Geometric aspects of the 1-Laplacian

Wojciech Górny

University of Vienna, University of Warsaw

12th Forum of PDEs, Banach Center (online) 23 September 2021

The least gradient problem

Let $\Omega \subset \mathbb{R}^N$ be an open bounded set with Lipschitz boundary. Take $f \in L^1(\partial \Omega)$. Consider the following minimisation problem:

$$\min\left\{\int_{\Omega}|Du|,\quad u\in BV(\Omega),\quad u|_{\partial\Omega}=f
ight\}.$$

• = • •

The least gradient problem

Let $\Omega \subset \mathbb{R}^N$ be an open bounded set with Lipschitz boundary. Take $f \in L^1(\partial \Omega)$. Consider the following minimisation problem:

$$\min\left\{\int_{\Omega}|Du|, \quad u\in BV(\Omega), \quad u|_{\partial\Omega}=f\right\}.$$

Its Euler-Lagrange equation is the 1-Laplace equation

$$\begin{cases} -\operatorname{div}\left(\frac{Du}{|Du|}\right) = 0 & \text{in } \Omega\\ u = f & \text{on } \partial\Omega. \end{cases}$$

< 回 > < 三 > < 三 >

Relationship to minimal surfaces

$$\begin{split} \int_{\Omega} |Du| &\leq \int_{\Omega} |D(u+g)| \text{ for all } g \in BV_0(\Omega) \\ &\Leftrightarrow \\ \text{for all } t \in \mathbb{R} \ \int_{\Omega} |D\chi_{\{u>t\}}| &\leq \int_{\Omega} |D(\chi_{\{u>t\}}+g)| \text{ for all } g \in BV_0(\Omega). \end{split}$$

Image: A matched and A matc

Relationship to minimal surfaces

$$\begin{split} \int_{\Omega} |Du| &\leq \int_{\Omega} |D(u+g)| \text{ for all } g \in BV_0(\Omega) \\ &\Leftrightarrow \\ \text{for all } t \in \mathbb{R} \ \int_{\Omega} |D\chi_{\{u>t\}}| &\leq \int_{\Omega} |D(\chi_{\{u>t\}}+g)| \text{ for all } g \in BV_0(\Omega). \end{split}$$

So, $\partial \{u > t\}$ are area-minimising \rightarrow regularity theory for $\partial \{u > t\}$.

A (10) < A (10) < A (10) </p>

Geometry of the domain

$$\min\left\{\int_{\Omega}|Du|,\quad u\in BV(\Omega),\quad u|_{\partial\Omega}=f
ight\}$$

If $u = \chi_E$ and $f = \chi_F$, the problem has a clear geometrical meaning:

It heavily depends on the geometry of the domain!

$$\min\left\{\int_{\Omega}|Du|,\quad u\in BV(\Omega),\quad u|_{\partial\Omega}=f
ight\}$$

The main difficulty is that the trace operator is not continuous with respect to weak* convergence in BV; hence, we need to prove estimates on u near the boundary using the tools of geometric measure theory.

$$\min\left\{\int_{\Omega}|Du|,\quad u\in BV(\Omega),\quad u|_{\partial\Omega}=f
ight\}$$

The main difficulty is that the trace operator is not continuous with respect to weak* convergence in BV; hence, we need to prove estimates on u near the boundary using the tools of geometric measure theory.

Classical results include (for positive mean curvature of $\partial \Omega$):

• Existence, uniqueness and continuity of solutions for $f \in C(\partial \Omega)$;

$$\min\left\{\int_{\Omega}|Du|,\quad u\in BV(\Omega),\quad u|_{\partial\Omega}=f
ight\}$$

The main difficulty is that the trace operator is not continuous with respect to weak* convergence in BV; hence, we need to prove estimates on u near the boundary using the tools of geometric measure theory.

Classical results include (for positive mean curvature of $\partial \Omega$):

- Existence, uniqueness and continuity of solutions for $f \in C(\partial \Omega)$;
- Hölder regularity of solutions: $f \in C^{0,\alpha}(\partial\Omega) \Rightarrow u \in C^{0,\alpha/2}(\overline{\Omega})$.

$$\min\left\{\int_{\Omega}|Du|,\quad u\in BV(\Omega),\quad u|_{\partial\Omega}=f
ight\}$$

The main difficulty is that the trace operator is not continuous with respect to weak* convergence in BV; hence, we need to prove estimates on u near the boundary using the tools of geometric measure theory.

Classical results include (for positive mean curvature of $\partial \Omega$):

- Existence, uniqueness and continuity of solutions for $f \in C(\partial \Omega)$;
- Hölder regularity of solutions: $f \in C^{0,\alpha}(\partial\Omega) \Rightarrow u \in C^{0,\alpha/2}(\overline{\Omega})$.

Out of range of classical methods:

• Weak differentiability of solutions;

A B A A B A

$$\min\left\{\int_{\Omega}|Du|,\quad u\in BV(\Omega),\quad u|_{\partial\Omega}=f
ight\}$$

The main difficulty is that the trace operator is not continuous with respect to weak* convergence in BV; hence, we need to prove estimates on u near the boundary using the tools of geometric measure theory.

Classical results include (for positive mean curvature of $\partial \Omega$):

- Existence, uniqueness and continuity of solutions for $f \in C(\partial \Omega)$;
- Hölder regularity of solutions: $f \in C^{0,\alpha}(\partial\Omega) \Rightarrow u \in C^{0,\alpha/2}(\overline{\Omega})$.

Out of range of classical methods:

- Weak differentiability of solutions;
- Stability of families of solutions.

A B A A B A

Equivalence with the Beckmann problem

Suppose that $\Omega \subset \mathbb{R}^2$ is convex. Then, the least gradient problem is equivalent to the *Beckmann problem* (Rybka, Sabra, G. 2017):

$$\min\bigg\{\int_{\overline{\Omega}}|p|: \quad p\in\mathcal{M}(\overline{\Omega};\mathbb{R}^2), \quad \operatorname{div} p=0, \quad p\cdot\nu|_{\partial\Omega}=g\bigg\},\$$

where $g = \frac{\partial f}{\partial \tau}$, in the following sense: from a solution to the LGP we may construct a solution to the Beckmann problem, and vice versa if the solution to the Beckmann problem gives no mass to the boundary.

Equivalence with the Beckmann problem

Suppose that $\Omega \subset \mathbb{R}^2$ is convex. Then, the least gradient problem is equivalent to the *Beckmann problem* (Rybka, Sabra, G. 2017):

$$\min\bigg\{\int_{\overline{\Omega}}|p|: \quad p\in\mathcal{M}(\overline{\Omega};\mathbb{R}^2), \quad \operatorname{div} p=0, \quad p\cdot\nu|_{\partial\Omega}=g\bigg\},$$

where $g = \frac{\partial f}{\partial \tau}$, in the following sense: from a solution to the LGP we may construct a solution to the Beckmann problem, and vice versa if the solution to the Beckmann problem gives no mass to the boundary.

The equivalence is formally given by $p = R_{-\frac{\pi}{2}}Du$.

Equivalence with an optimal transport problem

Again on convex domains, the Beckmann problem is equivalent to the optimal transport problem with source and target measures on $\partial \Omega$:

$$\min\left\{\int_{\overline{\Omega}\times\overline{\Omega}}|x-y|\,d\gamma:\,\gamma\in\mathcal{M}^+(\overline{\Omega}\times\overline{\Omega}),\,(\Pi_x)_{\#}\gamma=g^+,(\Pi_y)_{\#}\gamma=g^-\right\}$$

Equivalence with an optimal transport problem

Again on convex domains, the Beckmann problem is equivalent to the optimal transport problem with source and target measures on $\partial \Omega$:

$$\min\left\{\int_{\overline{\Omega}\times\overline{\Omega}}|x-y|\,d\gamma:\,\gamma\in\mathcal{M}^+(\overline{\Omega}\times\overline{\Omega}),\,(\Pi_x)_{\#}\gamma=g^+,(\Pi_y)_{\#}\gamma=g^-\right\}$$

From every solution p to the Beckmann problem we can construct a solution to the OTP with transport density σ_{γ} (and vice versa) and

$$\sigma_{\gamma} = |\mathbf{p}|.$$

These two results were put together by Dweik and Santambrogio (2019).

Least gradient problem	Optimal transport
$f\in BV(\partial\Omega)$	$(\partial_{ au} f)^{\pm} \in \mathcal{M}^+(\partial\Omega)$
$\partial \{u > t\}$	transport rays
Tu = f	$\sigma_\gamma(\partial\Omega)=0$
$f\in \mathcal{C}(\partial\Omega)$	$(\partial_ au f)^\pm$ is atomless
$u\in \mathcal{W}^{1,p}(\partial\Omega)$	$(\partial_{ au} f)^{\pm} \in L^p(\partial\Omega)$
$u\in \mathcal{W}^{1,p}(\Omega)$	$\sigma_\gamma \in L^p(\Omega)$

< ∃ ►

(DS2019): Take $(\partial_{\tau} f)^+ \in L^p(\partial \Omega)$. Let $(\partial_{\tau} f)^-$ be finitely atomic. Then:

▲ □ ▶ ▲ □ ▶ ▲ □

(DS2019): Take $(\partial_{\tau} f)^+ \in L^p(\partial \Omega)$. Let $(\partial_{\tau} f)^-$ be finitely atomic. Then:

• γ is induced by a map;

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

(DS2019): Take $(\partial_{\tau} f)^+ \in L^p(\partial \Omega)$. Let $(\partial_{\tau} f)^-$ be finitely atomic. Then:

- γ is induced by a map;
- D^- : set of atoms of $(\partial_{\tau} f)^-$. Δ_x : set of points of transport rays passing through x. The sets $\{\Delta_{q_n} : q_n \in D^-\}$ are (almost) disjoint;

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

(DS2019): Take $(\partial_{\tau} f)^+ \in L^p(\partial \Omega)$. Let $(\partial_{\tau} f)^-$ be finitely atomic. Then:

- γ is induced by a map;
- D^- : set of atoms of $(\partial_{\tau} f)^-$. Δ_x : set of points of transport rays passing through x. The sets $\{\Delta_{q_n} : q_n \in D^-\}$ are (almost) disjoint;
- Only behaviour of σ_{γ} near D^- matters for its L^p regularity;

くぼう くほう くほう しほ

(DS2019): Take $(\partial_{\tau} f)^+ \in L^p(\partial \Omega)$. Let $(\partial_{\tau} f)^-$ be finitely atomic. Then:

• γ is induced by a map;

• D^- : set of atoms of $(\partial_{\tau} f)^-$. Δ_x : set of points of transport rays passing through x. The sets $\{\Delta_{q_n} : q_n \in D^-\}$ are (almost) disjoint;

- Only behaviour of σ_{γ} near D^- matters for its L^p regularity;
- In the neighbourhood of each point in D^- , one can directly give the formula for the transport density;

(人間) トイヨト イヨト ニヨ

(DS2019): Take $(\partial_{\tau} f)^+ \in L^p(\partial \Omega)$. Let $(\partial_{\tau} f)^-$ be finitely atomic. Then:

• γ is induced by a map;

• D^- : set of atoms of $(\partial_{\tau} f)^-$. Δ_x : set of points of transport rays passing through x. The sets $\{\Delta_{q_n} : q_n \in D^-\}$ are (almost) disjoint;

- Only behaviour of σ_{γ} near D^- matters for its L^p regularity;
- In the neighbourhood of each point in D^- , one can directly give the formula for the transport density;
- Its L^p norm can be estimated in an intrinsic way, and contribution of each point q_n depends on the L^p norm of f^+ on $\Delta_{q_n} \cap \partial\Omega$;

<ロト <部ト <注入 < 注入 = 二 =

(DS2019): Take $(\partial_{\tau} f)^+ \in L^p(\partial \Omega)$. Let $(\partial_{\tau} f)^-$ be finitely atomic. Then:

• γ is induced by a map;

• D^- : set of atoms of $(\partial_{\tau} f)^-$. Δ_x : set of points of transport rays passing through x. The sets $\{\Delta_{q_n} : q_n \in D^-\}$ are (almost) disjoint;

- Only behaviour of σ_{γ} near D^- matters for its L^p regularity;
- In the neighbourhood of each point in D^- , one can directly give the formula for the transport density;
- Its L^p norm can be estimated in an intrinsic way, and contribution of each point q_n depends on the L^p norm of f^+ on $\Delta_{q_n} \cap \partial\Omega$;
- We sum up these estimates and get

$$\|\sigma_{\gamma}\|_{L^p(\Omega)} \leq C \|(\partial_{\tau}f)^+\|_{L^p(\partial\Omega)}.$$

If $(\partial_{\tau} f)^-$ is not finitely atomic, we use approximations.

I. Extension to dual problems

Theorem 1 (G. 2021)

Let $\Omega \subset \mathbb{R}^2$ be convex. The dual of the least gradient problem

$$\sup\bigg\{\int_{\partial\Omega}[\mathsf{z},\nu]\,f\,\mathrm{d}\mathcal{H}^1:\mathsf{z}\in\mathcal{Z}\bigg\},$$

where $f \in BV(\partial \Omega)$ and

$$\mathcal{Z} = \bigg\{ z \in L^\infty(\Omega; \mathbb{R}^2), \quad \operatorname{div}(z) = 0, \quad \|z\|_\infty \leq 1 \text{ a.e. in } \Omega \bigg\},$$

is equivalent with the Kantorovich maximisation problem

$$\sup\bigg\{\int_{\overline{\Omega}}\phi\,\mathrm{d}(\boldsymbol{g}^+-\boldsymbol{g}^-)\,:\,\phi\in\mathrm{Lip}_1(\overline{\Omega})\bigg\}.$$

I. Extension to dual problems

Theorem 1 (G. 2021)

Let $\Omega \subset \mathbb{R}^2$ be convex. The dual of the least gradient problem

$$\sup\bigg\{\int_{\partial\Omega}[\mathsf{z},\nu]\,f\,\mathrm{d}\mathcal{H}^1:\mathsf{z}\in\mathcal{Z}\bigg\},$$

where $f \in BV(\partial \Omega)$ and

$$\mathcal{Z} = \bigg\{ z \in L^\infty(\Omega; \mathbb{R}^2), \quad \operatorname{div}(z) = 0, \quad \|z\|_\infty \leq 1 \text{ a.e. in } \Omega \bigg\},$$

is equivalent with the Kantorovich maximisation problem

$$\sup\bigg\{\int_{\overline{\Omega}}\phi\,\mathrm{d}(\boldsymbol{g}^+-\boldsymbol{g}^-)\,:\,\phi\in\mathrm{Lip}_1(\overline{\Omega})\bigg\}.$$

The equivalence is given by $z = R_{\frac{\pi}{2}} \nabla \phi$.

I. Extension to dual problems

 ▲ 国 → 国 → ○ へ ○

 23.09.2021
 11 / 18

< (日) × (日) × (1)

I. Extension to dual problems $f(\theta) = \cos(2\theta) + 4$ discontinuities;

$$g(\theta) = -2\sin(2\theta) + 4$$
 Dirac deltas

I. Extension to dual problems $f(\theta) = \cos(2\theta) + 4$ discontinuities; $g(\theta) = -2\sin(2\theta) + 4$ Dirac deltas

II. Stability of solutions

Theorem 2 (G. 2021)

Let $\Omega \subset \mathbb{R}^2$ be strictly convex. Suppose that $g_n \to g$ strictly in $BV(\partial \Omega)$. Let $u_n \in BV(\Omega)$ be solutions to LGP with boundary data g_n . Then, there exists $u \in BV(\Omega)$, a solution to problem LGP with boundary data g, such that $u_{n_k} \to u$ strictly in $BV(\Omega)$.

Sketch of proof: Renormalise the sequence g_n to make $(\partial_{\tau}g_n)^{\pm}$ probability measures. Use Prokhorov's theorem (on $\overline{\Omega} \times \overline{\Omega}$) for γ_n , optimal transport plans corresponding to u_n , and show that no mass escapes to $\partial\Omega$.

くぼう くほう くほう しほ

Theorem 3 (G. 2021)

Let $\Omega \subset \mathbb{R}^2$ be uniformly convex. Let $g \in SBV(\partial \Omega)$. If $u \in BV(\Omega)$ is a solution to the least gradient problem, then $u \in SBV(\Omega)$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem 3 (G. 2021)

Let $\Omega \subset \mathbb{R}^2$ be uniformly convex. Let $g \in SBV(\partial \Omega)$. If $u \in BV(\Omega)$ is a solution to the least gradient problem, then $u \in SBV(\Omega)$.

Idea of proof: g corresponds to some optimal transport plan $\overline{\gamma}$. Split $\overline{\gamma}$ into several parts γ_i and use a similar reasoning as Dweik and Santambrogio for each γ_i . Sum up these estimates and go back to g.

$$\min\left\{\int_{\overline{\Omega}\times\overline{\Omega}}|x-y|\,d\gamma:\,\gamma\in\mathcal{M}^+(\overline{\Omega}\times\overline{\Omega}),\,(\Pi_x)_{\#}\gamma=g^+,(\Pi_y)_{\#}\gamma=g^-\right\}$$

Denote $g^{\pm} = g_{ac}^{\pm} + g_{at}^{\pm}$. D^{\pm} - set of atoms of g^{\pm} . Δ_x - set of points in transport rays passing through x.

→ Ξ →

$$\min\left\{\int_{\overline{\Omega}\times\overline{\Omega}}|x-y|\,d\gamma:\,\gamma\in\mathcal{M}^+(\overline{\Omega}\times\overline{\Omega}),\,(\Pi_x)_{\#}\gamma=g^+,(\Pi_y)_{\#}\gamma=g^-\right\}$$

Denote $g^{\pm} = g_{ac}^{\pm} + g_{at}^{\pm}$. D^{\pm} - set of atoms of g^{\pm} . Δ_x - set of points in transport rays passing through x.

$$A_1 = \bigcup_{p \in D^+, q \in D^-} [p, q].$$

→ Ξ →

$$\min\left\{\int_{\overline{\Omega}\times\overline{\Omega}}|x-y|\,d\gamma:\,\gamma\in\mathcal{M}^+(\overline{\Omega}\times\overline{\Omega}),\,(\Pi_x)_{\#}\gamma=g^+,(\Pi_y)_{\#}\gamma=g^-\right\}$$

Denote $g^{\pm} = g_{ac}^{\pm} + g_{at}^{\pm}$. D^{\pm} - set of atoms of g^{\pm} . Δ_x - set of points in transport rays passing through x.

$$A_1 = \bigcup_{p \in D^+, q \in D^-} [p, q].$$

$$egin{aligned} &\mathcal{A}_2 := \left(\left(igcup_{p\in D^+} \Delta_p
ight) \setminus \mathcal{A}_1
ight) \cup D^+. \ &\mathcal{A}_3 := \left(\left(igcup_{q\in D^-} \Delta_q
ight) \setminus \mathcal{A}_1
ight) \cup D^-. \end{aligned}$$

→ 3 → 4 3

For i = 1, 2, 3, set

$$B_i := (A_i \cap \partial \Omega) \cap (A_i \cap \partial \Omega).$$

and

$$B_4 := (\partial \Omega \times \partial \Omega) \setminus (B_1 \cup B_2 \cup B_3).$$

< □ > < □ > < □ > < □ > < □ >

For i = 1, 2, 3, set

$$B_i := (A_i \cap \partial \Omega) \cap (A_i \cap \partial \Omega).$$

and

$$B_4 := (\partial \Omega \times \partial \Omega) \setminus (B_1 \cup B_2 \cup B_3).$$

Set $\gamma_i = \gamma|_{B_i}$, $g_i^+ = (\Pi_x)_{\#}\gamma_i$, and $g_i^- = (\Pi_y)_{\#}\gamma_i$. Then, γ_i solve

イロト 不得 トイヨト イヨト 二日

For i = 1, 2, 3, set

$$B_i := (A_i \cap \partial \Omega) \cap (A_i \cap \partial \Omega).$$

and

$$B_4 := (\partial \Omega \times \partial \Omega) \setminus (B_1 \cup B_2 \cup B_3).$$

Set $\gamma_i = \gamma|_{B_i}$, $g_i^+ = (\Pi_x)_{\#} \gamma_i$, and $g_i^- = (\Pi_y)_{\#} \gamma_i$. Then, γ_i solve
 $\min \left\{ \int_{\overline{\Omega} \times \overline{\Omega}} |x - y| d\gamma : \gamma \in \mathcal{M}^+(\overline{\Omega} \times \overline{\Omega}), (\Pi_x)_{\#} \gamma = g^+, (\Pi_y)_{\#} \gamma = g^- \right\}.$

A D N A B N A B N A B N

By our choice of A_i , we have

$$g_i^{\pm} \leq g^{\pm}$$

as measures, so g_i^{\pm} is also a sum of an absolutely continuous and atomic measure.

→ 3 → 4 3

By our choice of A_i , we have

$$g_i^{\pm} \leq g^{\pm}$$

as measures, so g_i^{\pm} is also a sum of an absolutely continuous and atomic measure. The measures

$$g_2^-, g_3^+, g_4^\pm$$

do not charge points, so they are absolutely continuous.

By our choice of A_i , we have

$$g_i^{\pm} \leq g^{\pm}$$

as measures, so g_i^{\pm} is also a sum of an absolutely continuous and atomic measure. The measures

$$g_2^-, g_3^+, g_4^\pm$$

do not charge points, so they are absolutely continuous. Hence (DS2019):

$$\sigma_{\gamma_2}, \sigma_{\gamma_3}, \sigma_{\gamma_4} \in L^1(\Omega).$$

Finally, σ_{γ_1} is supported on a set of Hausdorff dimension one, hence σ (so also Du) has no Cantor part.