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Abstract
The least gradient problem, which is related to conductivity imaging in medical scans, see [5], and to

free material design models, see [4], is a variational problem of the form

min{
ˆ

Ω
|Du|, u ∈ BV (Ω), Tu = f}, (1)

where f ∈ L1(Ω) and T denotes the trace operator. It is well known that for continuous boundary data
the solution exists and is continuous up to the boundary. Here, we focus on the two-dimensional case
and extend the class of functions for which the solution exists to BV (∂Ω) and discuss how the set of
minimizers looks like. However for discontinuous f uniqueness of solutions may fail; it turns out that
the structure of superlevel sets of all minimizers is very similar and we may characterize all of them.

Introduction

There are various ways to introduce problem (1) in the literature. The most general way,
considered in [6] and requiring little regularity of the boundary and boundary data, would
be to use the direct method for the functional

F (u) =

{ ´
Ω |Du| if u ∈ BV (Ω) and Tu = f ;

+∞ otherwise.

However, this functional is not lower semicontinuous with respect to L1 convergence and
even existence of solutions for arbitrary f ∈ L1(∂Ω) fails (see [7]). The counterexample
was a characteristic function of a certain fat Cantor set; note that it does not lie in BV (∂Ω).
We can instead consider the relaxation F of the original functional, but we have to replace
the Dirichlet boundary condition by a weaker one.

Another way, studied in [8], [5], and [4] ,is to impose stronger conditions on Ω and con-
sider the Dirichlet boundary condition in the sense of traces. We follow this approach and
assume Ω ⊂ R2 to be an open, bounded, strictly convex set with Lipschitz (or C1) boundary.
The boundary datum f will belong to L1(∂Ω) orBV (∂Ω). These assumptions are motivated
mainly by the existence result for continuous boundary data in [8].

Existence in Ω ⊂ R2

Since [8] it is well known that for an open, bounded, stricly convex set Ω with Lipschitz
boundary and f ∈ C(∂Ω) there exists a unique solution of the least gradient problem and
that it is continuous up to the boundary. This result can be extended (see [3]):

Theorem 1. Let Ω ⊂ R2 be an open, bounded, strictly convex set with C1 boundary. Then
for every f ∈ BV (∂Ω) there exists a solution of least gradient problem for f .

Note that this condition is not necessary and if we denote by X the space of traces of least
gradient functions, then

C(∂Ω) ∪BV (∂Ω) ( X ( L1(∂Ω).

Outline of proof:
• Fix a sequence of smooth functions fn→ f in the strict topology. Consider un ∈ BV (Ω),

the unique solutions to the least gradient problem for fn ∈ C∞(∂Ω).
• We prove that un → u, a least gradient function, in L1(Ω); two-dimensional geometry

implies that χ{un≥t}→ χ{u≥t} strictly for a.e. t. By the co-area formula un→ u strictly.
• By continuity of the trace operator in the strict topology we have Tu = f .

Uniqueness of solutions

For continuous boundary data the solutions are unique. There are also examples with
uniqueness of solutions constructed via decomposition of ∂Ω into two arcs, on which the
boundary data are monotone. The first example for nonuniqueness is the Brothers example:

Consider Ω = B(0, 1) and the
boundary datum f (x, y) = x2 − y2.
The unique solution u has bound-
aries of level sets as shown on the
picture and constant value zero on
the square S = (− 1√

2
, 1√

2
)2. Now we

add jumps to the boundary datum:
consider

f̃ (x, y) =

{
x2 − y2 + 1 if |x| > 1√

2

x2 − y2 − 1 |x| < 1√
2
.

The solutions ut all have the same
structure of boundaries level sets
(save for translation by±1), but may
differ on S: there is a one-parametric
family of solutions characterized by
the constant value t ∈ [−1, 1] on S.

Uniqueness: structure of solutions

It turns out that all the examples of nonuniqueness of solutions in R2 are similar to the
Brothers example and involve level sets of positive measure.

Theorem 2. Let u, v be functions of least gradient in Ω ⊂ R2 such that Tu = Tv = h. Then
u = v on Ω\(C ∪ N), where both u and v are locally constant on C and N has Hausdorff
dimension at most 1.

Note that this result involves no restrictions on the regularity of the boundary or the bound-
ary datum. The set N is the sum of Ju and Jv, the jump sets of u and v respectively, and (for
technical reasons) of Bu and Bv, boundaries of level sets of positive measure of u and v, i.e.

Bu =
⋃

{t: l2({u=t})>0}

(∂{u ≥ t} ∪ ∂{u ≤ t}).

The set N has Hausdorff dimension at most 1. Moreover, every connected component of C
is a polygon (possibly with countably many sides) satisfying Green’s formula, i.e. the sum
of lengths of even-numbered sides equals the sum of lengths of odd-numbered sides.

Remarks about the proof:
• The proof is geometric in nature and is based on an observation from [2] that the bound-

aries of superlevel sets of least gradient functions are minimal surfaces. We rely heavily on
the maximum principle for minimal graphs and on local properties of minimal surfaces in
the neighbourhood of ∂Ω;
• The most important step is to prove that ∂{u ≥ t} and ∂{v ≥ s} cannot intersect in

Ω\N for any t 6= s. This is precisely why u and v may differ on C; there are no boundaries
of superlevel sets inside C.

Finding all the solutions

The proof of Theorem 1 gives us an algorithm which produces at least one solution u0. By
Theorem 2 any other solution may differ from u0 only on a setC where u0 is locally constant
(we may assume it is connected). What happens next depends on the geometry of C:
Proposition 3. If C is a finite polygon with sides Γi that has no subpolygons which obey
Green’s formula, then the class of solutions to least gradient problem with boundary data
h contains precisely the functions u such that u = u0 in Ω\C with constant value t on C
satisfying the inequality

max
k
T Γ2k−1u0 ≤ t ≤ min

k
T Γ2ku0.

Here we assumed (without loss of generality) that Γ1 ⊂ ∂{u0 ≥ t0}, where t0 is the value of
u0 on C. T Γku0 denotes the trace of u0 on Γk from Ω\C (it turns out to be constant).

If C has subpolygons which obey Green’s formula, situation becomes a bit harder. While
in the Brothers example all the solutions u are constant on C, in general we have to split
C into Ci, minimal subpolygons which satisfy Green’s formula, and u is only constant on
each Ci. Therefore a level set of u0 can split into multiple level set of u (and the reverse):

Even in this case an analogue of Proposition 3 holds: we can describe the set of all solutions
to the least gradient problem in terms of any single solution u0.

Selection criterion

Motivated by the strain-gradient plasticity model considered in [1], we consider approxi-
mate minimalization problems:

Gε(u) = F (u) +
√
ε‖u‖1 =

{ ´
Ω

√
ε|u| +

´
Ω |Du| +

´
∂Ω |Tu− f | if u ∈ BV (Ω)

+∞ otherwise.

The passage ε → 0 models an increasing effective range of interaction. We may prove that
Γ− limε→0Gε = F and we have
Theorem 4. Let vn ∈ arg minGεn and suppose that vn → v in L1(Ω) as εn → 0. Then
v ∈ arg minF . and it is the element with the smallest L1 norm among minimizers of F .

• Theorem 2 implies that the minimizer of F with the smallest 1−norm is unique. Thus
the functional Gε produces a selection criterion for minimizers of F .
• For f ≥ 0 Theorem 4 is stronger, as every sequence vn ∈ arg minGεn is increasing,

therefore convergent to a least gradient function.

References
[1] M. Amar, M. Chirocotto, L. Giacomelli, and G. Riey, Mass-constrained minimization of a one-homogeneous functional arising in strain-gradient plastic-

ity, J. Math. Anal. Appl. 397 (2013), 381–401.

[2] E. Bombieri, E. de Giorgi, and E. Giusti, Minimal cones and the Bernstein problem, Invent. Math. 7 (1969), 243–268.
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