten danach nicht wieder passieren. Das heißt: üben, selbst üben, viel reflektieren, selbst Schwächen udn Stärken analysieren, und lernen! Mache das auch bitte!

Bis Dienstag 24.11:

- (1) Lerne/Erledige die ausgeteilten Typ-1-artigen Aufgaben!
- (2) Bereite die Aufgaben 3.30, 3.31, 3.32 aus dem Buch gut vor!

Kernbegriffe dieser Woche:

Differenzieren, Zunahme, Zunahmerate, Sekante, Tangente, Steigung, Differenzenquotient, Neigungswinkel, mehrfache Ableitungen, Terrassenpunkt, Wendepunkt

Ungefähre Wochenplanung

Schulübungen.

- (a) Dienstag (1. Std): (i) HÜ-Bespr., (ii) das Üben einiger Grundkompetenzen: 1.01, 1.02, 1.03; 1.09 bis 1.12; 1.33 bis 1.37 (iii) Aus dem Buch die Aufgaben: 3.23(a)(d), 3.24, 3.26(c), 3.28(g)
- (b) Donnerstag (2. Std): (i) HÜ-Bespr. und evt. mSWH, (ii) Grundkompetenzenstunde: die Präsentationen in Kurzfassung und die Aufgaben dazu besprechen, (iii) Ich gebe euch ein Hand-Out mit "schnellen" Typ-1-artigen Aufgaben. Ich bespreche einiges davon, das Studieren ist aber für euch!
- (c) Freitag (3. Std): Ich bin mit einer Klasse auf Ausflug, also wird diese Mathematikstunde wahrscheinlich entfallen.

Mehrfache Ableitung: zweite Ableitung f'' ist die Ableitung der Ableitung. Wenn f ein Polynom von Grad n ist, dann ist die k. Ableitung $f^{(k)}$ ein Polynom von Grad n-k, also $f^{(n+1)}=0$. Terrassenpunkt: Erste Ableitung ist Null, aber es ist kein Extremum; das Monotonieverhalten ändert sich nicht. Standardbeispiel: x=0 bei $f(x)=x^3$.

Wendepunkt: Eine Stelle x=a, sodass f''(a)=0 und f' muss das Vorzeichen wechseln. Standardbeispiel: x=0 bei $f(x)=x^3-x$

Unterlagen auf www.mat.univie.ac.at/~westra/edu.html

¹Für manche Aufgaben wird auf Rückseite/Anhang/Buch/Arbeitsblatt verwiesen.

Kumulative Fragenkatalog für SWH – exemplarische Aufgaben, nicht ausschöpfend!

- (a) Zerlege in lineare Faktoren $p(x) = x^2 3x + 12$; $q(x) = 2x^2 x 1$.
- (b) Gib ein Polynom dritten Grades mit den folgenden Nullstellen x = -3, x = -2 und x = 4.
- (c) Skizziere den Graphen einer kubischen Polynomfunktion mit ZWEI Nullstellen.
- (d) "Berechne" für z=2+i und w=3+2i: $\frac{z}{w}$, $(2z-3w)^2$, 2z+5w, zw, $\overline{z}w$ und $\overline{z-w}$.
- (e) Was ist der Betrag einer komplexen Zahl? Deute ihn geometrisch!
- (f) Zerlege in lineare Faktoren $x^2 x + 7 = 0$.
- (g) Beweise, dass wenn $z \neq 0$ eine komplexe Zahl ist, dass $z\overline{z} > 0$.
- (h) Zeige, dass wenn die zwei Nullstellen von $p = x^2 + 3x + 10$ zu einander komplex konjugiert sind. Kannst du dies verallgemeinern?
- (i) Wenn 2+4i die "Nullstelle" eines reellen Polynoms ist, was ist dann die andere Nullstelle?
- (j) Formuliere die Regel von Horner!
- (k) Vereinfache $\frac{x^4-y^4}{x-y}$ und $\frac{x^4-y^8}{x-y^2}$.
- (1) Berechne den Betrag von z = 3 4i, $w = \frac{1}{1-i}$ und von zw.
- (m) Zeige, dass $z = \frac{-1+i\sqrt{3}}{2}$ die Gleichung $z^3 = 1$ erfüllt. Kannst du damit alle Lösungen zu $z^3 = 1$ finden?
- (n) Siehe alle Fragen von "Elementares zu $\mathbb C$ eine Menge leichte Aufgaben" bei Woche 4.
- (o) Finde die Steigung der Sekante durch (a|f(a)) und (b|f(b)) für (i) $f(x) = \frac{1}{x}$, (ii) $f(x) = c \cdot x^2$, (iii) $f(x) = c \cdot x^4$, (iv) $f(x) = k \cdot x + d$.
- (p) Finde die Steigung der Tangente am Graphen von $f(x) = 3x^2$ im Punkt (2|12).
- (q) Drücke die Steigung der Tangente am Graphen von $f(x) = ax^3$ im Punkt (2|8a) in a aus.
- (r) Was ist Differenzieren? Drücke in Worten aus!
- (s) Erkläre den Unterschied zwischen dem Differenzenquotienten und dem Differentialquotienten!
- (t) Finde die Funktionsvorschrift für die Tangente am Graphen von $f(x) = (x^2 2)^2$ an der Stelle x = 1.
- (u) Untersuche das Monotonieverhalten von $g(x) = x^3 4x^2 + 1$.
- (v) Zeige, dass die kubische Funktion $k(x) = x^3 3x^2 + 8x$ keine Extremstellen hat.
- (w) Finde die Wendestellen von $h(x) = x^4 x^3 + x^2$.
- (x) Finde $a \in \mathbb{R}$, sodass $f(x) = x^4 3x^2 + ax^2 + 3x + 5$ keine Wendestellen hat.