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Least gradient problem

The least gradient problem is a minimalization problem

min{
∫

Ω
|Du|, u ∈ BV (Ω), u|∂Ω = g}.

This minimalization problem may be viewed as a formal limit of
p−Laplace problems for p → 1. Furthermore, in dimension two, for convex
domains Ω it is equivalent to the Beckmann problem

min{
∫

Ω
|p| : p ∈M(Ω;R2), div p = 0, p · n =

∂g

∂τ
}.
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The boundary condition

In the least gradient problem, we may take two approaches to the
boundary condition. Firstly, we may consider the relaxation of the total
variation functional, namely

F (u) =

∫
Ω
|Du|+

∫
∂Ω
|Tu − g |dHn−1

and search for the minimizers of F . Existence of minimizers has been
proved (for f ∈ L1(∂Ω)) by Mazon-Rossi-de Leon (2014) in the isotropic
case and Mazon (2016) in the anisotropic case. However, the solution is
defined in terms of Anzelotti pairings and the boundary condition is
understood in a weaker sense.
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The boundary condition

In this talk, we understand the boundary condition in the trace sense, i.e.
Tu = g . However, this requires strict geometric conditions on Ω:

• If Ω is not strictly convex, then existence of minimizers may fail even for
continuous boundary data.

• Sternberg-Williams-Ziemer 1992: let g ∈ C (∂Ω). If Ω is strictly convex,
then there exists a unique solution u to the least gradient problem with
boundary data g .
• Spradlin-Tamasan 2014: Even if Ω = B(0, 1), then existence of
minimizers may fail if g is not continuous.

We will assume that Ω ⊂ R2 and that Ω is strictly convex.
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Wojciech Górny (University of Warsaw) Anisotropic least gradient problem 08.06.2018 4 / 26



The boundary condition

In this talk, we understand the boundary condition in the trace sense, i.e.
Tu = g . However, this requires strict geometric conditions on Ω:

• If Ω is not strictly convex, then existence of minimizers may fail even for
continuous boundary data.

• Sternberg-Williams-Ziemer 1992: let g ∈ C (∂Ω). If Ω is strictly convex,
then there exists a unique solution u to the least gradient problem with
boundary data g .
• Spradlin-Tamasan 2014: Even if Ω = B(0, 1), then existence of
minimizers may fail if g is not continuous.

We will assume that Ω ⊂ R2 and that Ω is strictly convex.
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Known results in the isotropic case

A least gradient function is a minimizer of the least gradient problem for
some boundary data f .

• Miranda 1957: The limit of a sequence of least gradient functions
convergent in L1 is a least gradient function.

• Bombieri-de Giorgi-Giusti 1969: let u ∈ BV (Ω) be a least gradient
function. Then for every t ∈ R the set ∂{u ≥ t} is a (smooth) minimal
surface.

• Sternberg-Williams-Ziemer 1992: If Ω is uniformly convex, ∂Ω ∈ C 2 and
g ∈ C 0,α(∂Ω), then u ∈ C 0,α/2(Ω).

• WG 2016: If ∂Ω ∈ C 1 and g ∈ BV (∂Ω), then there exists a (not
necessarily unique) solution to the least gradient problem with boundary
data g .
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Anisotropic least gradient problem

In this talk, we are mainly interested in the anisotropic least gradient
problem

min{
∫

Ω
φ(Du), u ∈ BV (Ω), Tu = g},

where φ is a norm on R2 and g ∈ C (∂Ω). Let us stress that Ω ⊂ R2 and
Ω is strictly convex. Our goal is to prove a general existence result
independent of the regularity of φ and some regularity estimates with
weaker than usual assumptions on the regularity of ∂Ω.
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Barrier condition

For continuous boundary data, the barrier condition is sufficient for
existence of minimizers (Jerrard-Nachman-Tamasan 2013):

Definition

Let Ω ⊂ RN be an open bounded set with Lipschitz boundary. Suppose
that φ is an elliptic metric integrand. We say that Ω satisfies the barrier
condition if for every x0 ∈ ∂Ω and sufficiently small ε > 0, if V minimizes
Pφ(· ;RN) in

{W ⊂ Ω : W \B(x0, ε) = Ω\B(x0, ε)}

then
∂V ∩ ∂Ω ∩ B(x0, ε) = ∅.

In the isotropic case φ(x , ξ) = ‖ξ‖2 in dimension two this is equivalent to
strict convexity of Ω.
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Conditions for uniqueness

Known conditions for uniqueness are more complicated and involve:

• uniform convexity of φ;

• high regularity of φ (slightly weaker than W 3,∞ away from the origin).
We intend to work around this conditions when proving or disproving

uniqueness of minimizers.

Known results on regularity:

• Dweik-Santambrogio 2018, for uniformly convex Ω with C 2 boundary,
then for p ≤ 2 we have g ∈W 1,p(Ω)⇒ u ∈W 1,p(Ω). This result is valid
for any strictly convex φ regardless of its regularity.
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Sketch of the reasoning

• Prove that if the unit ball Bφ(0, 1) is strictly convex, we have a similar
result to Bombieri-de Giorgi-Giusti, i.e. boundaries of superlevel sets of u
are minimal surfaces (unions of line segments);

• Using the barrier condition and an appropriate comparison principle,
deduce existence and uniqueness of minimizers for continuous boundary
data;

• Introduce a proper notion of uniform convexity of Ω and prove a
regularity estimate for u in terms of modulus of continuity of g ;

• If Bφ(0, 1) is not strictly convex, justify a limit passage with φn → φ to
prove existence and regularity of a single minimizer of the anisotropic least
gradient problem;

• In this case, look at the properties of the other solutions.
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Shape of superlevel sets

We use an anisotropic version of the classical BGG theorem:

Proposition

(Mazon, 2016) Let Ω ⊂ RN be an open bounded set with Lipschitz
boundary. Assume that the metric integrand φ has a continuous extension
to RN . Take u ∈ BVφ(Ω). Then u is a function of φ−least gradient in Ω
if and only if χ{u>t} is a function of φ−least gradient for almost all t ∈ R.

Thus, we only need to look at characteristic functions and prove that a
boundary of a minimal set (a set such that it is of least gradient relative to
some boundary conditions) is a union of line segments.
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Shape of superlevel sets

Step 1. We prove that, no matter the regularity or strict convexity of φ, a
set E such that ∂E is a single line segment is a minimal set relative to its
own boundary data;

Step 2. If Bφ(0, 1) is strictly convex, then E is the only minimal set
relative to its own boundary data;

Step 3. We use Step 2 to conclude that every connected component of the
boundary of a minimal set is a line segment.
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Existence and uniqueness

When we know that the line segment is the only minimal set relative to its
own boundary data (we do not need the full regularity result), the barrier
condition is satisfied. Hence, there exist solutions to the anisotropic least
gradient problem for continuous boundary data.

As for uniqueness, when we know that the boundary of a minimal set is a
union of line segments, we may imitate the proof of the comparison
principle in Sternberg-Williams-Ziemer (1992) and obtain uniqueness of
minimizers.

Theorem

Suppose that Ω ⊂ R2 and Bφ(0, 1) are strictly convex. Let g ∈ C (∂Ω).
Then there exists a unique solution u ∈ C (Ω) of the anisotropic least
gradient problem.
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Uniform convexity

Even in the isotropic case, it is known that some form of uniform convexity
is required to obtain regularity of minimizers to the least gradient problem.
However, the requirements in the literature involve C 2 regularity of ∂Ω.
We want to get rid of this assumption.

Definition

We say that the set an open bounded convex set Ω is uniformly convex, if
the following condition is satisfied: let P = {y ≥ ax2}, where a > 0. Let
x0 ∈ ∂Ω and let l be a supporting line at x0. Then there exists P ′, an
isometric image of P, tangent to l at x0 such that Ω ⊂ P ′ and
∂P ′ ∩ Ω = {x0}.
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Regularity of minimizers

Using our line of reasoning, a typical regularity result is of such form:

Proposition

Suppose that Ω ⊂ R2 is uniformly convex and Bφ(0, 1) is strictly convex.
Let g ∈ C (∂Ω) and take ω to be its modulus of continuity. Let u be the
solution of the anisotropic least gradient problem with boundary data g .
Then u ∈ C (Ω) and it is continuous with modulus of continuity

ω(|x − y |) = ω(c(Ω)|x − y |1/2).

In particular, g ∈ C 0,α(∂Ω)⇒ u ∈ C 0,α/2(Ω).
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Sketch of proof
Step 1. We use the regularity of the superlevel sets and continuity of the
boundary data to prove that u ∈ C (Ω).

Step 2. We consider the following case:
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Wojciech Górny (University of Warsaw) Anisotropic least gradient problem 08.06.2018 15 / 26



Sketch of proof

Step 2. We estimate |u(q)− u(p)| = |u(q′)− u(p′)| ≤ ω(|q′ − p′|) ≤
ω(|q′′ − p′′|) ≤ ω(c(Ω)|q − p|1/2) = ω(|q − p|).

Step 3. We justify the reduction of the general case to the one in Step 2.
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Regularity of minimizers

The advantages of this approach are:

• No dependence on the regularity or uniform convexity of φ;

• Low regularity requirements on ∂Ω;

• Direct expressions for the constant c(Ω) in terms of the diameter and
the lower bound on mean curvature of Ω;

• Works well with slightly different conditions on ∂Ω.

The greatest disadvantage is:
• This approach does not suffice to prove the implication
g ∈ C 1,α(∂Ω)⇒ u ∈ C 0,(1+α)/2(Ω).
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Non-strictly convex norm

From now on, the unit ball Bφ(0, 1) is not strictly convex. This situation is
different from the previous case in a few aspects:

• The line segment is not the only φ−minimal surface, so we lose
uniqueness of minimizers;

• The barrier condition is empty for sets with C 1 boundary, so we may not
use it to claim existence of minimizers;

• We may use the regularity results for the strictly convex case and pass to
the limit, but the regularity estimates are only valid for one minimizer;
there may be multiple minimizers with weaker regularity.
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Stability via Γ−convergence

Take the following functional (a relaxation of the anisotropic total variation
functional with respect to Dirichlet boundary data, see Mazon (2016)):

Fφ(v) =

∫
Ω
|Dv |φ +

∫
∂Ω
φ(νΩ)|Tv − g |dHn−1.

Proposition

Let φ and φn be anisotropic norms on Rn such that φn → φ pointwise.
Then the sequence of functionals Fφn Γ−converges (with respect to the L1

convergence) to the functional Fφ.

In particular, minimizers of Fφn converge to minimizers of Fφ.
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Existence, approach 1

Theorem

Let Ω ⊂ R2 be an open bounded uniformly convex set. Suppose that
Bφ(0, 1) is not strictly convex and let g ∈ C (∂Ω). Then there exists a
solution u ∈ C (Ω) to the anisotropic least gradient problem. Additionally,
if ω is the modulus of continuity of g , then u has the same modulus of
continuity ω as if Bφ(0, 1) was strictly convex.

The proof of this fact is very simple: let us take a sequence φn = φ+ 1
n l

2.
We construct minimizers un for the anisotropic norm φn with boundary
data g . All the functions un admit the same modulus of continuity, so we
may pass to the limit in Ω; in particular, the trace condition is satisfied.
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Existence, approach 2

Theorem

Let Ω ⊂ R2 be an open bounded strictly convex set and suppose that
g ∈ C (∂Ω). Then there exists at least one solution u to the anisotropic
least gradient problem.

In this case, we do not obtain any regularity estimates for u.

The idea of proof is the following: let us take a sequence φn = φ+ 1
n l

2.
Construct minimizers un for φn and g . We obtain uniform bounds in
BV (Ω) for un and use the stability theorem to pass to the limit un → u.
Now, we only have to check that Tu = g .
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Sketch of proof

Step 1. The set T of such x ∈ ∂Ω such that

−
∫
B(x ,r)Ω

|u(y)− Tu(x)|dy → 0

when r → 0 is of H1−full measure. Fix x ∈ T .

Step 2. By the continuity of g

g(x)− ε ≤ g(y) ≤ g(x) + ε in B(x , δ1) ∩ ∂Ω.

We cut off ∆ ⊂ Ω such that ∂∆ is a line segment connecting the two
points of ∂B(x , δ1) ∩ ∂Ω. We prove a version of a comparison principle to
get

g(x)− ε ≤ un(y) ≤ g(x) + ε in B(x , δ2) ∩ Ω

for some B(x , δ2) ∩ Ω ⊂ ∆. We pass to the pointwise limit with unk → u.

Step 3. We check the mean integral condition in the limit.
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Nonuniqueness of minimizers

Let I ⊂ ∂Bφ(0, 1) be a line segment. We notice that if αν0 ∈ int I , then
there exists a neighbourhood N ⊂ S1 of ν0 such that for each ν ∈ N a
positive multiple of ν, namely (ν0· ν)−1αν, lies in I .

Proposition

Let F be a set such that its boundary is a piecewise C 1 curve from
p1 ∈ ∂Ω to p2 ∈ ∂Ω such that the normal vector to ∂F at each point lies
in N. Then F is a φ−minimal set.

Firstly, we prove it for polygonal chains and then approximate C 1 curves in
the strict topology by polygonal chains.

In particular, the barrier condition is not satisfied by any set with C 1

boundary.
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Wojciech Górny (University of Warsaw) Anisotropic least gradient problem 08.06.2018 23 / 26



Nonuniqueness of minimizers

Let I ⊂ ∂Bφ(0, 1) be a line segment. We notice that if αν0 ∈ int I , then
there exists a neighbourhood N ⊂ S1 of ν0 such that for each ν ∈ N a
positive multiple of ν, namely (ν0· ν)−1αν, lies in I .

Proposition

Let F be a set such that its boundary is a piecewise C 1 curve from
p1 ∈ ∂Ω to p2 ∈ ∂Ω such that the normal vector to ∂F at each point lies
in N. Then F is a φ−minimal set.

Firstly, we prove it for polygonal chains and then approximate C 1 curves in
the strict topology by polygonal chains.

In particular, the barrier condition is not satisfied by any set with C 1

boundary.
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Examples of low regularity

u /∈W 1,1(Ω)
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Examples of low regularity

u /∈ SBV (Ω)
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