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University of Vienna, University of Warsaw

Warsaw (online), 3 October 2020
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The least gradient problem

Let Ω ⊂ RN be an open bounded set with Lipschitz boundary. Take
f ∈ L1(∂Ω). Consider the following minimisation problem:

min

{∫
Ω
|Du|, u ∈ BV (Ω), u|∂Ω = f

}
.

Its Euler-Lagrange equation is the 1-Laplace equation −div

(
Du

|Du|

)
= 0 in Ω

u = f on ∂Ω.

It is linked to the study of minimal surfaces, but also (among others)
to optimal design, conductivity imaging, and optimal transport.
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Classical approach

min

{∫
Ω
|Du|, u ∈ BV (Ω), u|∂Ω = f

}
This problem depends heavily on the geometry of the domain. A standard
assumption is strict convexity of Ω. Then, classical results include:

• Existence of solutions for f continuous HN−1-a.e. on ∂Ω;

• Uniqueness and continuity of solutions for f ∈ C (∂Ω);

• Hölder regularity of solutions for Hölder boundary data (no similar result
for Sobolev regularity).
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Equivalence with the Beckmann problem

Suppose that Ω ⊂ R2 is convex. Then, the least gradient problem is
equivalent to the Beckmann problem (Rybka, Sabra, G. 2017):

min

{∫
Ω
|p| : p ∈M(Ω;R2), div p = 0, p · ν|∂Ω = g

}
,

where g = ∂f
∂τ , in the following sense: from a solution to the LGP we may

construct a solution to the Beckmann problem, and vice versa if the
solution to the Beckmann problem gives no mass to the boundary.

The equivalence is formally given by p = R−π
2
Du.
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Equivalence with an optimal transport problem

Again on convex domains, the Beckmann problem is equivalent to the
optimal transport problem with source and target measures on ∂Ω:

min

{∫
Ω×Ω
|x − y | dγ : γ ∈M+(Ω× Ω), (Πx)#γ = g+, (Πy )#γ = g−

}
.

From every solution p to the Beckmann problem we can construct a
solution to the OTP with transport density σγ (and vice versa) and

σγ = |p|.
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Use of transport techniques in LGP

These two results were put together by Dweik and Santambrogio (2019).
Their main idea was as follows:

• For f ∈ BV (∂Ω), we may represent the least gradient problem as an
optimal transport problem, with source and target measures equal to
(∂τ f )+ and (∂τ f )−;

• Transport rays correspond to level sets of the solution to LGP;

• The trace in LGP is attained whenever the optimal transport plan gives
no mass to the boundary → proving existence of solutions to LGP is easier!

• We need less than continuity of f for uniqueness of solutions - we only
require that either (∂τ f )+ or (∂τ f )− is atomless;

• Because σγ = |p| = |Du|, Lp estimates for σγ correspond to W 1,p

estimates for u. This is (so far) the only way to prove Sobolev regularity
of solutions to LGP.
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Relaxing the assumptions

We can extend this framework is a few ways (Dweik, G.):

• Endow R2 with another distance (generated by a smooth weight);

• Prove the equivalence between LGP and the Beckmann problem on
contractible domains;

• For equivalence between the Beckmann problem and the OTP, we do
not need convexity, only that all the transport rays for some optimal
transport plan lie inside the domain. This leads to admissibility conditions
for boundary data.

A modified version of this framework works also in more surprising
situations, such as on annuli - which are not contractible.
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LGP on annuli

We need to take care of two things. The first one is that when ∂Ω is not
connected, we have equivalence between the Beckmann problem and the
following variant of the LGP:

min

{∫
Ω
|Du| : u ∈ BV (Ω), ∂τ (Tu) = g

}
.

The trace is specified only up to vertical translations on connected
components of ∂Ω!
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LGP on annuli

The second one is that we need to ensure that a solution to the optimal
transport problem gives no mass to the boundary. For this, we need some
admissibility conditions for boundary data.

Theorem 1 (Dweik, G.)

Suppose that Ω ⊂ R2 is an annulus. Under certain admissibility conditions
on f ∈ BV (∂Ω), there exists a solution u ∈ BV (Ω) to the least gradient
problem. Moreover:
• If one of (∂τ f )± is atomless, the solution is unique;
• If f ∈W 1,p(∂Ω), then u ∈W 1,p(Ω).

Wojciech Górny (U. Vienna, U. Warsaw) Optimal transport methods in LGP 3.10.2020 9 / 10



Thank you for your attention!
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