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Motivation

In image processing we encounter problems of minimizing functionals
where some summands have only linear growth. The most famous is
probably the Rudin-Osher-Fatemi algorithm for denoising a blurred picture,
where we have to minimize a functional on L2(Ω)

E (u) =

{ ´
Ω |Du|+

´
Ω
λ
2 (g − u)2 if u ∈ BV (Ω)

+∞ otherwise.

Here, we focus on a problem with applications in medical imaging, on
which we impose Dirichlet boundary conditions:

F (u) =

{ ´
Ω |Du| if u ∈ BV (Ω),Tu = f

+∞ otherwise.

Let us note that the Euler-Lagrange equation corresponding to this
functional is the 1−Laplace equation.
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Precise formulation

Consider the variational problem

min{
ˆ

Ω
|Du| : u ∈ BV (Ω),Tu = f }

where Ω ⊂ R2 is an open, nonempty, strictly convex set and f ∈ L1(∂Ω).
• For f ∈ C (∂Ω) it was proved constructively by Sternberg, Williams, and
Ziemer (1992) that there is a unique continuous solution to the above
problem.
• For general f ∈ L1(∂Ω) this problem may have no solutions. An example
was first given by Spradlin and Tamasan (2014).
• The functional above is not lower semicontinuous, thus we may not use
the usual techniques of the calculus of variations.
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Precise formulation

One way to deal with this problem is to find the lower semicontinuous
envelope of the functional F , which has minimizers in L2(Ω):

F (u) = inf{F (un) : un ∈ BV (Ω), un → u in L1(Ω)} =

=

{ ´
Ω |Du|+

´
∂Ω |Tu − f |dHn−1 if u ∈ BV (Ω)

+∞ otherwise.

This approach, using Anzelotti theory was first discussed by Mazón, Rossi,
and de León (2004). However, minimizers of F are not always minimizers
of the original functional F , as they may have trace other than f . This
approach only leads to viscosity solutions.
• Question: for which boundary data F attains a minimum?
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Existence result

This is partially answered by the following theorem:

Theorem 1 (WG, 2016)

Suppose that Ω ⊂ R2 is an open, nonempty, strictly convex set with C 1

boundary. Let f ∈ BV (∂Ω). Then the minimalization problem

min{
ˆ

Ω
|Du| : u ∈ BV (Ω),Tu = f }

has at least one solution.

Before we look at the proof, let us see which assumptions are important
and which can be relaxed:
• Ω has to be strictly convex. If Ω is only convex, then solutions may not
exist even for smooth boundary data. The question of existence is
addressed by P. Rybka, A. Sabra and WG (2017).
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Existence result

Theorem 1 (WG, 2016)

Suppose that Ω ⊂ R2 is an open, nonempty, strictly convex set with C 1

boundary. Let f ∈ BV (∂Ω). Then the minimalization problem

min{
ˆ

Ω
|Du| : u ∈ BV (Ω),Tu = f }

has at least one solution.

• The assumptions that Ω ⊂ R2 and ∂Ω ∈ C 1 allow us to define properly
the BV space on ∂Ω with desired properties, such as approximations by
smooth functions in strict topology and that for any set of finite perimeter
E ⊂ ∂Ω we have P(E , ∂Ω) ∈ N ∪ {0}.
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Existence result

Theorem 1 (WG, 2016)

Suppose that Ω ⊂ R2 is an open, nonempty, strictly convex set with C 1

boundary. Let f ∈ BV (∂Ω). Then the minimalization problem

min{
ˆ

Ω
|Du| : u ∈ BV (Ω),Tu = f }

has at least one solution.

• The assumption that f ∈ BV (∂Ω) is somewhat natural; Spradlin and
Tamasan (2014) provide an example of a function in L∞(∂Ω) which is not
a trace of a least gradient function. This function is a characteristic
function of a fat Cantor set, so it does not lie in BV (∂Ω). On the other
hand, considering boundary functions with finitely many jumps and
intervals of monotonicity, we arrive at the idea of strict convergence of
approximations of boundary data.
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Existence result

Theorem 1 (WG, 2016)

Suppose that Ω ⊂ R2 is an open, nonempty, strictly convex set with C 1

boundary. Let f ∈ BV (∂Ω). Then the minimalization problem

min{
ˆ

Ω
|Du| : u ∈ BV (Ω),Tu = f }

has at least one solution.

• The assumption that f ∈ BV (∂Ω) is not a necessary condition for
existence of solutions: Sternberg-Williams-Ziemer construction works for
all continuous boundary data. There is also an example of a function
which has countably many jumps and is not in BV (∂Ω), which is a trace
of a function of least gradient (WG, 2016).
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Existence result

Before we look at the proof, we recall the two underlying principles of
dealing with functions of least gradient:

Theorem 2 (Miranda, 1967)

Let un be a sequence of least gradient functions in Ω. If un → u in
L1
loc(Ω), then u is also a function of least gradient in Ω.

Theorem 3 (Bombieri, de Giorgi, Giusti, 1969, 1984)

Let u be a function of least gradient in Ω. Then for all t χ{u>t} is also a
function of least gradient in Ω, so (in low dimensions) ∂{u > t} is an
analytical minimal surface.

In dimension two it is exceptionally simple, as the only connected minimal
surfaces are intervals.
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Existence result

Sketch of proof:
• Find an approximating sequence fn → f strictly in BV (∂Ω),
fn ∈ C∞(∂Ω) ∩ BV (∂Ω). We apply the Sternberg-Williams-Ziemer
construction to fn and obtain solutions un.
• We use the co-area formula to prove that for almost all t we have strict
convergence χ{fn≥t} → χ{f≥t}.
• Since ∂Ω has dimension one, P(E , ∂Ω) ∈ N ∪ {0} for any set of finite
perimeter E ⊂ ∂Ω. Also DχE = ±δxi .
• In particular, for almost all t the sequence P({fn ≥ t}, ∂Ω) stabilizes and
equals P({f ≥ t}, ∂Ω) <∞ for sufficiently large n; the support of
Dχ{fn≥t} is the finite set {xni } ⊂ f −1

n (t). We prove that xni → xi .
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Existence result

• As fn → f in L1(∂Ω), we prove that un has a convergent (in L1(Ω))
subsequence unk → u. As un were functions of least gradient, by
Miranda’s theorem u is a function of least gradient.
• We use stabilization of P({fn ≥ t}, ∂Ω) (and convergence xni → xi ) and
the following fact

Proposition 4

Let Ω ⊂ R2 and suppose u ∈ BV (Ω) is a function of least gradient. Let
Et = {u ≥ t}. Then for every t ∈ R the set ∂Et is empty or it is a sum of
intervals, pairwise disjoint in Ω, such that every interval connects two
points of ∂Ω.

to prove that P({un ≥ t},Ω)→ P({u ≥ t},Ω) for almost all t.
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Existence result

• We observe that P({un ≥ t},Ω) ≤ P(Ω,R2), so we may apply the
co-area formula and dominated convergence theorem to prove that
unk → u strictly in BV (Ω).
• The trace operator is continuous with respect to the strict convergence
in BV (Ω), thus

Tu = lim
k→∞

Tunk = lim
k→∞

fnk = f .

As u was (by Miranda’s theorem) a function of least gradient, u is a
solution of least gradient problem for boundary data f ∈ BV (∂Ω).
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Discussion of uniqueness

• As proved by Sternberg, Williams and Ziemer (1992), for f ∈ C (∂Ω) the
solution u is unique.
• This is not necessarily the case for discontinuous boundary data; the first
example was provided by Mazón, Rossi and de León (2004). Consider
Ω = B(0, 1) and the function f0 defined as f0(x , y) = x2 − y2. It has
zeroes for (x , y) = (± 1√

2
,± 1√

2
). We add discontinuities at these points,

i.e.

f (x , y) =

{
f0(x , y) + 1 if |x | > 1√

2

f0(x , y)− 1 otherwise.
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Discussion of uniqueness

Applying the Sternberg-Williams-Ziemer construction to the continuous
function f0, we obtain the following solution:
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Discussion of uniqueness
We cannot apply directly the same technique to the discontinuous function
f . However, we may find an approximating sequence fn → f as in the
proof of existence theorem and obtain a solution u0 as a limit. Let A be
the set of discontinuities of f and Aε its ε−neighbourhood. We choose
our sequence fn in the following way:

fn(x) =

{
f (x) if x ∈ ∂Ω\A 1

n

linear if x ∈ A 1
n
.
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Discussion of uniqueness

The structure of the solution u0 is as following:
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Discussion of uniqueness

Define the functions uθ in the following way:

uθ(x , y) =

{
θ if |x |, |y | < 1√

2

u0(x , y) otherwise.

They have the same trace as u0 and for θ ∈ [−1, 1] have the same total
variation:

|Duθ|(Ω) = |Duθ|(Ω\�) + 2
√

2|θ + 1|+ 2
√

2|θ − 1| =

= |Du0|(Ω\�) + 2
√

2 + 2
√

2 = |Du0|(Ω).

Thus the functions uθ are also solutions of least gradient problem for the
boundary data f , so the solution is not unique.
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Discussion of uniqueness

In general, in dimension two we may prove a following result:

Theorem 5 (WG, 2016)

Let u, v be functions of least gradient in Ω ⊂ R2 such that Tu = Tv = h.
Assume that we deal with their precise representatives. Then u = v on
Ω\(C ∪ N), where both u and v are locally constant on C and N has
Hausdorff dimension at most 1.

In particular, it shows that the functions constructed in the previous frame
are all solutions to the corresponding least gradient problem. However, the
proof relies heavily on the fact that all connected minimal surfaces are
intervals, so we need Ω ⊂ R2.
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Anisotropic least gradient problem

A continuous function φ : Ω× Rn → [0,∞) is called a metric integrand, if
it satisfies the following conditions:
(1) φ is convex with respect to the second variable for a.e. x ∈ Ω;
(2) φ is homogeneous with respect to the second variable, i.e.

∀x ∈ Ω, ∀ξ ∈ Rn, ∀t ∈ R φ(x , tξ) = |t|φ(x , ξ);

(3) φ is bounded and elliptic in Ω, i.e.

∃Γ, λ > 0 ∀x ∈ Ω, ∀ξ ∈ Rn λ|ξ| ≤ φ(x , ξ) ≤ Γ|ξ|.

These conditions are sufficient for most of the cases considered in scientific
work: they are satisfied for the classical LGP, i.e. (φ(x , ξ) = |ξ|), as well
as for the lp norms, p ∈ [1,∞] and for weighted LGP: φ(x , ξ) = g(x)|ξ|,
where g ≥ c > 0.
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Anisotropic least gradient problem

Formal definition of total variation with respect to φ is constructed
similarly to the usual one, but in case when condition (3) is satisfied we
have the following integral representation

Theorem 6 (Amar, Bellettini, 1994)

Let ϕ : Ω× RN → R be a metric integrand. Then we have an integral
representation:

ˆ
Ω
|Du|φ =

ˆ
Ω
φ(x , νu(x)) |Du|,

where νu is the Radon-Nikodym derivative νu = dDu
d |Du| . In particular, if

E ⊂ Ω and ∂E is sufficiently smooth, we have a representation

Pφ(E ,Ω) =

ˆ
Ω
φ(x , νE ) dHn−1,

where νE is the external normal to E .
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Anisotropic least gradient problem

The basis of our considerations is the following theorem

Theorem 7 (Jerrard, Moradifam, Nachman, 2015)

Suppose that Ω satisfies the barrier condition with respect to φ. Then for
f ∈ C (∂Ω) the following problem

min{
ˆ

Ω
φ(x , νu(x)) |Du|, u ∈ BV (Ω), Tu = f }

has at least one solution. If φ is smooth away from ξ = 0, the solution is
unique.

We will consider certain nonsmooth φ and discuss uniqueness of solutions.
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Nonuniqueness in anisotropic LGP

For p ∈ [1,∞) we define the p−th norm of a vector on the plane by the
formula

‖(x , y)‖p = (|x |p + |y |p)1/p

and the corresponding metric integrand as

φp(x , ξ) = ‖ξ‖p.

For p =∞ it is defined as φ∞(x , ξ) = ‖ξ‖∞ = sup(|ξ1|, |ξ2|).
• ‖· ‖1 ≥ ‖· ‖2 ≥ ‖· ‖∞;
• For p ∈ (1,∞) the resulting metric integrand is smooth (except for
ξ = 0) with respect to the isotropic (p = 2) one, whereas for p = 1,∞ is
it merely continuous. We will focus on p = 1, as p =∞ is analogous.
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Nonuniqueness in anisotropic LGP

Proposition 8

[WG, 2016] Let Ω ⊂ R2 be an open, bounded, strictly convex set. Take
φ(x ,Du) = ‖Du‖1. Let f ∈ C (∂Ω). Denote by u the solution to isotropic
LGP for f . Then, if the boundaries of superlevel sets of u are parallel to
the axes of the coordinate system, then u is a unique solution of the
anisotropic LGP with respect to the l1 norm.

Let v ∈ BV (Ω), Tv = f . Then

ˆ
Ω
|Dv |1 ≥

ˆ
Ω
|Dv |2 ≥

ˆ
Ω
|Du|2 =

ˆ
Ω
|Du|1.

By uniqueness of solution to Euclidean LGP the second inequality is strict,
if only u 6= v ; thus u is a unique solution to the anisotropic LGP.
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Nonuniqueness in anisotropic LGP

Working with tools such as co-area formula and approximation in strict
topology, we may prove the converse: if the boundaries of superlevel sets
of u are not parallel to the axes of the coordinate system for some t, then
the solution to anisotropic LGP is not unique. Instead of a full proof we
will focus on an example.
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Nonuniqueness in anisotropic LGP

We choose a simple example where f −1(t) consists of only two points.
The reason is to have every level set as a curve with boundary point fixed,
as ∂Et ∩ ∂Ω ⊂ f −1(t).
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Nonuniqueness in anisotropic LGP

Sketch of proof:
• Assume we minimize our functional in the domain of C∞ functions with
trace f . If there is a minimizer, by approximation of any BV function in
strict topology it is also a minimizer in the space of all BV functions with
trace f .
• By Sard theorem for a.e. t the set {v = t} is a smooth manifold. We
slightly enlarge our domain to all functions such that for a.e. t the set
{v = t} is a smooth manifold; now we may assume that {v = t} contains
no closed curves.
• By co-area formula we only have to minimize P1(Et ,Ω) with fixed
boundary conditions (as ∂Et ∩ ∂Ω ⊂ f −1(t)) for almost all t.
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Nonuniqueness in anisotropic LGP
• Assume we may represent a level set from (x , y) to (z , t) as a graph of a
smooth function g , so ∂Et does not contain vertical intervals. At the
point ((s, g(s))) the Radon-Nikodym derivative νχEt is perpendicular to
the level set, so it is a vector (− sin θ, cos θ), where g ′(s) = tan θ.
Thus φ(x , νχEt ) = | sin θ|+ | cos θ|. As |DχEt | = Hn−1|∂Et , so in fact we
minimize the integral (we may assume that x < z):

P1(Et ,Ω) =

ˆ
Ω
φ(x , νχEt )|DχEt | =

ˆ
∂Et

(| sin θ|+ | cos θ|)dHn−1 =

=

ˆ z

x
(| sin θ|+| cos θ|)

√
1 + (tan θ)2dx =

ˆ z

x
(| sin θ|+| cos θ|) 1

| cos θ|
dx =

=

ˆ z

x
(1 + | tan θ|)dx = |z − x |+

ˆ z

x
|g ′|dx ≥ |z − x |+ |t − y |,

where the inequality becomes equality iff g is monotone. Thus there are
multiple functions minimizing this integral.
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Nonuniqueness in anisotropic LGP

• Modifying the above calculation we cover cases when ∂Et cannot be
represented as a graph.
• Denote by u the solution to Euclidean LGP. Intervals are graphs of
monotone functions, so they minimize the above integral. Thus, the value
of
´

Ω |Dv |1 is bounded from below by

ˆ
Ω
|Dv |1 =

ˆ
R
P1(Et ,Ω) ≥

ˆ
R
P1({u > t},Ω) =

ˆ
Ω
|Du|1,

so by strict approximation this holds for all v ∈ BV (Ω) such that Tv = f .
In particular, the Euclidean solution is a solution to the anisotropic LGP,
as are all smooth v s.t. their level sets are represented by graphs of
monotone functions.
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Nonuniqueness in anisotropic LGP
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Conclusions and future work

Conclusions:
• Using suitable approximations of boundary data, we may prove existence
of solutions to classical least gradient problem for a larger class of
functions; let X be the space of traces of least gradient functions, then

C (∂Ω) ∪ BV (∂Ω) ( X ( L1(Ω)

• These solutions have a uniqueness-type property: they can differ only on
sets where both solutions are locally constant;
• In the nonsmooth anisotropic case solutions may be not unique even for
smooth boundary data.
Future work:
• Characterisation of all solutions to isotropic least gradient problem;
• Analogous existence and uniqueness results in the anisotropic case;
• Extension of these results to Ω ⊂ R3.
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Nonuniqueness in anisotropic LGP

Thank you for your attention!
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