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The least gradient problem

Let Q ¢ RN be an open bounded set with Lipschitz boundary. Take
f € L1(09). Consider the following minimisation problem:

min{/]Du!, ue BV(Q), u|39:f}.
Q
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The least gradient problem

Let Q ¢ RN be an open bounded set with Lipschitz boundary. Take
f € L1(09). Consider the following minimisation problem:

min{/]Du!, ue BV(Q), u|39:f}.
Q

Its Euler-Lagrange equation is the 1-Laplace equation

D
—div(ﬁ) —0 inQ
u=7F on 0f.
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Relationship to minimal surfaces

/|Du|§/ D(u + g)| for all g € BVo(Q)
Q Q

=

forall t e R / IDX{u>ty] < / ID(X{us>ey + &)l for all g € BVp(9).
Q Q
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Relationship to minimal surfaces

/yDu|g/ D(u + g)| for all g € BVo(Q)
Q Q

=

forall t e R / IDX{u>ty] < / ID(X{us>ey + &)l for all g € BVp(9).
Q Q

So, 9{u > t} are area-minimising — regularity theory for 9{u > t}.
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Geometry of the domain

min{/|Du|, u e BV(Q), u\aQ:f}
Q

If u= xg and f = xF, the problem has a clear geometrical meaning:

F

It heavily depends on the geometry of the domain!
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Classical approach

min {/ |Dul, wue BV(Q), ulpg= f}
Q

The main difficulty is that the trace operator is not continuous with
respect to weak* convergence in BV; hence, we need to prove estimates
on u near the boundary using the tools of geometric measure theory.
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Classical approach

min {/ |Dul, uve BV(Q), ulag= f}
Q

The main difficulty is that the trace operator is not continuous with
respect to weak* convergence in BV; hence, we need to prove estimates
on u near the boundary using the tools of geometric measure theory.

Classical results include (for positive mean curvature of 0Q):

e Existence, uniqueness and continuity of solutions for f € C(99Q);
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min {/ |Dul, uve BV(Q), ulag= f}
Q

The main difficulty is that the trace operator is not continuous with
respect to weak* convergence in BV; hence, we need to prove estimates
on u near the boundary using the tools of geometric measure theory.

Classical results include (for positive mean curvature of 0Q):
e Existence, uniqueness and continuity of solutions for f € C(99);

e Holder regularity of solutions: f € C%*(dQ) = u € C%*/2(Q).
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The main difficulty is that the trace operator is not continuous with
respect to weak* convergence in BV; hence, we need to prove estimates
on u near the boundary using the tools of geometric measure theory.

Classical results include (for positive mean curvature of 0Q):
e Existence, uniqueness and continuity of solutions for f € C(99);
e Holder regularity of solutions: f € C%*(0Q) = u € C%*/2(Q).

Out of range of classical methods:

e Weak differentiability of solutions;
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Classical approach

min {/ |Dul, uve BV(Q), ulag= f}
Q

The main difficulty is that the trace operator is not continuous with
respect to weak* convergence in BV; hence, we need to prove estimates
on u near the boundary using the tools of geometric measure theory.

Classical results include (for positive mean curvature of 0Q):

e Existence, uniqueness and continuity of solutions for f € C(99);
e Holder regularity of solutions: f € C%*(0Q) = u € C%*/2(Q).
Out of range of classical methods:

e Weak differentiability of solutions;

e Stability of families of solutions.
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Equivalence with the Beckmann problem

Suppose that Q C R? is convex. Then, the least gradient problem is
equivalent to the Beckmann problem (Rybka, Sabra, G. 2017):

min{/]p|: pE M(QR?), divp=0, P'V\aﬂ:g}a
Q

where g = %, in the following sense: from a solution to the LGP we may
construct a solution to the Beckmann problem, and vice versa if the
solution to the Beckmann problem gives no mass to the boundary.
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Equivalence with the Beckmann problem

Suppose that Q C R? is convex. Then, the least gradient problem is
equivalent to the Beckmann problem (Rybka, Sabra, G. 2017):

min{/!p|: pE M(QR?), divp=0, P'V\aﬂ:g}a
Q

where g = % in the following sense: from a solution to the LGP we may

=
construct a solution to the Beckmann problem, and vice versa if the
solution to the Beckmann problem gives no mass to the boundary.

The equivalence is formally given by p = R_% Du.
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Equivalence with an optimal transport problem

Again on convex domains, the Beckmann problem is equivalent to the
optimal transport problem with source and target measures on 9%Q:

min { [ =yl n e MA@ D). (Mg = &7 (M) :g—}.
X
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Equivalence with an optimal transport problem

Again on convex domains, the Beckmann problem is equivalent to the
optimal transport problem with source and target measures on 9%Q:

min { L x=yldys o e MA@ xR, (M = g7 () = g}.
X

From every solution p to the Beckmann problem we can construct a
solution to the OTP with transport density o, (and vice versa) and

oy = |p|.
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Use of transport techniques in LGP

These two results were put together by Dweik and Santambrogio (2019).

Least gradient problem Optimal transport
f e BV(09Q) (0, F)F € M*(09Q)
o{u >t} transport rays
Tu=f 0,(0Q2) =0
feC(00Q) (0,f)* is atomless
u € WhP(0Q) (0,F)F € LP(09)
ue WhHP(Q) o, € LP(Q)
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Use of transport techniques in LGP
(DS2019): Take (0,f)" € LP(0RQ). Let (0,f)~ be finitely atomic. Then:
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Use of transport techniques in LGP
(DS2019): Take (0-f)" € LP(99). Let (0-f)~ be finitely atomic. Then:

e v is induced by a map;
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Use of transport techniques in LGP

(DS2019): Take (0-f)" € LP(99). Let (0-f)~ be finitely atomic. Then:
e v is induced by a map;

e D7 set of atoms of (0,f)~. Ax: set of points of transport rays passing
through x. The sets {A,, : g, € D™} are (almost) disjoint;
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e v is induced by a map;

e D7 set of atoms of (0,f)~. Ax: set of points of transport rays passing
through x. The sets {A,, : g, € D™} are (almost) disjoint;

e Only behaviour of 0, near D™ matters for its LP regularity;
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Use of transport techniques in LGP
(DS2019): Take (0-f)" € LP(99). Let (0-f)~ be finitely atomic. Then:
e v is induced by a map;

e D7 set of atoms of (0,f)~. Ax: set of points of transport rays passing
through x. The sets {A,, : g, € D™} are (almost) disjoint;

e Only behaviour of 0, near D™ matters for its LP regularity;

e In the neighbourhood of each point in D™, one can directly give the
formula for the transport density;
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Use of transport techniques in LGP
(DS2019): Take (0-f)" € LP(99). Let (0-f)~ be finitely atomic. Then:
e v is induced by a map;

e D7 set of atoms of (0,f)~. Ax: set of points of transport rays passing
through x. The sets {A,, : g, € D™} are (almost) disjoint;

e Only behaviour of 0, near D™ matters for its LP regularity;

e In the neighbourhood of each point in D™, one can directly give the
formula for the transport density;

e Its LP norm can be estimated in an intrinsic way, and contribution of
each point g, depends on the LP norm of f on Ay N IQ;
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Use of transport techniques in LGP
(DS2019): Take (0-f)" € LP(99). Let (0-f)~ be finitely atomic. Then:
e v is induced by a map;

e D7 set of atoms of (0,f)~. Ax: set of points of transport rays passing
through x. The sets {A,, : g, € D™} are (almost) disjoint;

e Only behaviour of 0, near D™ matters for its LP regularity;

e In the neighbourhood of each point in D™, one can directly give the
formula for the transport density;

e Its LP norm can be estimated in an intrinsic way, and contribution of
each point g, depends on the LP norm of f on Ay N IQ;

e We sum up these estimates and get
losllr(@) < ClO7 ) [|oo0)-

If (O-f)~ is not finitely atomic, we use approximations.
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|. Extension to dual problems

Theorem 1 (G. 2021)
Let Q C R? be convex. The dual of the least gradient problem

sup{/ [z,v] fdH! z € 2}7
oQ
where f € BV(0Q) and
Z = {z € L®(Q;R?), div(z) =0, |zllee <1 a.e in Q},
is equivalent with the Kantorovich maximisation problem

SUP{/Q¢d(g+ —-g7): ¢ ELipl(ﬁ)}-
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Theorem 1 (G. 2021)
Let Q C R? be convex. The dual of the least gradient problem

sup{/ [z,v] fdH! z € 2}7
oQ
where f € BV(0Q) and
Z = {z € L®(Q;R?), div(z) =0, |zllee <1 a.e in Q},
is equivalent with the Kantorovich maximisation problem

SUP{/Q¢d(g+ —-g7): ¢ ELipl(ﬁ)}-

The equivalence is given by z = RgV(b.
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|. Extension to dual problems
f(0) = cos(20); g(0) = —2sin(20)

V2
2

V2 0

ol
ol
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|. Extension to dual problems
f(0) = cos(20) + 4 discontinuities; g(0) = —2sin(260) + 4 Dirac deltas

V2
2

V2 0

ol%
ol

V2
2
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|. Extension to dual problems
f(0) = cos(20) + 4 discontinuities; g(0) = —2sin(260) + 4 Dirac deltas

g=-2
T
-1 -1
1 1
g=2 {u=A} 9=2
Ae[—-1,1]
1 1
) “1
S ——
g=-2
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II. Stability of solutions

Theorem 2 (G. 2021)

Let Q C R? be strictly convex. Suppose that g, — g strictly in BV (0R).
Let u, € BV(Q) be solutions to LGP with boundary data g,. Then, there
exists u € BV(Q), a solution to problem LGP with boundary data g, such
that up, — u strictly in BV(Q).

Sketch of proof: Renormalise the sequence g, to make (0-g,)* probability
measures. Use Prokhorov's theorem (on Q x Q) for ,, optimal transport
plans corresponding to u,, and show that no mass escapes to 9.
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[11. SBV regularity

Theorem 3 (G. 2021)

Let Q C R? be uniformly convex. Let g € SBV(0R). If u€ BV(Q) is a
solution to the least gradient problem, then u € SBV(Q).
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[11. SBV regularity

Theorem 3 (G. 2021)

Let Q C R? be uniformly convex. Let g € SBV(9R). If u € BV(Q) is a
solution to the least gradient problem, then u € SBV(Q).

Idea of proof: g corresponds to some optimal transport plan 7.
Split 7 into several parts 7; and use a similar reasoning as Dweik and
Santambrogio for each ;. Sum up these estimates and go back to g.
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[11. SBV regularity

min { /Q 5 Ix—yldy: y e MT(QxQ), (MN)gy=g",(Ny)zy = g‘}
X

Denote g* = gaic + gait. D¥ - set of atoms of g*. A, - set of points in
transport rays passing through x.

Wojciech Gérny (U. Vienna, U. Warsaw) Geometric aspects of the 1-Laplacian 23.09.2021 16 /18



[11. SBV regularity

min { /Q 5 Ix—yldy: y e MT(QxQ), (MN)gy=g",(Ny)zy = g‘}
X

Denote g* = gaic + gait. D¥ - set of atoms of g*. A, - set of points in
transport rays passing through x.

Al = U [pa q]

peD*,qeD~
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[11. SBV regularity

min { /Q 5 Ix—yldy: y e MT(QxQ), (MN)gy=g",(Ny)zy = g‘}
X

Denote g* = gaic + gait. D¥ - set of atoms of g*. A, - set of points in
transport rays passing through x.

Al = U [pa q]

peD*,qeD~
Ay = <( U A,,) \Al) uD*.
pEDT
Az = (( U Aq> \A1> uD™.
qeD-
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[11. SBV regularity

Fori=1,2,3, set
B; = (A,’ N BQ) N (A,' N 89)

and
By = (69 X 89)\(31 UBU 83).
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[11. SBV regularity

Fori=1,2,3, set
B; = (A,’ N 6(2) N (A,’ N 89)

and
By := (092 x 0Q2)\(B1 U B, U B3).

Set vi = v|g;, g,-+ = (My)%vi, and g = (M, )47i. Then, v; solve
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[11. SBV regularity

Fori=1,2,3, set
B; = (A,’ N 8(2) N (A,’ N 89)

and
By := (092 x 0Q2)\(B1 U B, U B3).

Set vi = v|g;, g,-+ = (My)%vi, and g = (M, )47i. Then, v; solve

min { L yidn sy e MA@, (M) = 67Ny = g—}.
X
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[11. SBV regularity

By our choice of A;, we have

as measures, so g,.jE is also a sum of an absolutely continuous and atomic
measure.
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[11. SBV regularity

By our choice of A;, we have

as measures, so g,.jE is also a sum of an absolutely continuous and atomic
measure. The measures
- o+ oE
g2 7g3 7g4

do not charge points, so they are absolutely continuous.

Wojciech Gérny (U. Vienna, U. Warsaw) Geometric aspects of the 1-Laplacian 23.09.2021 18/18



[11. SBV regularity

By our choice of A;, we have

gt <gt

as measures, so g,-jE is also a sum of an absolutely continuous and atomic
measure. The measures

8 .85.8
do not charge points, so they are absolutely continuous. Hence (DS2019):

Trs Oy Oy € LH(Q)

Finally, 0, is supported on a set of Hausdorff dimension one, hence o
(so also Du) has no Cantor part.
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