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Abstract
The least gradient problem, which is related to the planar optimal transport problem, see [4], and to

conductivity imaging in medical scans, see [5], is a variational problem of the form

min

{ ˆ
Ω
|Du|, u ∈ BV (Ω), u|∂Ω = f

}
. (LGP)

When Ω is an open bounded strictly convex set, it is well known that for continuous boundary data there
exists a unique solution and it is continuous up to the boundary. Here, we apply a projection-based
method to study existence of solutions for discontinuous boundary data and introduce the least gradient
problem on unbounded domains. Moreover, we discuss the anisotropic case and minimise

´
Ω φ(x,Du),

where φ(x,Du) is convex, bounded, uniformly elliptic and 1−homogenous in the second variable.

Introduction

The least gradient problem is typically considered for open bounded strictly convex sets
Ω ⊂ RN . Existence, uniqueness and continuity of minimisers for continuous boundary data
is given by the Sternberg-Williams-Ziemer construction, see [8]; the idea is to reverse the
fact that superlevel sets of a least gradient function are minimal (see [1]). For almost all
t ∈ R, the authors construct a uniquely determined minimal set Et. Then, they show that
Et ⊂⊂ Es for t > s, so the sets Et can be given a meaning as the superlevel sets of a
function u, i.e. Et = {u ≥ t}, and that u constructed this way solves Problem (LGP).

Here, we present two extensions of the above framework, both developed in [3]. Firstly,
we prove existence of minimisers to (LGP) for boundary data with a small discontinuity
set. Then, we provide an analysis of the least gradient problem on unbounded domains. For
clarity, we focus on the isotropic case and refer to the last Section for the anisotropic case.

Existence of minimisers for discontinuous boundary data

In the discontinuous case, we are motivated by the two following results:
• Let Ω ⊂ R2 be an open bounded strictly convex set. If f ∈ BV (∂Ω), then there exists a
solution to (LGP) with boundary data f ; see [2].
• Let Ω = B(0, 1) ⊂ R2. Then there exists a fat Cantor set C such that there is no solution
of (LGP) with boundary data f = χC ∈ L∞(∂Ω); see [7]. Note that f is discontinuous on a
set of positive measure.
The Theorem below is motivated by the above results. It generalises the first one and is op-
timal in view of the second one. We provide a sketch of the proof, as this type of reasoning
is recurring in all the results presented here.

Theorem 1. Let Ω ⊂ RN be an open bounded strictly convex set. Suppose that f ∈ L1(∂Ω)
is a function such that HN−1-almost all points of ∂Ω are continuity points of f . Then there
exists a minimiser u ∈ BV (Ω) to (LGP) with boundary data f .

Idea of proof. For simplicity, assume that ∂Ω ∈ C1. Take a sequence of approximations
fn ∈ C(∂Ω) such that fn→ f in L1(∂Ω) and which locally preserves the L∞ bounds of f .
1. By strict convexity of Ω there exist un ∈ BV (Ω) ∩ C(Ω), solutions to Problem (LGP)
for boundary data fn (see [8]). Compactness follows from the Poincaré inequality and we
obtain unk → u in L1(Ω). As the trace operator on BV (Ω) is not continuous with respect to
weak* convergence, we need to prove that Tu = f . For δ > 0 and x0 ∈ ∂Ω which is a point
of continuity of f , we have

f (x0)− δ ≤ f (x) ≤ f (x0) + δ in B(x0, r) ∩ ∂Ω

and for sufficiently large n we have

f (x0)− δ ≤ fn(x) ≤ f (x0) + δ in B(x0,
r

2
) ∩ ∂Ω.

2. Let H be a tangent hyperplane at x0 and H− be the halfspace with boundary H which
does not contain Ω. Take s > 0 small so that Ω′ = (H− + sνH) ∩ Ω ⊂⊂ B(x0,

r
2). Fix

t > f (x0) + δ and let En
t = {un ≥ t}. By continuity of un the functions χEn

t
and χEn

t \Ω′

have the same trace. But En
t \Ω′ equals En

t intersected with some halfspace and this op-
eration strictly decreases the perimeter unless |En

t ∩ Ω′| = 0, which would contradict the
minimality of superlevel sets of least gradient functions (see [1]). Hence |En

t ∩ Ω′| = 0 and

f (x0)− δ ≤ un(x) ≤ f (x0) + δ a.e. in B(x0, r
′) ∩ Ω ⊂ Ω′,

and passing to the limit with δ → 0 we obtain Tu(x0) = f (x0).

Problems arising in the unbounded case

When the domain Ω ⊂ RN is unbounded, our main interest is again to find the conditions
we need to impose on the domain and the boundary data to obtain existence and uniqueness
of minimisers. We need to modify our notion of a solution, as objects we will construct
need not lie in BV (Ω), but rather in BVloc(Ω).
Definition. We say that u ∈ BVloc(Ω) is a function of least gradient in Ω if for every function
g ∈ BV (Ω) with compact support K ⊂ Ω we haveˆ

K

|Du| ≤
ˆ
K

|D(u + g)|.

We say that u solves the least gradient problem on Ω with respect to boundary data
f ∈ L1

loc(∂Ω), if both of the following conditions hold:

u is a function of least gradient in Ω and (ULGP)

forHN−1-a.e. x ∈ ∂Ω we have −
ˆ
B(x,r)∩Ω

|u(y)− f (x)|dy → 0 as r → 0.

For bounded domains this is equivalent to Problem (LGP). However, the analysis is differ-
ent, as continuous functions on ∂Ω need not be bounded and Sternberg-Williams-Ziemer
construction does not work. However, using a suitable approximation we prove existence
for any continuous boundary data.

Theorem 2. Let Ω ( RN be an open unbounded strictly convex set. Let f ∈ C(∂Ω). Then
there exists a minimiser u ∈ BVloc(Ω) to (ULGP) with boundary data f .
The proof is based on the appropriate choice of approximations Ωn of the domain and
fn ∈ C(∂Ωn) of boundary data using the following facts:
•We set Ωn to be an increasing sequence of strictly convex sets, so that there exist solutions
to (LGP) for continuous boundary data;
• Restrictions of least gradient functions on Ωn to Ωm ⊂ Ωn are again least gradient func-
tions on Ωm. This gives a compactness result for the approximation;
• We use a projection argument as in the proof of Theorem 1 to prove a local comparison
principle and ensure that the trace is correct.

Uniqueness and regularity of unbounded least gradient functions

Uniqueness of minimisers is a more complicated matter and depends on the regularity of the
boundary data. When f ∈ C0(∂Ω), we may obtain uniqueness of minimisers; the key idea
is to cut Ω into two parts, so that {|u| > 1

n} is bounded and {|u| ≤ 1
n} is unbounded, and

for |t| > 1
n appeal to the uniqueness of the superlevel sets Et = {u ≥ t} in the Sternberg-

Williams-Ziemer construction. Moreover, a maximum principle for minimal surfaces im-
plies continuity of the solution.
Theorem 3. Let Ω ( RN be an open unbounded strictly convex set. Let f ∈ C0(∂Ω). Then
there exists a unique minimiser u ∈ BVloc(Ω) ∩ C(Ω) to (ULGP) with boundary data f .
However, when f /∈ C0(∂Ω), then even for monotone boundary data uniqueness of minimis-
ers may fail.
Example. Let Ω = {(x, y) : x > 0, y > 0, xy > 1} ⊂ R2. Let f (x, y) = e−x ∈ Cb(∂Ω).
Then the following functions are minimisers of (ULGP): u1(x, y) = e−x; u2(x, y) = e−

1
y;

u3(x, y) = e−xχ{x<x0} + e−
1
yχ{y< 1

x0
} + e−x0χ{else}; u4(x, y) = e−

√
x
y .
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Anisotropic case
In the classical least gradient problem, when φ is the Euclidean norm, existence, regularity,
and uniqueness of minimisers depend on the geometry of the set Ω ⊂ RN . In the general
case, the situation is slightly more complicated, as we have additionally the interplay be-
tween the shape of Ω the structure of φ. We are interested in two important cases:
•When φ is a strictly convex norm on RN ;
•When φ satisfies a Schoen-Simon-Almgren type estimate, which implies that φ−minimal
sets have C2 boundaries apart from a set of dimension N − 3; see [6]. This assumption is
required, as it implies a comparison principle developed in [5]. In particular, this covers the
weighted least gradient problem, φ(x,Du) = a(x)|Du| with a ∈ C2(Ω).

If φ is a strictly convex norm, then we prove Theorems 1 and 2 with a few additional diffi-
culties, such as the need to prove existence of un and lack of continuity of un. However, due
to lack of a maximum principle for φ-minimal surfaces, we are unable to prove Theorem 3.
If φ depends on location and satisfies a Schoen-Simon-Almgren type estimate, we prove an
analogue of Theorem 1 as follows: we may replace the projection argument in the proof of
Theorem 1 with a localisation argument and the comparison principle from [5]; however, to
obtain existence of un, we need a new assumption on Ω instead of strict convexity, called
the barrier condition (see [5]).
However, as this condition depends on location, we encounter additional problems when
we try to prove Theorem 2; the barrier condition boils down to solving a degenerate elliptic
equation and we are unable to solve it for general φ. It is significantly easier in the case
of weighted least gradient problem. Moreover, in the weighted least gradient problem with
a ∈ C2(Ω), we are able to prove an analogue of Theorem 3 using the maximum principle
for φ−minimal surfaces developed in [9].
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