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Abstract
The anisotropic least gradient problem is a variational problem of the form

min{
ˆ

Ω
|Du|φ, u ∈ BV (Ω), Tu = f}, (ALGP)

where φ is a fixed norm, f ∈ L1(Ω) and T denotes the trace operator. When φ is the Euclidean norm, it
is well known that for continuous boundary data the solution exists and is continuous up to the boundary.
Here, we focus on the two-dimensional case and see if the result holds in the anisotropic setting. Our
main focus in on two issues: regularity of a unique minimizer for a strictly convex norm and existence of
low-regularity minimizers for a non-strictly convex norm.

Introduction

In the classical least gradient problem, when φ is the Euclidean norm, existence, regular-
ity, and uniqueness of minimizers depends on the geometry of the set Ω ⊂ R2. Here the
situation is slightly more complicated, as we have additionally the interplay between the
shapes of Ω and the unit ball in the anisotropic norm Bφ(0, 1); our goal is to explore this
relationship. We divide our reasoning into two stages:
• The unit ball Bφ(0, 1) is strictly convex. Then, regardless of the regularity of φ, we

are able to prove existence and uniqueness of minimizers for strictly convex Ω and obtain
regularity estimates in terms of the modulus of continuity of the boundary data.
• The unit ball Bφ(0, 1) has flat facets. Then, under stronger assumptions on Ω, we use the

regularity estimates from the strictly convex case to prove existence of a single minimizer
with the same regularity. However, we lose uniqueness of minimizers and the additional
minimizers may have regularity no better than BV (Ω) ∩ L∞(Ω).

Existence and uniqueness for strictly convex Bφ(0, 1)

Firstly, we need to understand how the geometry of Ω influences the regularity of least
gradient functions. For existence of minimizers, the crucial idea is the barrier condition:
Definition. ([4, Definition 3]) Let Ω ⊂ RN be an open bounded set with Lipschitz boundary.
Suppose that φ is an elliptic metric integrand. We say that Ω satisfies the barrier condition
if for every x0 ∈ ∂Ω and sufficiently small ε > 0, if V minimizes Pφ(· ;RN) in

{W ⊂ Ω : W\B(x0, ε) = Ω\B(x0, ε)}
then

∂V ∩ ∂Ω ∩B(x0, ε) = ∅.
This condition guarantees existence of minimizers to the anisotropic least gradient prob-

lem for continuous boundary data; see [4]. Now, we prove that the barrier condition is
equivalent to strict convexity of Ω; we obtain
Theorem 1. Let Ω ⊂ R2 be an open bounded strictly convex set. Suppose that φ is a norm on
R2 and Bφ(0, 1) is strictly convex. Let f ∈ C(∂Ω). Then then there exists a unique solution
to Problem (ALGP).

The uniqueness proof is based on a topological argument and does not require any regu-
larity of Ω; this is a departure from the setting of [4].

Regularity for uniformly convex Ω

We briefly recall the main regularity result from [7] concerning the isotropic case. Assume
that ∂Ω ∈ C2 and that Ω is uniformly convex, i.e. the mean curvature of ∂Ω is positive.
Then, if the boundary data f is of class C0,α(∂Ω), where α ∈ (0, 1], then the (unique) min-
imizer of the least gradient problem u is in the class C0,α/2(Ω). As the (two-dimensional)
examples provided by the authors show, this result is optimal. Here, we allow Ω to have only
Lipschitz boundary and use the following definition of uniform convexity (which agrees
with the classical definition for C2 sets):
Definition. We say that the set an open bounded convex set Ω is uniformly convex, if the
following condition is satisfied: let P = {y ≥ ax2}, where a > 0. Let x0 ∈ ∂Ω and let l
be a supporting line at x0. Then there exists P ′, an isometric image of P , tangent to l at x0

such that Ω ⊂ P ′ and ∂P ′ ∩ Ω = {x0}.
Proposition 2. Suppose that Ω ⊂ R2 is uniformly convex and Bφ(0, 1) is strictly convex.
Let f ∈ C(∂Ω) and take ω to be its modulus of continuity. Let u be the solution of Prob-
lem (ALGP) with boundary data f . Then u ∈ C(Ω) and it is continuous with modulus of
continuity

ω(|x− y|) = ω(c(Ω)|x− y|1/2).

Let us stress the fact that in the Proposition above the constant c(Ω) depends only on Ω and
not on the metric integrand φ (and can be explicitly calculated). If the boundary is C2, then
it depends only on the diameter and the lower bound c on curvature of Ω.

Remarks about the proof:
• It uses an anisotropic analogue of a classical result from [1] on the regularity of superlevel
sets of least gradient functions;
• It uses heavily the geometry of Ω (it boils down to calculation of distances for some pos-
sible configurations of Ω and the parabolas from the Definition above), but does not use any
regularity of ∂Ω or φ altogether;
• The method used adapts quite well to other situations, for instance if only parts of ∂Ω
satisfy the uniform convexity condition or if the set Ω is only convex and the boundary data
f satisfy some additional geometrical assumptions (for existence of minimizers in that case,
see [6]).

Existence of minimizers for non-strictly convex Bφ(0, 1)

The existence of minimizers is based on an analogue of Miranda’s theorem, which states
that a limit of a sequence of least gradient functions is a least gradient function. In the next
result we allow the norm to depend additionally on the location x ∈ Ω. Define the following
functional (which is a relaxation of the total variation functional with respect to Dirichlet
boundary data, see [5]):

Fφ(v) =

ˆ
Ω

|Dv|φ +

ˆ
∂Ω

φ(x, νΩ)|Tv − f |dHN−1.

Theorem 3. Let φ and φn be metric integrands such that φn→ φ in C(Ω× ∂B(0, 1)). Then
the sequence of functionals Fφn Γ−converges (with respect to the L1 convergence) to the
functional Fφ.

The assumption that φn→ φ in C(Ω× ∂B(0, 1)) is quite natural in this context: as metric
integrands are 1−homogenous in the second variable, it is sufficient to check convergence
only on the unit sphere. Furthermore, an easy example shows that we may not relax the
assumption concerning uniform convergence in Ω.

Using Theorem 1 and Theorem 3, we see that we only have to take care of the boundary
condition; we keep the boundary datum fixed and approximate arbitrary norm φ by (strictly
convex) norms φn = φ + 1

nl2, where l2 is the isotropic norm. Let un be a minimizer for
the norm φn. Γ−convergence of the functionals above guarantees convergence (on a sub-
sequence) of un to a function u ∈ BV (Ω), which is a minimizer of the functional Fφ. We
need to see that Tu = f . There are two ways of doing that:
• If Ω is uniformly convex, then we may use the regularity estimates from Proposition 2

(which do not depend on φ!) and a maximum principle to use the Arzela-Ascoli theorem
and obtain a minimizer with the same regularity estimate;
• If Ω is not uniformly convex, then we may blow up the boundary of Ω to prove that
Tu = f directly from the definition of trace. However, in this case we do not obtain any
regularity estimates better than u ∈ C(Ω).

Minimizers with low regularity

As line segments are not the only connected φ−minimal surfaces, we lose uniqueness of
minimizers to the anisotropic least gradient problem. Firstly, we have to find a large class of
φ−minimal surfaces (we do not intend to find all of them, as they may form various types
of singularities, see for instance [2]). The next Proposition gives such a class.
Proposition 4. Let αν0 ∈ int I , where I is a flat part of the boundary of Bφ(0, 1). Define N
to be an angular neighbourhood of ν0 such that a positive multiple of every vector in N lies
in I . Let F be a set such that its boundary is a piecewise C1 curve from p1 to p2 such that the
normal vector to ∂F at each point lies in N . Then, using an approximation in the φ−strict
topology by sets whose boundaries are polygonal chains, we see F that is a φ−minimal set.

We use this result to prove that for each φ such that Bφ(0, 1) has flat facets there exist
smooth boundary data such that uniqueness of minimizers and the regularity of the ”addi-
tional” minimizers fails.
Proposition 5. Suppose that Ω is convex and Bφ(0, 1) is not strictly convex. Then there ex-
ists a boundary datum, for which there exist solutions u1, u2 to Problem (ALGP) such that
u1 /∈ W 1,1(Ω) and u2 /∈ SBV (Ω).

Conclusions

In this final Section we state some implications of the obtained regularity estimates for the
validity of several known results from the isotropic case also in the anisotropic case.
Theorem 6. Let Ω be an open bounded strictly convex set with C1 boundary. Then for
f ∈ BV (∂Ω) there exists a solution to Problem (ALGP).
Theorem 7. Let Ω be an open bounded convex set. Suppose that Bφ(0, 1) is strictly convex.
Let u be a minimizer of Problem (ALGP). Then uj = uc+uj, where uc is continuous, uj has
only jump-type derivative and this decomposition is unique up to an additive constant.
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