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Anisotropic least gradient problem

The anisotropic least gradient problem is a following minimization problem

min{
∫

Ω
φ(Du), u ∈ BV (Ω), u|∂Ω = g},

where φ is a norm on RN . This problem arises (in dimension two) as a
dimensional reduction of the Beckmann problem

min{
∫

Ω
φ(R−π

2
p) : p ∈M(Ω;R2), div p = 0, p · n =

∂g

∂τ
}.
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Anisotropic least gradient problem

We highlight the following two issues:

min{
∫

Ω
φ(Du), u ∈ BV (Ω), u|∂Ω = g}.

In general φ may additionally depend on location; however, this approach
requires C 3 regularity of φ and we want to discuss the low-regularity
situation.
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The boundary condition

The second issue is the boundary condition:

min{
∫

Ω
φ(Du), u ∈ BV (Ω), u|∂Ω = g}.

In the least gradient problem, we may take two approaches to the
boundary condition. Firstly, we may consider the relaxation of the total
variation functional, namely

F (u) =

∫
Ω
φ(Du) +

∫
∂Ω
φ(νΩ)|Tu − g |dHN−1

and search for the minimizers of F . Existence of minimizers has been
proved (for f ∈ L1(∂Ω)) by Mazón-Rossi-Segura de León (2014) in the
isotropic case and Mazón (2016) in the anisotropic case. However, the
solution is defined in terms of Anzelotti pairings and the boundary
condition is understood in a weaker sense.
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The boundary condition

In this talk, we understand the boundary condition in the trace sense, i.e.

min{
∫

Ω
φ(Du), u ∈ BV (Ω), Tu = g}.

However, this requires strict geometric conditions on Ω.

• If Ω is not strictly convex, then existence of minimizers may fail even for
continuous boundary data.

• Sternberg-Williams-Ziemer 1992 (isotropic case): let g ∈ C (∂Ω). If Ω is
strictly convex, then there exists a unique solution u to the least gradient
problem with boundary data g .
• Spradlin-Tamasan 2014: Even if Ω = B(0, 1), then existence of
minimizers may fail if g is not continuous.

We will assume that Ω is strictly convex.
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Known results in the isotropic case

A least gradient function is a minimizer of the least gradient problem for
some boundary data f .

• Miranda 1957: The limit of a sequence of least gradient functions
convergent in L1 is a least gradient function.

• Bombieri-de Giorgi-Giusti 1969: let u ∈ BV (Ω) be a least gradient
function. Then for every t ∈ R the set ∂{u ≥ t} is a (smooth) minimal
surface.

• Sternberg-Williams-Ziemer 1992: If Ω is uniformly convex, ∂Ω ∈ C 2 and
g ∈ C 0,α(∂Ω), then u ∈ C 0,α/2(Ω).

• WG 2016: If ∂Ω ∈ C 1 and g ∈ BV (∂Ω), then there exists a (not
necessarily unique) solution to the least gradient problem with boundary
data g .

Wojciech Górny (University of Warsaw) Anisotropic least gradient problem ICIAM 2019, 16.07.2019 6 / 21



Known results in the isotropic case

A least gradient function is a minimizer of the least gradient problem for
some boundary data f .

• Miranda 1957: The limit of a sequence of least gradient functions
convergent in L1 is a least gradient function.

• Bombieri-de Giorgi-Giusti 1969: let u ∈ BV (Ω) be a least gradient
function. Then for every t ∈ R the set ∂{u ≥ t} is a (smooth) minimal
surface.

• Sternberg-Williams-Ziemer 1992: If Ω is uniformly convex, ∂Ω ∈ C 2 and
g ∈ C 0,α(∂Ω), then u ∈ C 0,α/2(Ω).

• WG 2016: If ∂Ω ∈ C 1 and g ∈ BV (∂Ω), then there exists a (not
necessarily unique) solution to the least gradient problem with boundary
data g .
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Anisotropic least gradient problem

min{
∫

Ω
φ(Du), u ∈ BV (Ω), Tu = g},

In this talk, we consider separately two situations:

Case 1. φ is a strictly convex norm.

Case 2. φ is a non-strictly convex norm.

In both cases we assume nothing about regularity of φ. We are interested
mainly in existence of minimizers for discontinuous boundary data. We
additionally study regularity of solutions and comment on the structure of
minimizers, which in general are not unique.
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Barrier condition

For continuous boundary data, the barrier condition is sufficient for
existence of minimizers (Jerrard-Nachman-Tamasan 2013):

Definition

Let Ω ⊂ RN be an open bounded set with Lipschitz boundary. Suppose
that φ is an elliptic metric integrand. We say that Ω satisfies the barrier
condition if for every x0 ∈ ∂Ω and sufficiently small ε > 0, if V minimizes
Pφ(· ;RN) in

{W ⊂ Ω : W \B(x0, ε) = Ω\B(x0, ε)}

then
∂V ∩ ∂Ω ∩ B(x0, ε) = ∅.

In the isotropic case φ(x , ξ) = ‖ξ‖2 in dimension two this is equivalent to
strict convexity of Ω.
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Barrier condition

When φ is a norm, the barrier condition has a clear geometrical meaning.

1. If φ is strictly convex, then

strict convexity of Ω⇒ barrier condition ⇒ convexity of Ω.

Proposition

Let Ω ⊂ RN be an open bounded strictly convex set. Let f ∈ C (∂Ω).
Then for any strictly convex norm φ there exists a minimizer to the
anisotropic least gradient problem.

2. If φ is not strictly convex, then (on the plane) no set with C 1 boundary
satisfies the barrier condition - we have to use a different approach.
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Existence for discontinuous boundary data

From this, using a projection-based technique we can prove existence of
minimizers also for discontinuous boundary data, provided that the
discontinuity set is small.

Theorem

Let Ω ⊂ RN be an open bounded strictly convex set. Let f ∈ L1(∂Ω) be
such that the set of its continuity points is of HN−1-full measure. Then
for any strictly convex norm φ there exists a minimizer to the anisotropic
least gradient problem.
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Sketch of proof

• Take a mollification-like sequence of approximations fn ∈ C (∂Ω) which
locally preserves the L∞ bounds on f ;

• Take un ∈ BV (Ω), solutions for boundary data fn;

• Use Miranda’s theorem to prove convergence of unk to u in L1(Ω), where
u is a function of φ-least gradient;

• Show that the trace of u equals f . We recall that if u is a function of
φ-least gradient, then χ{u≥t} is as well (Mazón 2016).
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Sketch of proof that Tu = f

• Take a point of continuity x0 ∈ ∂Ω and r > 0 such that

f (x0)− δ ≤ f (x) ≤ f (x0) + δ in B(x0, r) ∩ ∂Ω.

• If we chose the approximation fn properly, then

f (x0)− δ ≤ fn(x) ≤ f (x0) + δ in B(x0,
r

2
) ∩ ∂Ω.

• Take a hyperplane H tangent to ∂Ω at x0; there exists a parallel

hyperplane H ′ such that

H ′ ∩ Ω ⊂ B(x0,
r

2
) ∩ Ω.

Using the barrier condition and the fact that projection decreases the
φ−perimeter, we prove that the sets ∂{u ≥ t} does not intersect H ′ for
t > f (x0) + δ and t < f (x0)− δ.
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Sketch of proof that Tu = f

• Then, in a neighbourhood of x0 in Ω which does not depend on n, we
have

f (x0)− δ ≤ un(x) ≤ f (x0) + δ

and we pass with n→∞. Hence there exists a ball B(x0, ρ) such that

f (x0)− δ ≤ u(x) ≤ f (x0) + δ in B(x0, ρ) ∩ Ω.

• As for any δ > 0 there exists B(x0, ρ) as above, we see that

lim
ρ→0

ess supy∈B(x0,ρ)∩Ω|u(y)− f (x0)| = 0,

so Tu(x0) = f (x0).
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Existence for non-strictly convex norm

Using a similar technique, the Theorem can be extended to the
non-strictly convex case:

Theorem

Let Ω ⊂ RN be an open bounded strictly convex set. Let f ∈ L1(∂Ω) be
such that the set of its continuity points is of HN−1-full measure. Then
for any norm φ there exists a minimizer to the anisotropic least gradient
problem.

We proceed similarly to the proof above; we rely on existence of solutions
for discontinuous boundary data for a strictly convex norm φn = φ+ 1

n l2.
We set fn = f and un to be a solution for the norm φn.

This is not possible if φ is a norm, as the barrier condition changes with n!
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Wojciech Górny (University of Warsaw) Anisotropic least gradient problem ICIAM 2019, 16.07.2019 14 / 21



Existence for non-strictly convex norm

Using a similar technique, the Theorem can be extended to the
non-strictly convex case:

Theorem

Let Ω ⊂ RN be an open bounded strictly convex set. Let f ∈ L1(∂Ω) be
such that the set of its continuity points is of HN−1-full measure. Then
for any norm φ there exists a minimizer to the anisotropic least gradient
problem.

We proceed similarly to the proof above; we rely on existence of solutions
for discontinuous boundary data for a strictly convex norm φn = φ+ 1

n l2.
We set fn = f and un to be a solution for the norm φn.

This is not possible if φ is a norm, as the barrier condition changes with n!
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Conditions for uniqueness

Known conditions for uniqueness are more complicated and involve:

• uniform convexity of φ;

• high regularity of φ (slightly weaker than C 3 away from the origin).

We intend to work around this conditions when proving or disproving
uniqueness of minimizers.

From now on, we focus on the planar case Ω ⊂ R2.
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Uniqueness of minimizers in two dimensions

The situation is much different in our usual two cases:

1. If φ is strictly convex, then line segments are the only φ-minimal
surfaces and we may perform a purely topological argument to prove
uniqueness of minimizers.

2. If φ is not strictly convex, there are infinitely many φ-minimal surfaces
(which we can precisely determine).

Moreover, even for Ω = B(0, 1) there exist boundary data f ∈ C∞(∂Ω)
such that the solutions are not unique.
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Wojciech Górny (University of Warsaw) Anisotropic least gradient problem ICIAM 2019, 16.07.2019 16 / 21



Regularity of minimizers

Known results on regularity:

• Dweik-Santambrogio 2018, for uniformly convex Ω with C 2 boundary,
then for p ≤ 2 we have g ∈W 1,p(Ω)⇒ u ∈W 1,p(Ω). This result is valid
for any strictly convex φ regardless of its regularity.

It turns out we can prove an anisotropic analogue of the classical regularity
estimate:

Proposition

Suppose that Ω ⊂ R2 is uniformly convex and φ is strictly convex. Let
g ∈ C (∂Ω) and take ω to be its modulus of continuity. Let u be the
solution of the anisotropic least gradient problem with boundary data g .
Then u ∈ C (Ω) and it is continuous with modulus of continuity

ω(|x − y |) = ω(c(Ω)|x − y |1/2).

In particular, g ∈ C 0,α(∂Ω)⇒ u ∈ C 0,α/2(Ω).
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Regularity of minimizers

The advantages of this approach are:

• No dependence on the regularity or uniform convexity of φ;

• Low regularity requirements on ∂Ω;

• Works well with slightly different conditions on ∂Ω.

If φ is not strictly convex, our regularity estimates are only valid for one
minimizer; there may be multiple minimizers with weaker regularity.
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Examples of low regularity

u /∈W 1,1(Ω)
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Examples of low regularity

u /∈ SBV (Ω)
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