
Weak solutions to the total variation flow
in metric measure spaces

Wojciech Górny
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p-Laplacian evolution equation

Consider the model problem{
ut = div(|∇u|p−2∇u) on (0,T )× RN ;
u = u0 on {0} × RN .

How to formulate this in a metric measure space?
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Gradient flow of the Dirichlet energy

One possible way is to consider the energy

Φ(u) =
1

p

∫
Ω
|∇u|p

well-defined over L2(RN) ∩W 1,p(RN) and apply the classical semigroup
theory (Brezis, Crandall, Komura, ...) to get existence and uniqueness
of solutions to the gradient flow

ut + ∂Φ(u) ∋ 0,

where ∂Φ(u) is the subdifferential of Φ.
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Metric gradient flows

(X, d) - complete and separable, ν - Radon measure.

We can define the Cheeger energy

Chp(u) =
1

p

∫
X
|Du|p dν

for u ∈ L2(X, ν) ∩W 1,p(X, d , ν) and view the p-Laplace equation as its
gradient flow in L2(X, ν).

The whole machinery works (existence, uniqueness, gradient bounds...).
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Metric gradient flows

Why do we want to study it in more detail?

To get a ’pointwise’ characterisation;

A lot of geometric properties of (X, d , ν) are encoded in the p-Laplace
gradient flow: curvature, tangent spaces, ...

To cover the case of the total variation flow;

To allow for initial data in L1(X, ν);

To study asymptotics.
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Basics for analysis on metric spaces

Standard requirements: (X, d) complete, separable. ν is a Radon measure,
which is finite on bounded subsets.

Derivatives are replaced by upper gradients; we say that g is an upper
gradient of u, if for all curves γ : [0, lγ ] → X

|u(γ(lγ))− u(γ(0))| ≤
∫ lγ

0
g(γ(t)) |γ̇(t)| dt.

u ∈ W 1,p(X, d , ν) ⇔ u ∈ Lp(X, ν) and there exists g ∈ Lp(X, ν).

“Minimal g” will be denoted |Du|.
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Gigli differential structure

How to introduce differentials and gradients?

Consider a Riemannian manifold M and its cotangent bundle T ∗M.
It has the following properties:

• It is equipped with a smooth differential structure;

• We can multiply its sections (1-forms) by smooth functions;

• The differential f 7→ df is a linear and continuous map;

• If two functions have the same differential, they differ by a constant.

Gigli’s construction aims to create a metric analogue of T ∗M and TM.
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Gigli differential structure
Define the pre-cotangent module

PCMp =

{
{(fi ,Ai )} : fi ∈ W 1,p(X, d , ν),

∑
i

∥Dfi∥Lp(Ai ,ν) < ∞
}

with Ai a partition of X into Borel sets.

Consider the equivalence relation on PCMp given by

{(fi ,Ai )} ∼ {(gj ,Bj)} ⇔ |D(fi − gj)| = 0 ν − a.e. on Ai ∩ Bj .

We call the map | · |∗ : PCMp/ ∼→ Lp(X, ν):

|{(fi ,Ai )}|∗ := |Dfi | ν − a.e. on Ai

the pointwise norm on PCMp/ ∼.

The closure of PCMp/ ∼ with respect to the norm ∥|{(fi ,Ai )}|∗∥Lp(X,ν)
is called the cotangent module Lp(T ∗X). It is an L∞-normed module.
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Gigli differential structure

The map d : W 1,p(X, d , ν) → Lp(T ∗X) given by

df := (f ,X)

is the differential. It is linear and continuous.

The vector fields are defined via duality:

Lq(TX) := (Lp(T ∗X))∗,
1

p
+

1

q
= 1.

X ∈ Lq(TX) is a gradient of f , if

df (X ) = |X |q = |df |p∗ ν − a.e.

(In the Euclidean case, we have X = |∇u|p−2∇u.)
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Divergence of a vector field

f ∈ Lr (X, ν) is the divergence of X ∈ Lq(TX), if∫
X
fg dν = −

∫
X
dg(X ) dν

for all g ∈ W 1,p(X, d , ν) ∩ Lr
′
(X, ν). We write f = div(X ).

These objects are a priori nonlocal!
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The p-Laplacian evolution equation

Recall that we study the gradient flow of the Cheeger energy

Chp(u) =
1

p

∫
X
|Du|p dν.

We use the Gigli structure to provide a characterisation of ∂Chp.

Theorem (G.-Mazón, JFA 2022)

Let 1 < p < ∞. We say that (u, v) ∈ Ap iff u ∈ L2(X, ν) ∩W 1,p(X, d , ν),
v ∈ L2(X, ν), and there exists X ∈ Lq(TX) with div(X ) ∈ L2(X, ν) s.t.

−div(X ) = v ;

du(X ) = |du|p∗ = |X |q ν − a.e.

Then, ∂Chp = Ap.
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Sketch of proof

It is easy to check that Ap ⊂ ∂Chp. Since ∂Chp is maximal monotone,
we need to show that also Ap is maximal monotone.

Minty theorem: a monotone operator A is maximal iff R(I +A) = H.

We need to show that for all g ∈ L2(X, ν) there exists u ∈ D(Ap)
and X ∈ Lq(TX) with div(X ) ∈ L2(X, ν) such that

−div(X ) = g − u;

du(X ) = |du|p∗ = |X |q ν − a.e.

We cannot resort to approximations! Instead, we prove this by finding
a functional G such that the above is the dual to the minimisation of G .
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Back to the gradient flow

Theorem (G.-Mazón, JFA 2022)

For any u0 ∈ L2(X, ν) and all T > 0 there exists a unique weak solution
u(t) of the p-Laplacian evolution equation in the following sense:

There exists u ∈ C ([0,T ]; L2(X, ν)) ∩W 1,2
loc (0,T ; L2(X, ν)), u(0, ·) = u0,

for a.e. t ∈ (0,T ) u(t) ∈ W 1,p(X, d , ν), and there exist vector fields
X (t) ∈ Lq(TX) with div(X (t)) ∈ L2(X, ν) such that

div(X (t)) = ut(t, ·) in X;

du(t)(X (t)) = |du(t)|p∗ = |X (t)|q ν-a.e. in X.
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How to do this for p = 1?

We need to replace W 1,p(X, d , ν) with BV (X, d , ν), and the pairing
du(X ) with the Anzellotti pairing given by

⟨(X ,Du), f ⟩ := −
∫
X
u df (X ) dν −

∫
X
u f div(X ) dν.

Here, f ∈ Lip(X) has compact support. This formula defines a Radon
measure and the condition du(X ) = |du|p∗ = |X |q is replaced with
∥X∥∞ ≤ 1 and (X ,Du) = |Du|ν .

The pairing (X ,Du) agrees with du(X ) for Lipschitz functions and satisfies
the ’expected’ properties such as the validity of a Gauss-Green formula.
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The total variation flow

We understand the TV flow as the gradient flow of the 1-Cheeger energy

Ch1(u) =

∫
X
|Du|ν .

Under a bit more restrictive assumptions on ν, we use the Gigli structure
and the new Anzellotti pairing to provide a characterisation of ∂Ch1.

Theorem (G.-Mazón, JFA 2022)

We say that (u, v) ∈ A1 iff u ∈ L2(X, ν) ∩ BV (X, d , ν), v ∈ L2(X, ν),
and there exists X ∈ L∞(TX) with ∥X∥∞ ≤ 1 and div(X ) ∈ L2(X, ν) s.t.

−div(X ) = v ;

(X ,Du) = |Du|ν as measures.

Then, ∂Ch1 = A1.
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Back to the gradient flow

Theorem (G.-Mazón, JFA 2022)

For any u0 ∈ L2(X, ν) and all T > 0 there exists a unique weak solution
u(t) of the total variation flow in the following sense:

There exists u ∈ C ([0,T ]; L2(X, ν)) ∩W 1,2
loc (0,T ; L2(X, ν)), u(0, ·) = u0,

for a.e. t ∈ (0,T ) u(t) ∈ BV (X, d , ν), and there exist vector fields
X (t) ∈ L∞(TX) with ∥X∥∞ ≤ 1 and div(X (t)) ∈ L2(X, ν) such that

div(X (t)) = ut(t, ·) in X;

(X (t),Du(t)) = |Du(t)|ν as measures on X.
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Extensions: bounded domains

We need to work under assumptions that guarantee existence of a linear
and continuous trace operator.

(u, v) ∈ AN (resp. Af ) if and only if u, v ∈ L2(Ω, ν), u ∈ BV (Ω, d , ν)
and there exists a vector field X ∈ L∞(TΩ) with ∥X∥∞ ≤ 1 s.t.

−div0(X ) = v in Ω;

(X ,Du) = |Du|ν as measures;

(X · νΩ)− = 0 (resp. (X · νΩ)− ∈ sign(TΩu − f )) |DχΩ|ν − a.e. on ∂Ω.
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Extensions: L1 initial data

If ν(X) < ∞, then for any u0 ∈ L1(X, ν), there exists a unique entropy
solution of the total variation flow in the following sense:

• u ∈ C ([0,T ]; L1(X, ν)) ∩W 1,2
loc ([0,T ]; L1(X, ν));

• u(0, ·) = u0;

• For a.e. t ∈ [0,T ] and all k > 0 we have Tku(t) ∈ BV (X, d , ν);
• There exist vector fields X (t) ∈ L∞(TX) with div(X (t)) ∈ L1(X, ν)
and ∥X (t)∥∞ ≤ 1 s.t.

div(X (t)) = ut(t, ·) in X;

(X (t),DTku(t)) = |DTku(t)|ν as measures for all k > 0.
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