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p-Laplacian evolution equation

Consider the model problem{
ut = div(|∇u|p−2∇u) on (0,T )× RN ;
u = u0 on {0} × RN .

How to formulate this in a metric measure space?
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Gradient flow of the Dirichlet energy

One possible way is to consider the energy

Φp(u) =

{ 1
p

∫
Ω |∇u|p if u ∈ W 1,p(RN);

+∞ otherwise

well-defined over L2(RN) and apply the classical semigroup theory
to get existence and uniqueness of solutions to the gradient flow

0 ∈ ut + ∂Φp(u),

where ∂Φ is the subdifferential of a convex and lower semicontinuous
functional Φ, i.e.,

∂Φ(u) =

{
v ∈ L2(RN) : Φ(w)−Φ(u) ≥ v · (w − u) for all w ∈ L2(RN)

}
.
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Metric gradient flows

(X, d) - complete and separable; ν - Radon, finite on bounded sets.

For u ∈ L2(X, ν), we can define its Cheeger energy

Chp(u) =

{ 1
p

∫
X |Du|p dν if u ∈ W 1,p(X, d , ν)

+∞ otherwise

and view the p-Laplace evolution equation as its gradient flow in L2(X, ν).

The whole machinery works (existence, uniqueness, gradient bounds...).
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Metric gradient flows

Why do we want to study it in more detail?

To get a ’pointwise’ characterisation;

A lot of geometric properties of (X, d , ν) are encoded in the gradient flow
of Chp: curvature, tangent spaces, ...

To cover the case of the total variation flow;

To allow for initial data in L1(X, ν);

To study asymptotics.
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Small detour: 1-Laplacian

For p = 1, this equation has the form ut = div

(
Du
|Du|

)
on (0,T )× RN ;

u = u0 on {0} × RN .

For p > 1, we would define weak solutions using test functions.

For p = 1, this is not possible because test functions might fail to detect
discontinuities of u; we need to define solutions using the subdifferential
of the 1-Dirichlet energy (i.e., the total variation).
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Small detour: 1-Laplacian

For p > 1 and u ∈ W 1,p(RN) ∩ L2(RN), we have

v ∈ ∂Φp(u) ⇔ v = −∆pu = −div(|∇u|p−2∇u).

For p = 1 and u ∈ BV (RN) ∩ L2(RN), we have

v ∈ ∂Φ1(u) ⇔ ∃ z ∈ L∞(RN ;RN) s.t. ∥z∥∞ ≤ 1,

v = −div(z) and (z,Du) = |Du|.

Here, (z,Du) is the Radon measure defined by

⟨(z,Du), φ⟩ := −
∫
RN

u φdiv(z) dx −
∫
RN

u z · ∇φ dx

for all φ ∈ C∞
c (RN). For u ∈ W 1,1(RN), it agrees with z · ∇u dLN .
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Small detour: 1-Laplacian

The characterisation of ∂Φ1(u) consists of the following:

• A vector field z which plays the role of Du
|Du| ;

• A bound on z;

• The equation v = −div(z);

• A compatibility condition between the vector field z and the function u.

In order to characterise the subdifferential in the metric setting, we will
introduce a multivalued operator similar to the one above (even for p > 1).
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Basics for analysis on metric spaces

(X, d) - complete, separable; ν - Radon, finite on bounded sets.

Derivatives are replaced by upper gradients; we say that g is an upper
gradient of u, if for all curves γ : [0, lγ ] → X

|u(γ(lγ))− u(γ(0))| ≤
∫ lγ

0
g(γ(t)) |γ̇(t)| dt.

u ∈ W 1,p(X, d , ν) ⇔ u ∈ Lp(X, ν) and there exists g ∈ Lp(X, ν).

“Minimal g” will be denoted |Du|.
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Wojciech Górny (U. Vienna, U. Warsaw) Weak solutions to metric gradient flows 06.09.2022 9 / 30



Gigli differential structure

How to introduce differentials and gradients?

Consider a Riemannian manifold M and its cotangent bundle T ∗M.
It has the following properties:

• It is equipped with a smooth differential structure;

• We can multiply its sections (1-forms) by smooth functions;

• The differential f 7→ df is a linear and continuous map;

• If two functions have the same differential, they differ by a constant.

Gigli’s construction aims to create a metric analogue of T ∗M and TM.

Wojciech Górny (U. Vienna, U. Warsaw) Weak solutions to metric gradient flows 06.09.2022 10 / 30



Gigli differential structure

How to introduce differentials and gradients?

Consider a Riemannian manifold M and its cotangent bundle T ∗M.
It has the following properties:

• It is equipped with a smooth differential structure;

• We can multiply its sections (1-forms) by smooth functions;

• The differential f 7→ df is a linear and continuous map;

• If two functions have the same differential, they differ by a constant.

Gigli’s construction aims to create a metric analogue of T ∗M and TM.
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Gigli differential structure
Define the pre-cotangent module

PCMp =

{
{(fi ,Ai )} : fi ∈ W 1,p(X, d , ν),

∑
i

∥Dfi∥pLp(Ai ,ν)
< ∞

}
with Ai a partition of X into Borel sets.

Consider the equivalence relation on PCMp given by

{(fi ,Ai )} ∼ {(gj ,Bj)} ⇔ |D(fi − gj)| = 0 ν − a.e. on Ai ∩ Bj .

We call the map | · |∗ : PCMp/ ∼→ Lp(X, ν):

|{(fi ,Ai )}|∗ := |Dfi | ν − a.e. on Ai

the pointwise norm on PCMp/ ∼.

The closure of PCMp/ ∼ with respect to the norm ∥|{(fi ,Ai )}|∗∥Lp(X,ν)
is called the cotangent module Lp(T ∗X). It is an L∞-normed module.

Wojciech Górny (U. Vienna, U. Warsaw) Weak solutions to metric gradient flows 06.09.2022 11 / 30



Gigli differential structure
Define the pre-cotangent module

PCMp =

{
{(fi ,Ai )} : fi ∈ W 1,p(X, d , ν),

∑
i

∥Dfi∥pLp(Ai ,ν)
< ∞

}
with Ai a partition of X into Borel sets.

Consider the equivalence relation on PCMp given by

{(fi ,Ai )} ∼ {(gj ,Bj)} ⇔ |D(fi − gj)| = 0 ν − a.e. on Ai ∩ Bj .

We call the map | · |∗ : PCMp/ ∼→ Lp(X, ν):

|{(fi ,Ai )}|∗ := |Dfi | ν − a.e. on Ai

the pointwise norm on PCMp/ ∼.

The closure of PCMp/ ∼ with respect to the norm ∥|{(fi ,Ai )}|∗∥Lp(X,ν)
is called the cotangent module Lp(T ∗X). It is an L∞-normed module.
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Gigli differential structure

The map d : W 1,p(X, d , ν) → Lp(T ∗X) given by

df := (f ,X)

is the differential. It is linear and continuous.

The vector fields are defined via duality:

Lq(TX) := (Lp(T ∗X))∗,
1

p
+

1

q
= 1.

X ∈ Lq(TX) is a p-gradient of f , if

df (X ) = |X |q = |df |p∗ .

(In the Euclidean case, we have X = |∇u|p−2∇u.)
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Divergence of a vector field

f ∈ Lr (X, ν) is the divergence of X ∈ Lq(TX), if∫
X
fg dν = −

∫
X
dg(X ) dν

for all g ∈ W 1,p(X, d , ν) ∩ Lr
′
(X, ν). We write f = div(X ).

These objects are a priori nonlocal! (But, for sufficiently regular spaces,
they can be expressed pointwise using the Gromov-Hausdorff tangents.)
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The p-Laplacian evolution equation

Recall that we study the gradient flow of the Cheeger energy

Chp(u) =

{ 1
p

∫
X |Du|p dν if u ∈ W 1,p(X, d , ν);

+∞ otherwise.

We use the Gigli structure to provide a characterisation of ∂Chp.

Theorem (G.-Mazón, JFA 2022)

Let 1 < p < ∞. We say that (u, v) ∈ Ap iff u ∈ L2(X, ν) ∩W 1,p(X, d , ν),
v ∈ L2(X, ν), and there exists X ∈ Lq(TX) with div(X ) ∈ L2(X, ν) s.t.

v = −div(X );

du(X ) = |du|p∗ = |X |q.

Then, ∂Chp = Ap.
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Sketch of proof

It is easy to check that Ap ⊂ ∂Chp. Since ∂Chp is maximal monotone,
we need to show that also Ap is maximal monotone.

Minty theorem: a monotone operator A is maximal iff R(I +A) = H.

We need to show that for all g ∈ L2(X, ν) there exists u ∈ D(Ap)
and X ∈ Lq(TX) with div(X ) ∈ L2(X, ν) such that

−div(X ) = g − u;

du(X ) = |du|p∗ = |X |q.

We cannot resort to approximations! Instead, we prove this by finding
a functional F such that the above is the dual to the minimisation of F .

Wojciech Górny (U. Vienna, U. Warsaw) Weak solutions to metric gradient flows 06.09.2022 15 / 30



Sketch of proof

It is easy to check that Ap ⊂ ∂Chp. Since ∂Chp is maximal monotone,
we need to show that also Ap is maximal monotone.

Minty theorem: a monotone operator A is maximal iff R(I +A) = H.

We need to show that for all g ∈ L2(X, ν) there exists u ∈ D(Ap)
and X ∈ Lq(TX) with div(X ) ∈ L2(X, ν) such that

−div(X ) = g − u;

du(X ) = |du|p∗ = |X |q.

We cannot resort to approximations! Instead, we prove this by finding
a functional F such that the above is the dual to the minimisation of F .
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Sketch of proof

Idea: use the Fenchel-Rockafellar duality theorem.

Let U,V be two Banach spaces and let A : U → V be a continuous linear
operator. Denote by A∗ : V ∗ → U∗ its dual. Then, if the primal problem is
of the form

inf
u∈U

{
E (Au) + G (u)

}
, (P)

then the dual problem is defined as the maximisation problem

sup
p∗∈V ∗

{
− E ∗(−p∗)− G ∗(A∗p∗)

}
, (P*)

where E ∗ and G ∗ are the Legendre–Fenchel transformations (conjugate
functions) of E and G respectively, i.e.,

E ∗(u∗) := sup
u∈U

{⟨u, u∗⟩ − E (u)} .
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Sketch of proof

Assume that E and G are proper, convex and lower semi-continuous. If
there exists u0 ∈ U such that E (Au0) < ∞, G (u0) < ∞ and E is
continuous at Au0, then

inf (P) = sup (P*)

and the dual problem (P*) admits at least one solution. Moreover, the
optimality condition of these two problems is given by

A∗v∗ ∈ ∂G (u), −v∗ ∈ ∂E (Au),

where u is solution of (P) and v∗ is solution of (P*).

We need to identify the spaces U,V , the functionals E ,G and the
operator A so that our auxiliary problem fits into this framework.
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Sketch of proof

We set
U = W 1,p(X, d , ν) ∩ L2(X, ν), V = Lp(T ∗X),

and the operator A : U → V is the differential d .

We set E : Lp(T ∗X) → R by the formula

E (v) =
1

p

∫
X
|v |p∗ dν

and G : W 1,p(X, d , ν) ∩ L2(X, ν) → R by

G (u) :=
1

2

∫
X
u2 dν −

∫
X
ug dν.

We have E (0) = 0, G (0) = 0, and E is continuous at 0, so the dual
problem has at least one solution v∗.
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Wojciech Górny (U. Vienna, U. Warsaw) Weak solutions to metric gradient flows 06.09.2022 18 / 30



Sketch of proof

The first optimality condition is

E (Au) + E ∗(−v∗) = ⟨−v∗,Au⟩

which translates to

1

p

∫
X
|du|p∗ dν +

1

q

∫
X
| − v∗|q dν =

∫
X
du(−v∗) dν,

so du(−v∗) = |du|p∗ = | − v∗|q ν-a.e.
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Sketch of proof
The second optimality condition is

A∗v∗ ∈ ∂G (u).

For v∗ ∈ Lq(TX) in the domain of A∗, and u ∈ W 1,p(X, d , ν) ∩ L2(X, ν),∫
X
u (A∗v∗) dν = ⟨u,A∗v∗⟩ = ⟨v∗,Au⟩ =

∫
X
du(v∗) dν,

so the definition of the divergence of v∗ is satisfied with

div(v∗) = −A∗v∗.

In particular, div(v∗) ∈ L2(X, ν). Since ∂G (u) = {u − g}, we get

−div(−v∗) = g − u.

Thus, the pair (u,−v∗) satisfies the desired conditions, so Ap satisfies the
range condition. Hence, it is maximal monotone, and Ap = ∂Chp.
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Back to the gradient flow

Theorem (G.-Mazón, JFA 2022)

For any u0 ∈ L2(X, ν) and all T > 0 there exists a unique weak solution
u(t) of the p-Laplacian evolution equation in the following sense:

• u ∈ C ([0,T ]; L2(X, ν)) ∩W 1,2
loc (0,T ; L2(X, ν));

• u(0, ·) = u0;

• For a.e. t ∈ (0,T ), we have u(t) ∈ W 1,p(X, d , ν);

• For a.e. t ∈ (0,T ), there exists a vector field X (t) ∈ Lq(TX)
with div(X (t)) ∈ L2(X, ν) such that

div(X (t)) = ut(t, ·);

du(t)(X (t)) = |du(t)|p∗ = |X (t)|q.
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How to do this for p = 1?

We need to replace W 1,p(X, d , ν) with BV (X, d , ν). Assume that ν is
doubling and the space satisfies a Poincaré inequality. Given a function
u ∈ L1(X, ν), we set

|Du|ν(A) = inf

{
lim inf
n→∞

∫
A
|Dun| dν : un ∈ Liploc(A), un → u in L1(A, ν)

}
for any open set A ⊂ X.

We need to recover a linear structure on the metric measure space in this
case. To this end, we define a metric analogue of the Anzellotti pairing as

⟨(X ,Du), f ⟩ := −
∫
X
u df (X ) dν −

∫
X
u f div(X ) dν.

Here, f ∈ Lip(X) has compact support. This formula defines a Radon
measure; (X ,Du) agrees with du(X ) for Lipschitz functions and satisfies
the ’expected’ properties such as the validity of a Gauss-Green formula.
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The total variation flow

We understand the TV flow as the gradient flow of the 1-Cheeger energy

Ch1(u) =

{ ∫
X |Du|ν if u ∈ BV (X, d , ν);
+∞ otherwise.

Under the more restrictive assumptions on ν, we use the Gigli structure
and the new Anzellotti pairing to provide a characterisation of ∂Ch1.

Theorem (G.-Mazón, JFA 2022)

We say that (u, v) ∈ A1 iff u ∈ L2(X, ν) ∩ BV (X, d , ν), v ∈ L2(X, ν),
and there exists X ∈ L∞(TX) with ∥X∥∞ ≤ 1 and div(X ) ∈ L2(X, ν) s.t.

−div(X ) = v ;

(X ,Du) = |Du|ν .

Then, ∂Ch1 = A1.
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Sketch of proof

Again, we only need to check that A1 is maximal monotone, i.e. show
that for all g ∈ L2(X, ν) there exists u ∈ D(A1) and X ∈ L∞(TX)
with ∥X∥∞ ≤ 1 and div(X ) ∈ L2(X, ν) such that

−div(X ) = g − u;

(X ,Du) = |Du|ν .

We again use the Fenchel-Rockafellar duality theorem; we cannot work
directly with the BV space, because we need to use the differential d .
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Sketch of proof
We need to find a problem of the form

inf
u∈U

{
E (Au) + G (u)

}
relevant to our case. We set

U = W 1,1(X, d , ν) ∩ L2(X, ν), V = L1(T ∗X),

and the operator A : U → V is the differential d .

We set E : L1(T ∗X) → R by the formula

E (v) =

∫
X
|v |∗ dν

and G : W 1,1(X, d , ν) ∩ L2(X, ν) → R by

G (u) :=
1

2

∫
X
u2 dν −

∫
X
ug dν.

As before, the dual problem has at least one solution v∗.
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Sketch of proof

Now, the primal problem does not necessarily have a solution, so we
cannot use the optimality conditions. Instead, we use that for any
minimising sequence un in the primal problem satisfies

0 ≤ E (Aun) + E ∗(−v∗)− ⟨−v∗,Aun⟩ ≤ εn

and
0 ≤ G (un) + G ∗(−A∗v∗)− ⟨−A∗v∗, un⟩ ≤ εn.

We find a solution u ∈ BV (X, d , ν) ∩ L2(X, ν) of the relaxation of the
primal problem and use a suitably chosen approximation un to deduce that

(−v∗,Du) = |Du|ν and ∥ − v∗∥∞ ≤ 1

and
div(−v∗) = g − u.
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The total variation flow

Theorem (G.-Mazón, JFA 2022)

For any u0 ∈ L2(X, ν) and all T > 0 there exists a unique weak solution
u(t) of the total variation flow in the following sense:

• u ∈ C ([0,T ]; L2(X, ν)) ∩W 1,2
loc (0,T ; L2(X, ν));

• u(0, ·) = u0;

• For a.e. t ∈ (0,T ), we have u(t) ∈ BV (X, d , ν);

• For a.e. t ∈ (0,T ), there exists a vector field X (t) ∈ L∞(TX)
with ∥X∥∞ ≤ 1 and div(X (t)) ∈ L2(X, ν) such that

div(X (t)) = ut(t, ·) in X;

(X (t),Du(t)) = |Du(t)|ν as measures on X.
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L1 initial data

Theorem (G.-Mazón, ACV 2022)

If ν(X) < ∞, then for any u0 ∈ L1(X, ν), there exists a unique entropy
solution u(t) of the total variation flow in the following sense:

• u ∈ C ([0,T ]; L1(X, ν)) ∩W 1,2
loc (0,T ; L1(X, ν));

• u(0, ·) = u0;

• For a.e. t ∈ (0,T ) and all k > 0, we have Tku(t) ∈ BV (X, d , ν);

• For a.e. t ∈ (0,T ), there exists a vector field X (t) ∈ L∞(TX)
with div(X (t)) ∈ L1(X, ν) and ∥X (t)∥∞ ≤ 1 s.t.

div(X (t)) = ut(t, ·) in X;

(X (t),DTku(t)) = |DTku(t)|ν as measures for all k > 0.
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Comparison principle

Theorem (G.-Mazón, ACV/JFA 2022)

The operators Ap are completely accretive for p ∈ [1,∞). In particular, if
u1 and u2 are weak solutions to the gradient flow of Chp with initial data
u1,0 and u2,0 respectively. For all r ∈ [1,∞], if

u1,0, u2,0 ∈ L2(X, ν) ∩ Lr (X, ν),

then
∥(u1(t)− u2(t))

+∥r ≤ ∥(u1,0 − u2,0)
+∥r .

(If ν(X) < ∞, a similar result is also valid for entropy solutions.)

Wojciech Górny (U. Vienna, U. Warsaw) Weak solutions to metric gradient flows 06.09.2022 29 / 30



Asymptotic behaviour

Theorem (G.-Mazón, JFA 2022)

Let ν(X) < ∞. Assume that a Poincaré inequality holds. Fix u0 ∈ L2(X, ν)
and let u(t) be the weak solution to the gradient flow of Chp. Then:

• (Finite extinction time) For 1 ≤ p < 2, we have

Tex(u0) : = inf{T > 0 : u(t) = u0 ∀ t ≥ T}
= Tex(u0)(X, p, ∥u0∥L2(X,ν)) < ∞.

• (Infinite extinction time) For p ≥ 2,

Tex(u0) = +∞.

• Bounds for the L2 norm of the solution;

• Characterisation of asymptotic profiles.
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