Geometric aspects of the 1-Laplacian

Wojciech Górny

University of Vienna, University of Warsaw
12th Forum of PDEs, Banach Center (online) 23 September 2021

The least gradient problem

Let $\Omega \subset \mathbb{R}^{N}$ be an open bounded set with Lipschitz boundary. Take $f \in L^{1}(\partial \Omega)$. Consider the following minimisation problem:

$$
\min \left\{\int_{\Omega}|D u|, \quad u \in B V(\Omega),\left.\quad u\right|_{\partial \Omega}=f\right\}
$$

The least gradient problem

Let $\Omega \subset \mathbb{R}^{N}$ be an open bounded set with Lipschitz boundary. Take $f \in L^{1}(\partial \Omega)$. Consider the following minimisation problem:

$$
\min \left\{\int_{\Omega}|D u|, \quad u \in B V(\Omega),\left.\quad u\right|_{\partial \Omega}=f\right\}
$$

Its Euler-Lagrange equation is the 1-Laplace equation

$$
\left\{\begin{aligned}
-\operatorname{div}\left(\frac{D u}{|D u|}\right) & =0 & & \text { in } \Omega \\
u & =f & & \text { on } \partial \Omega
\end{aligned}\right.
$$

Relationship to minimal surfaces

$$
\int_{\Omega}|D u| \leq \int_{\Omega}|D(u+g)| \text { for all } g \in B V_{0}(\Omega)
$$

for all $t \in \mathbb{R} \int_{\Omega}\left|D \chi_{\{u>t\}}\right| \leq \int_{\Omega}\left|D\left(\chi_{\{u>t\}}+g\right)\right|$ for all $g \in B V_{0}(\Omega)$.

Relationship to minimal surfaces

$$
\int_{\Omega}|D u| \leq \int_{\Omega}|D(u+g)| \text { for all } g \in B V_{0}(\Omega)
$$

for all $t \in \mathbb{R} \int_{\Omega}\left|D \chi_{\{u>t\}}\right| \leq \int_{\Omega}\left|D\left(\chi_{\{u>t\}}+g\right)\right|$ for all $g \in B V_{0}(\Omega)$.
So, $\partial\{u>t\}$ are area-minimising \rightarrow regularity theory for $\partial\{u>t\}$.

Geometry of the domain

$$
\min \left\{\int_{\Omega}|D u|, \quad u \in B V(\Omega),\left.\quad u\right|_{\partial \Omega}=f\right\}
$$

If $u=\chi_{E}$ and $f=\chi_{F}$, the problem has a clear geometrical meaning:

It heavily depends on the geometry of the domain!

Classical approach

$$
\min \left\{\int_{\Omega}|D u|, \quad u \in B V(\Omega),\left.\quad u\right|_{\partial \Omega}=f\right\}
$$

The main difficulty is that the trace operator is not continuous with respect to weak* convergence in BV; hence, we need to prove estimates on u near the boundary using the tools of geometric measure theory.

Classical approach

$$
\min \left\{\int_{\Omega}|D u|, \quad u \in B V(\Omega),\left.\quad u\right|_{\partial \Omega}=f\right\}
$$

The main difficulty is that the trace operator is not continuous with respect to weak* convergence in BV; hence, we need to prove estimates on u near the boundary using the tools of geometric measure theory.

Classical results include (for positive mean curvature of $\partial \Omega$):

- Existence, uniqueness and continuity of solutions for $f \in C(\partial \Omega)$;

Classical approach

$$
\min \left\{\int_{\Omega}|D u|, \quad u \in B V(\Omega),\left.\quad u\right|_{\partial \Omega}=f\right\}
$$

The main difficulty is that the trace operator is not continuous with respect to weak* convergence in BV; hence, we need to prove estimates on u near the boundary using the tools of geometric measure theory. Classical results include (for positive mean curvature of $\partial \Omega$):

- Existence, uniqueness and continuity of solutions for $f \in C(\partial \Omega)$;
- Hölder regularity of solutions: $f \in C^{0, \alpha}(\partial \Omega) \Rightarrow u \in C^{0, \alpha / 2}(\bar{\Omega})$.

Classical approach

$$
\min \left\{\int_{\Omega}|D u|, \quad u \in B V(\Omega),\left.\quad u\right|_{\partial \Omega}=f\right\}
$$

The main difficulty is that the trace operator is not continuous with respect to weak* convergence in BV; hence, we need to prove estimates on u near the boundary using the tools of geometric measure theory.

Classical results include (for positive mean curvature of $\partial \Omega$):

- Existence, uniqueness and continuity of solutions for $f \in C(\partial \Omega)$;
- Hölder regularity of solutions: $f \in C^{0, \alpha}(\partial \Omega) \Rightarrow u \in C^{0, \alpha / 2}(\bar{\Omega})$.

Out of range of classical methods:

- Weak differentiability of solutions;

Classical approach

$$
\min \left\{\int_{\Omega}|D u|, \quad u \in B V(\Omega),\left.\quad u\right|_{\partial \Omega}=f\right\}
$$

The main difficulty is that the trace operator is not continuous with respect to weak* convergence in BV; hence, we need to prove estimates on u near the boundary using the tools of geometric measure theory.

Classical results include (for positive mean curvature of $\partial \Omega$):

- Existence, uniqueness and continuity of solutions for $f \in C(\partial \Omega)$;
- Hölder regularity of solutions: $f \in C^{0, \alpha}(\partial \Omega) \Rightarrow u \in C^{0, \alpha / 2}(\bar{\Omega})$.

Out of range of classical methods:

- Weak differentiability of solutions;
- Stability of families of solutions.

Equivalence with the Beckmann problem

Suppose that $\Omega \subset \mathbb{R}^{2}$ is convex. Then, the least gradient problem is equivalent to the Beckmann problem (Rybka, Sabra, G. 2017):

$$
\min \left\{\int_{\bar{\Omega}}|p|: \quad p \in \mathcal{M}\left(\bar{\Omega} ; \mathbb{R}^{2}\right), \quad \operatorname{div} p=0,\left.\quad p \cdot \nu\right|_{\partial \Omega}=g\right\}
$$

where $g=\frac{\partial f}{\partial \tau}$, in the following sense: from a solution to the LGP we may construct a solution to the Beckmann problem, and vice versa if the solution to the Beckmann problem gives no mass to the boundary.

Equivalence with the Beckmann problem

Suppose that $\Omega \subset \mathbb{R}^{2}$ is convex. Then, the least gradient problem is equivalent to the Beckmann problem (Rybka, Sabra, G. 2017):

$$
\min \left\{\int_{\bar{\Omega}}|p|: \quad p \in \mathcal{M}\left(\bar{\Omega} ; \mathbb{R}^{2}\right), \quad \operatorname{div} p=0,\left.\quad p \cdot \nu\right|_{\partial \Omega}=g\right\}
$$

where $g=\frac{\partial f}{\partial \tau}$, in the following sense: from a solution to the LGP we may construct a solution to the Beckmann problem, and vice versa if the solution to the Beckmann problem gives no mass to the boundary.

The equivalence is formally given by $p=R_{-\frac{\pi}{2}} D u$.

Equivalence with an optimal transport problem

Again on convex domains, the Beckmann problem is equivalent to the optimal transport problem with source and target measures on $\partial \Omega$:
$\min \left\{\int_{\bar{\Omega} \times \bar{\Omega}}|x-y| d \gamma: \gamma \in \mathcal{M}^{+}(\bar{\Omega} \times \bar{\Omega}),\left(\Pi_{x}\right)_{\#} \gamma=g^{+},\left(\Pi_{y}\right)_{\#} \gamma=g^{-}\right\}$.

Equivalence with an optimal transport problem

Again on convex domains, the Beckmann problem is equivalent to the optimal transport problem with source and target measures on $\partial \Omega$:
$\min \left\{\int_{\bar{\Omega} \times \bar{\Omega}}|x-y| d \gamma: \gamma \in \mathcal{M}^{+}(\bar{\Omega} \times \bar{\Omega}),\left(\Pi_{x}\right)_{\#} \gamma=g^{+},\left(\Pi_{y}\right)_{\#} \gamma=g^{-}\right\}$.
From every solution p to the Beckmann problem we can construct a solution to the OTP with transport density σ_{γ} (and vice versa) and

$$
\sigma_{\gamma}=|p|
$$

Use of transport techniques in LGP

These two results were put together by Dweik and Santambrogio (2019).

Least gradient problem	Optimal transport
$f \in B V(\partial \Omega)$	$\left(\partial_{\tau} f\right)^{ \pm} \in \mathcal{M}^{+}(\partial \Omega)$
$\partial\{u>t\}$	transport rays
$T u=f$	$\sigma_{\gamma}(\partial \Omega)=0$
$f \in C(\partial \Omega)$	$\left(\partial_{\tau} f\right)^{ \pm}$is atomless
$u \in W^{1, p}(\partial \Omega)$	$\left(\partial_{\tau} f\right)^{ \pm} \in L^{p}(\partial \Omega)$
$u \in W^{1, p}(\Omega)$	$\sigma_{\gamma} \in L^{p}(\Omega)$

Use of transport techniques in LGP

(DS2019): Take $\left(\partial_{\tau} f\right)^{+} \in L^{p}(\partial \Omega)$. Let $\left(\partial_{\tau} f\right)^{-}$be finitely atomic. Then:

Use of transport techniques in LGP

(DS2019): Take $\left(\partial_{\tau} f\right)^{+} \in L^{p}(\partial \Omega)$. Let $\left(\partial_{\tau} f\right)^{-}$be finitely atomic. Then:

- γ is induced by a map;

Use of transport techniques in LGP

(DS2019): Take $\left(\partial_{\tau} f\right)^{+} \in L^{p}(\partial \Omega)$. Let $\left(\partial_{\tau} f\right)^{-}$be finitely atomic. Then:

- γ is induced by a map;
- D^{-}: set of atoms of $\left(\partial_{\tau} f\right)^{-}$. Δ_{x} : set of points of transport rays passing through x. The sets $\left\{\Delta_{q_{n}}: q_{n} \in D^{-}\right\}$are (almost) disjoint;

Use of transport techniques in LGP

(DS2019): Take $\left(\partial_{\tau} f\right)^{+} \in L^{P}(\partial \Omega)$. Let $\left(\partial_{\tau} f\right)^{-}$be finitely atomic. Then:

- γ is induced by a map;
- D^{-}: set of atoms of $\left(\partial_{\tau} f\right)^{-}$. Δ_{x} : set of points of transport rays passing through x. The sets $\left\{\Delta_{q_{n}}: q_{n} \in D^{-}\right\}$are (almost) disjoint;
- Only behaviour of σ_{γ} near D^{-}matters for its L^{p} regularity;

Use of transport techniques in LGP

(DS2019): Take $\left(\partial_{\tau} f\right)^{+} \in L^{p}(\partial \Omega)$. Let $\left(\partial_{\tau} f\right)^{-}$be finitely atomic. Then:

- γ is induced by a map;
- D^{-}: set of atoms of $\left(\partial_{\tau} f\right)^{-}$. Δ_{x} : set of points of transport rays passing through x. The sets $\left\{\Delta_{q_{n}}: q_{n} \in D^{-}\right\}$are (almost) disjoint;
- Only behaviour of σ_{γ} near D^{-}matters for its L^{p} regularity;
- In the neighbourhood of each point in D^{-}, one can directly give the formula for the transport density;

Use of transport techniques in LGP

(DS2019): Take $\left(\partial_{\tau} f\right)^{+} \in L^{p}(\partial \Omega)$. Let $\left(\partial_{\tau} f\right)^{-}$be finitely atomic. Then:

- γ is induced by a map;
- D^{-}: set of atoms of $\left(\partial_{\tau} f\right)^{-}$. Δ_{x} : set of points of transport rays passing through x. The sets $\left\{\Delta_{q_{n}}: q_{n} \in D^{-}\right\}$are (almost) disjoint;
- Only behaviour of σ_{γ} near D^{-}matters for its L^{p} regularity;
- In the neighbourhood of each point in D^{-}, one can directly give the formula for the transport density;
- Its L^{p} norm can be estimated in an intrinsic way, and contribution of each point q_{n} depends on the L^{p} norm of f^{+}on $\Delta_{q_{n}} \cap \partial \Omega$;

Use of transport techniques in LGP

(DS2019): Take $\left(\partial_{\tau} f\right)^{+} \in L^{p}(\partial \Omega)$. Let $\left(\partial_{\tau} f\right)^{-}$be finitely atomic. Then:

- γ is induced by a map;
- D^{-}: set of atoms of $\left(\partial_{\tau} f\right)^{-}$. Δ_{x} : set of points of transport rays passing through x. The sets $\left\{\Delta_{q_{n}}: q_{n} \in D^{-}\right\}$are (almost) disjoint;
- Only behaviour of σ_{γ} near D^{-}matters for its L^{p} regularity;
- In the neighbourhood of each point in D^{-}, one can directly give the formula for the transport density;
- Its L^{p} norm can be estimated in an intrinsic way, and contribution of each point q_{n} depends on the L^{p} norm of f^{+}on $\Delta_{q_{n}} \cap \partial \Omega$;
- We sum up these estimates and get

$$
\left\|\sigma_{\gamma}\right\|_{L^{p}(\Omega)} \leq C\left\|\left(\partial_{\tau} f\right)^{+}\right\|_{L^{p}(\partial \Omega)}
$$

If $\left(\partial_{\tau} f\right)^{-}$is not finitely atomic, we use approximations.

I. Extension to dual problems

Theorem 1 (G. 2021)
Let $\Omega \subset \mathbb{R}^{2}$ be convex. The dual of the least gradient problem

$$
\sup \left\{\int_{\partial \Omega}[z, \nu] f \mathrm{~d} \mathcal{H}^{1}: \mathrm{z} \in \mathcal{Z}\right\}
$$

where $f \in B V(\partial \Omega)$ and

$$
\mathcal{Z}=\left\{z \in L^{\infty}\left(\Omega ; \mathbb{R}^{2}\right), \quad \operatorname{div}(z)=0, \quad\|z\|_{\infty} \leq 1 \text { a.e. in } \Omega\right\}
$$

is equivalent with the Kantorovich maximisation problem

$$
\sup \left\{\int_{\bar{\Omega}} \phi \mathrm{d}\left(g^{+}-g^{-}\right): \phi \in \operatorname{Lip}_{1}(\bar{\Omega})\right\}
$$

I. Extension to dual problems

Theorem 1 (G. 2021)
Let $\Omega \subset \mathbb{R}^{2}$ be convex. The dual of the least gradient problem

$$
\sup \left\{\int_{\partial \Omega}[z, \nu] f \mathrm{~d} \mathcal{H}^{1}: \mathrm{z} \in \mathcal{Z}\right\}
$$

where $f \in B V(\partial \Omega)$ and

$$
\mathcal{Z}=\left\{z \in L^{\infty}\left(\Omega ; \mathbb{R}^{2}\right), \quad \operatorname{div}(z)=0, \quad\|z\|_{\infty} \leq 1 \text { a.e. in } \Omega\right\}
$$

is equivalent with the Kantorovich maximisation problem

$$
\sup \left\{\int_{\bar{\Omega}} \phi \mathrm{d}\left(g^{+}-g^{-}\right): \phi \in \operatorname{Lip}_{1}(\bar{\Omega})\right\}
$$

The equivalence is given by $\mathrm{z}=R_{\frac{\pi}{2}} \nabla \phi$.
I. Extension to dual problems

$$
f(\theta)=\cos (2 \theta) ; \quad g(\theta)=-2 \sin (2 \theta)
$$

I. Extension to dual problems
$f(\theta)=\cos (2 \theta)+4$ discontinuities; $\quad g(\theta)=-2 \sin (2 \theta)+4$ Dirac deltas

I. Extension to dual problems
$f(\theta)=\cos (2 \theta)+4$ discontinuities;

$$
g(\theta)=-2 \sin (2 \theta)+4 \text { Dirac deltas }
$$

II. Stability of solutions

Theorem 2 (G. 2021)

Let $\Omega \subset \mathbb{R}^{2}$ be strictly convex. Suppose that $g_{n} \rightarrow g$ strictly in $B V(\partial \Omega)$. Let $u_{n} \in B V(\Omega)$ be solutions to LGP with boundary data g_{n}. Then, there exists $u \in B V(\Omega)$, a solution to problem LGP with boundary data g, such that $u_{n_{k}} \rightarrow u$ strictly in $B V(\Omega)$.

Sketch of proof: Renormalise the sequence g_{n} to make $\left(\partial_{\tau} g_{n}\right)^{ \pm}$probability measures. Use Prokhorov's theorem (on $\bar{\Omega} \times \bar{\Omega}$) for γ_{n}, optimal transport plans corresponding to u_{n}, and show that no mass escapes to $\partial \Omega$.

III. SBV regularity

Theorem 3 (G. 2021)
Let $\Omega \subset \mathbb{R}^{2}$ be uniformly convex. Let $g \in \operatorname{SBV}(\partial \Omega)$. If $u \in B V(\Omega)$ is a solution to the least gradient problem, then $u \in \operatorname{SBV}(\Omega)$.

III. SBV regularity

Theorem 3 (G. 2021)

Let $\Omega \subset \mathbb{R}^{2}$ be uniformly convex. Let $g \in \operatorname{SBV}(\partial \Omega)$. If $u \in B V(\Omega)$ is a solution to the least gradient problem, then $u \in \operatorname{SBV}(\Omega)$.

Idea of proof: g corresponds to some optimal transport plan $\bar{\gamma}$. Split $\bar{\gamma}$ into several parts γ_{i} and use a similar reasoning as Dweik and Santambrogio for each γ_{i}. Sum up these estimates and go back to g.

III. SBV regularity

$\min \left\{\int_{\bar{\Omega} \times \bar{\Omega}}|x-y| d \gamma: \gamma \in \mathcal{M}^{+}(\bar{\Omega} \times \bar{\Omega}),\left(\Pi_{x}\right)_{\#} \gamma=g^{+},\left(\Pi_{y}\right)_{\#} \gamma=g^{-}\right\}$
Denote $g^{ \pm}=g_{a c}^{ \pm}+g_{a t}^{ \pm} . D^{ \pm}$- set of atoms of $g^{ \pm} . \Delta_{x}$ - set of points in transport rays passing through x.

III. SBV regularity

$\min \left\{\int_{\bar{\Omega} \times \bar{\Omega}}|x-y| d \gamma: \gamma \in \mathcal{M}^{+}(\bar{\Omega} \times \bar{\Omega}),\left(\Pi_{x}\right)_{\#} \gamma=g^{+},\left(\Pi_{y}\right)_{\# \gamma}=g^{-}\right\}$
Denote $g^{ \pm}=g_{a c}^{ \pm}+g_{a t}^{ \pm} . D^{ \pm}$- set of atoms of $g^{ \pm} . \Delta_{x}$ - set of points in transport rays passing through x.

$$
A_{1}=\bigcup_{p \in D^{+}, q \in D^{-}}[p, q] .
$$

III. SBV regularity

$\min \left\{\int_{\bar{\Omega} \times \bar{\Omega}}|x-y| d \gamma: \gamma \in \mathcal{M}^{+}(\bar{\Omega} \times \bar{\Omega}),\left(\Pi_{x}\right)_{\#} \gamma=g^{+},\left(\Pi_{y}\right)_{\# \gamma}=g^{-}\right\}$
Denote $g^{ \pm}=g_{a c}^{ \pm}+g_{a t}^{ \pm} . D^{ \pm}$- set of atoms of $g^{ \pm} . \Delta_{x}$ - set of points in transport rays passing through x.

$$
\begin{gathered}
A_{1}=\bigcup_{p \in D^{+}, q \in D^{-}}[p, q] . \\
A_{2}:=\left(\left(\bigcup_{p \in D^{+}} \Delta_{p}\right) \backslash A_{1}\right) \cup D^{+} . \\
A_{3}:=\left(\left(\bigcup_{q \in D^{-}} \Delta_{q}\right) \backslash A_{1}\right) \cup D^{-} .
\end{gathered}
$$

III. SBV regularity

For $i=1,2,3$, set

$$
B_{i}:=\left(A_{i} \cap \partial \Omega\right) \cap\left(A_{i} \cap \partial \Omega\right) .
$$

and

$$
B_{4}:=(\partial \Omega \times \partial \Omega) \backslash\left(B_{1} \cup B_{2} \cup B_{3}\right) .
$$

III. SBV regularity

For $i=1,2,3$, set

$$
B_{i}:=\left(A_{i} \cap \partial \Omega\right) \cap\left(A_{i} \cap \partial \Omega\right) .
$$

and

$$
B_{4}:=(\partial \Omega \times \partial \Omega) \backslash\left(B_{1} \cup B_{2} \cup B_{3}\right) .
$$

Set $\gamma_{i}=\left.\gamma\right|_{B_{i}}, g_{i}^{+}=\left(\Pi_{x}\right)_{\#} \gamma_{i}$, and $g_{i}^{-}=\left(\Pi_{y}\right)_{\#} \gamma_{i}$. Then, γ_{i} solve

III. SBV regularity

For $i=1,2,3$, set

$$
B_{i}:=\left(A_{i} \cap \partial \Omega\right) \cap\left(A_{i} \cap \partial \Omega\right) .
$$

and

$$
B_{4}:=(\partial \Omega \times \partial \Omega) \backslash\left(B_{1} \cup B_{2} \cup B_{3}\right) .
$$

Set $\gamma_{i}=\left.\gamma\right|_{B_{i}}, g_{i}^{+}=\left(\Pi_{x}\right)_{\#} \gamma_{i}$, and $g_{i}^{-}=\left(\Pi_{y}\right)_{\#} \gamma_{i}$. Then, γ_{i} solve
$\min \left\{\int_{\bar{\Omega} \times \bar{\Omega}}|x-y| d \gamma: \gamma \in \mathcal{M}^{+}(\bar{\Omega} \times \bar{\Omega}),\left(\Pi_{x}\right)_{\#} \gamma=g^{+},\left(\Pi_{y}\right)_{\#} \gamma=g^{-}\right\}$.

III. SBV regularity

By our choice of A_{i}, we have

$$
g_{i}^{ \pm} \leq g^{ \pm}
$$

as measures, so $g_{i}^{ \pm}$is also a sum of an absolutely continuous and atomic measure.

III. SBV regularity

By our choice of A_{i}, we have

$$
g_{i}^{ \pm} \leq g^{ \pm}
$$

as measures, so $g_{i}^{ \pm}$is also a sum of an absolutely continuous and atomic measure. The measures

$$
g_{2}^{-}, g_{3}^{+}, g_{4}^{ \pm}
$$

do not charge points, so they are absolutely continuous.

III. SBV regularity

By our choice of A_{i}, we have

$$
g_{i}^{ \pm} \leq g^{ \pm}
$$

as measures, so $g_{i}^{ \pm}$is also a sum of an absolutely continuous and atomic measure. The measures

$$
g_{2}^{-}, g_{3}^{+}, g_{4}^{ \pm}
$$

do not charge points, so they are absolutely continuous. Hence (DS2019):

$$
\sigma_{\gamma_{2}}, \sigma_{\gamma_{3}}, \sigma_{\gamma_{4}} \in L^{1}(\Omega) .
$$

Finally, $\sigma_{\gamma_{1}}$ is supported on a set of Hausdorff dimension one, hence σ (so also $D u$) has no Cantor part.

