Planungsblatt Mathematik für die 1E

Woche 19 (von 07.01 bis 11.01)

Hausaufgaben ¹

Bis Mittwoch 09.01:

Lerne und/oder erledige die Aufgaben 344, 345, 347(a)(b)(c), 348, 349, 350(a)(b)

Bis Donnerstag 10.01:

Bereite dich gut auf die zweite SA vor!

Bis Freitag 11.01:

Lerne und/oder erledige Aufgaben 351(a)(b)(c)(d), 353(a)(b), 354, 355

Bis Dienstag 15.01:

Schöne Weihnachtsferien!!!

Kernbegriffe dieser Woche:

Rechnen mit natürlichen Zahlen, dekadisches Zahlensystem, Dezimalzahlen, Längen- und Geldeinheiten

Ungefähre Wochenplanung

Schulübungen.

- (a) Dienstag (4. Std): (i) HÜ-Bespr. (ii) Vorbereitung auf SA, (iii) gute Übungsaufgaben fürs Verständnis: 344, 345, 347(a)(b)(c), 348, 349, 350(a)(b)
- (b) Mittwoch (2. Std): (i) HÜ-Bespr. (ii) Vorbereiten auf SA, (iii) 351(a)(b)(c)(d), 353(a)(b), 354, 355 und weitere
- (c) Donnerstag (2. Std): SCHULARBEIT
- (d) Freitag (3. Std): (i) HÜ-Bespr. (ii) Kleine Aufgaben mit Dezimalzahlen, so zum Verständnis: siehe unten

Unterlagen auf www.mat.univie.ac.at/~westra/edu.html

 $^{^1\}mathrm{F\"{u}r}$ manche Aufgaben wird auf R\"{u}ckseite/Anhang/Buch/Arbeitsblatt verwiesen.

Multiplizieren mit natürlichen Zahlen.

Weil $3 \cdot X = X + X + X$, so kann man auch leicht sehen, dass $3 \cdot 0, 25 = 0, 25 + 0, 25 + 0, 25 = 0, 75$.

- 1. $5 \cdot 0, 2$
- $2.4 \cdot 1, 4$
- $3.\ 25 \cdot 0, 3$
- 4. $15 \cdot 0, 15$
- $5.100 \cdot 0.4$
- $6.100 \cdot 0.04$
- $7. 123 \cdot 1, 23$

Multiplizieren mit Dezimalzahlen.

Wie berechnet man $0, 4 \cdot 0, 2$?

<u>Methode 1</u>. Es wäre schon leichter, wenn da $4\cdot 0, 2$ stünde. Aber, wir können dafür sorgen! Wir wissen noch nicht, was $0, 4\cdot 0, 2$ ist, aber wenn wir das mal zuerst mit 10 multiplizieren, dann haben wir $10\cdot 0, 4\cdot 0, 2$ und das ist $4\cdot 0, 2$. Und das wissen wir! Denn $4\cdot 0, 2 = 0, 2+0, 2+0, 2+0, 2=0, 8$. Somit wissen wir, dass unser Gefragtes nach Multiplikation mit 10 als Ergebnis 0, 8 hat. Somit muss unser Gefragtes zehnmal kleiner sein! Also, machen wir unser Zwischenergebnis zehnmal kleiner, also aus 0, 8 machen wir dann 0, 08. Resultat: $0, 4\cdot 0, 2 = 0, 08$

<u>Methode 2</u>. Wir zerlegen beide Faktoren, denn $2 \cdot 4 = 8$, und damit können wir das Problem vereinfachen. Denn $0, 4 = 4 \cdot 0, 1$ und $0, 2 = 2 \cdot 0, 1$. Unser Gefragtes ist also $2 \cdot 4 \cdot 0, 1 \cdot 0, 1$. Nun aber, $2 \cdot 4 = 8$ und was ist $0, 1 \cdot 0, 1$? Ganz einfach, denn was ist ein Zehntel von einem Zehntel? Ein Hunderdstel, also $0, 1 \cdot 0, 1 = 0, 01$. Somit finden wir $0, 4 \cdot 0, 2 = 8 \cdot 0, 01 = 0, 08$. Dasselbe wie vorher. Muss also richtig sein.

- 1. $0,01\cdot 0,01$
- $2. 0, 1 \cdot 0, 1 \cdot 0, 1$
- $3. 0, 3 \cdot 0, 3$
- $4. \ 0.03 \cdot 0.3$
- $5. 0,03 \cdot 0,03$
- $6. 0, 12 \cdot 0, 1$
- 7. $0, 8 \cdot 0, 05$
- 8. $0, 12 \cdot 0, 11$
- 9. Wie oft passt $0, 12 \cdot 0, 5$ in $12 \cdot 5$?

Rechenwettbewerb 1E

Woche 16

NAME:

- 1. $483 \cdot 577$
- $2. \qquad 0, 3+0, 03+0, 003+0, 1234+0, 789$
- 3. $15 \cdot 0, 15$
- 4. $13 \cdot 13 11 \cdot 11$
- 5. 77688: 12 207168: 32
- 6. $1+2+3+4+\ldots+50$
- 7. 2+4+6+8+10+...60
- $8. \qquad 12 \cdot 13 \cdot 14 \cdot 15$
- 9. 123456789 : 9
- 10. $6 \cdot (6 + 6 \cdot (6 + 6 \cdot (6 + 6)))$
- 11. $(1+1) \cdot (1+1+1 \cdot (1+1+1+1) \cdot (1+1+1))$
- 12. $(1+2) \cdot (3+4 \cdot (5+6))$