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Problem 1: time-dependent minimal surface equation

Consider the model problem
ut(t, x) = div

(
Du(t,x)√

1+|Du(t,x)|2

)
in (0,T )× Ω;

∂u
∂η = 0 on (0,T )× ∂Ω;

u(0, x) = u0(x) in Ω.

This corresponds to the gradient flow of the functional

F (u) =

∫
Ω

√
1 + |Du|2,

which has linear growth; how to define a notion of solutions?
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Problem 1: time-dependent minimal surface equation

Due to the linear growth of the Lagrangian, the natural energy space
for the right-hand side (for fixed time) is BV (Ω), i.e.

BV (Ω) =

{
u ∈ L1(Ω) : Du is a Radon measure

}
,

where Du denotes the distributional gradient of u. It is only a measure,
so we need to give meaning to the expression on the right-hand side of

ut(t, x) = div

(
Du(t, x)√

1 + |Du(t, x)|2

)

and the expression
∫
Ω

√
1 + |Du|2 in the functional F .
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Problem 1: time-dependent minimal surface equation

For u ∈ BV (Ω), write
Du = ∇u LN + Dsu,

i.e. ∇u is the absolutely continuous part of Du and Dsu is its singular
part. In place of the functional F , we consider its relaxation F , i.e.

F(u) = inf

{
lim inf
n→∞

F (un) : un ∈ W 1,1(Ω), un → u in L1(Ω)

}
.

A direct computation shows that

F(u) =

∫
Ω

√
1 + |∇u|2 dx +

∫
Ω
|Dsu|.
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Problem 1: time-dependent minimal surface equation

We now denote

a(t, x) =
∇u(t, x)√

1 + |∇u(t, x)|2
,

which defines LN -a.e. in Ω the vector field a. Therefore, ∥a(·, t)∥∞ ≤ 1
and we need div(a(·, t)) ∈ L2(Ω). In other words, if we denote

X2(Ω) =

{
z ∈ L∞(Ω;RN) : div(z) ∈ L2(Ω)

}
,

we necessarily have a(·, t) ∈ X2(Ω).
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Problem 1: time-dependent minimal surface equation

Therefore, we understand the equation

ut(t, x) = div

(
Du(t, x)√

1 + |Du(t, x)|2

)

in the following sense: for a(t, x) = ∇u(t,x)√
1+|∇u(t,x)|2

, we have

ut(t) = div(a(t)) in D′(Ω);

a(t) · Dsu(t) = |Dsu(t)| as measures.

The last equation is understood in a suitable weak sense due to Anzellotti.
We also need to add the boundary and initial conditions and apply the
classical theory of semigroup solutions to get existence of solutions.
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Problem 1: time-dependent minimal surface equation

Then, given any u0 ∈ L2(Ω), there exists a unique weak solution u to the
time-dependent MSE in the following sense:

u ∈ C ([0,T ]; L2(Ω)) ∩W 1,2
loc (0,T ; L2(Ω));

u(0, ·) = u0;

and for almost all t ∈ (0,T ) we have u(t) ∈ BV (Ω) and there exist vector
fields a(t) ∈ X2(Ω) such that the following conditions hold:

a(t) =
∇u(t, x)√

1 + |∇u(t, x)|2
LN − a.e. in Ω;

ut(t) = div(a(t)) in D′(Ω);

a(t) · Dsu(t) = |Dsu(t)| as measures;

[a(t), νΩ] = 0 HN−1 − a.e. on ∂Ω.
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Problem 1: time-dependent minimal surface equation

This definition is based on the ideas of Demengel and Temam (1984),
and it was proved by Andreu, Ballester, Caselles and Mazón (1999-2004)
that it can be extended to other functionals of linear growth in the
following way. For u0 ∈ L2(Ω), we consider the equation

ut(t, x) = div a(x ,Du(t, x)) in (0,T )× Ω;

∂u
∂η = 0 on (0,T )× ∂Ω;

u(0, x) = u0(x) in Ω,

where a is the gradient of a differentiable function with linear growth, i.e.
f ∈ C 1(Ω× RN) and a(x , ξ) = ∂ξf (x , ξ). Then, one can give a similar
definition of solutions and prove their existence and uniqueness.
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Problem 2: total variation flow

Now, consider a different problem
ut(t, x) = div

(
Du(t,x)
|Du(t,x)|

)
in (0,T )× Ω;

∂u
∂η = 0 on (0,T )× ∂Ω;

u(0, x) = u0(x) in Ω.

appearing in relation to image processing. It corresponds to the gradient
flow of the functional

F(u) =

∫
Ω
|Du|.

Observe that the corresponding integrand f (x , ξ) = |ξ| is not differentiable,
so we cannot apply the previous definition. How to define solutions?
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Problem 2: total variation flow

Again, the natural energy space for the right-hand side is BV (Ω), and we
need to give meaning to the expression on the right hand side of

ut(t, x) = div

(
Du(t, x)

|Du(t, x)|

)
.

We will replace the expression Du
|Du| by a non-uniquely defined vector field.

To be exact, we require that there exists z ∈ X2(Ω) with ∥z∥∞ ≤ 1
such that

ut(t) = div(z(t)) in D′(Ω);

(z(t),Du(t)) = |Du(t)| as measures.

The last equation is again understood in a suitable weak sense due to
Anzellotti. We also add the initial and boundary condition.
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Problem 2: total variation flow

Then, given any u0 ∈ L2(Ω), there exists a unique weak solution u to the
Neumann problem for the total variation flow in [0,T ], i.e.

u ∈ C ([0,T ]; L2(Ω)) ∩W 1,2
loc (0,T ; L2(Ω));

u(0, ·) = u0;

and for almost all t ∈ (0,T ) we have u(t) ∈ BV (Ω) and there exist vector
fields z(t) ∈ X2(Ω) with ∥z(t)∥∞ ≤ 1 such that

ut(t) = div(z(t)) in D′(Ω);

(z(t),Du(t)) = |Du(t)| as measures;

[z(t), νΩ] = 0 HN−1 − a.e. on ∂Ω.
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Comparison between the two approaches

We can write both problems as gradient flows of∫
Ω
f (x ,Du)

with f of linear growth (with given initial and boundary conditions).

Time-dependent MSE Total variation flow

f (ξ) =
√
1 + |ξ|2 f (ξ) = |ξ|

f is differentiable f is not differentiable at 0

f is “1-homogeneous at infinity” f is 1-homogeneous

a = ∇f z is not explicit (and nonunique)

separate conditions on the abso-
lutely continuous and singular parts

a joint condition

Can we make a joint framework to study both problems?
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Working assumptions
For simplicity, we consider the Neumann case.

ut(t, x) = div(∂ξf (x ,Du(t, x))) in (0,T )× Ω;

∂u
∂η = 0 on (0,T )× ∂Ω;

u(0, x) = u0(x) in Ω.

We assume the following two (quite general) conditions on the integrand.

(A1) f ∈ C (Ω× RN) is convex in the second variable and has linear
growth, i.e. there exists M > 0 such that

|f (x , ξ)| ≤ M(1 + |ξ|) for all (x , ξ) ∈ Ω× RN ;

(A2) The following limit exists:

f 0(x , ξ) = lim
t→0+

tf (x , ξ/t)

and it defines a recession function which is jointly continuous in (x , ξ).
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Function of a measure

For a function f with linear growth, one may define its action on a Radon
measure, which is itself a Radon measure. In the particular case µ = Du,
where u ∈ BV (Ω), we define the measure f (x ,Du) by∫

B
f (x ,Du) =

∫
B
f (x ,∇u(x)) dx +

∫
B
f 0
(
x ,

dDsu

d |Dsu|

)
d |Dsu|

for all Borel sets B ⊂ Ω (and similarly for µ = Dsu).

Under the assumptions (A1)-(A2), the functional

F(u) =

∫
Ω
f (x ,Du)

is lower semicontinuous with respect to convergence in L1(Ω).
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Anzellotti pairings

Definition

For z ∈ X2(Ω) and u ∈ BV (Ω) ∩ L2(Ω), define the functional
(z,Du) : C∞

0 (Ω) → R by the formula

⟨(z,Du), φ⟩ := −
∫
Ω
u φdiv(z) dx −

∫
Ω
u z · ∇φ dx .

The distribution (z,Du) is a Radon measure, (z,Du) ≪ |Du| and

|(z,Du)| ≤ ∥z∥∞|Du|.

Wojciech Górny (U. Vienna, U. Warsaw) Gradient flows of linear growth functionals 21.08.2023 15 / 29



Anzellotti pairings

One can verify that∫
Ω
(z,Du) =

∫
Ω
z · ∇u dx for all w ∈ W 1,1(Ω),

so (z,Du) agrees on Sobolev functions with the dot product of z and ∇u.

Moreover, if we set

z · Dsu := (z,Du)− (z · ∇u) dLN ,

we have that z · Dsu is a bounded measure, z · Dsu ≪ |Dsu| and

|z · Dsu| ≤ ∥z∥∞|Dsu|.
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Our goal: characterisation of solutions

Theorem

Given u0 ∈ L2(Ω), there exists a weak solution u of the Neumann
problem in [0,T ], i.e. u ∈ C ([0,T ]; L2(Ω)) ∩W 1,2

loc (0,T ; L2(Ω)),
u(0, ·) = u0, and for a.e. t ∈ (0,T ) we have u(t) ∈ BV (Ω) and there
exist vector fields z(t) ∈ X2(Ω) such that:

ut(t) = div(z(t)) in D′(Ω);

z(t) ∈ ∂ξf (x ,∇u(t)) LN − a.e. in Ω;

z(t) · Dsu(t) = f 0(x ,Dsu(t)) as measures;

[z(t), νΩ] = 0 HN−1 − a.e. on ∂Ω.
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Outline of proof

We first introduce a multivalued operator A on L2(Ω) which describes the
desired characterisation (details on the next slide). We will prove that it
coincides with the subdifferential of F , where

F(u) =

∫
Ω
f (x ,Du).

To this end, we check that we have the inclusion

A ⊂ ∂F ,

and in particular A is monotone. We then show that the range condition
holds, i.e.

Given g ∈ L2(Ω), ∃ u ∈ D(A) s.t. g ∈ u +A(u),

so by the Minty theorem A is maximal monotone. Hence, A = ∂F .
Applying the Brezis-Komura semigroup theory, we get the desired result.
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Auxiliary operator

We first introduce the following operator.

Definition

We say that (u, v) ∈ A if and only if u, v ∈ L2(Ω), u ∈ BV (Ω) and there
exists a vector field z ∈ X2(Ω) such that:

−div(z) = v in D′(Ω);

z ∈ ∂ξf (x ,∇u) LN − a.e. in Ω;

z · Dsu = f 0(x ,Dsu) as measures;

[z, νΩ] = 0 HN−1 − a.e. on ∂Ω.

We show that it coincides with ∂F . The proof of the inclusion A ⊂ ∂F is
simple and follows using Green’s formula; we focus on the range condition.
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Range condition

The range condition states that

For every g ∈ L2(Ω), ∃ u ∈ D(A) s.t. g ∈ u +A(u),

or equivalently there exists a bounded vector field z ∈ X2(Ω) such that

−div(z) = g − u in Ω;

z ∈ ∂ξf (x ,∇u) LN − a.e. in Ω;

z · Dsu = f 0(x ,Dsu) as measures;

[z, νΩ] = 0 HN−1 − a.e. on ∂Ω.

We find such u and z using the Fenchel-Rockafellar duality theorem for
a suitably defined functional.
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Sketch of proof

We set U = W 1,1(Ω) ∩ L2(Ω), V = L1(∂Ω,HN−1)× L1(Ω;RN), and

Au = (u|∂Ω,∇u).

Clearly, A : U → V is linear and continuous. We denote p = (p0, p) ∈ V
and define E : L1(∂Ω,HN−1)× L1(Ω;RN) → R as

E (p0, p) = E0(p0) + E1(p), E0(p0) = 0, E1(p) =

∫
Ω
f (x , p) dx .

We also define G : W 1,1(Ω) ∩ L2(Ω) → R as

G (u) :=
1

2

∫
Ω
u2 dx −

∫
Ω
ug dx .
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Sketch of proof
We compute the objects required to apply the Fenchel-Rockafellar duality
theorem. Since the dual of the gradient is minus divergence, we get

A∗p∗ = −div(p∗).

(Hence, p∗ ∈ X2(Ω).) The functional E ∗
0 : L∞(∂Ω,HN−1) → [0,+∞] is

given by

E ∗
0 (p

∗
0) =

 0 if p∗0 = 0;

+∞ if p∗0 ̸= 0

and E ∗
1 : L∞(Ω;RN) → (−∞,+∞] is given by

E ∗
1 (p

∗) =

∫
Ω
f ∗(x , p∗) dx .

Here, E ∗ denotes the convex conjugate of E , i.e., for any u∗ ∈ X ∗

E ∗(u∗) := sup
u∈X

{⟨u, u∗⟩ − E (u)} .
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Sketch of proof

Consider the energy functional G : L2(Ω) → (−∞,+∞] defined by

G(v) :=


F(v) + G (v) if v ∈ BV (Ω) ∩ L2(Ω);

+∞ if v ∈ L2(Ω) \ BV (Ω).

This is an extension of the functional E ◦ A+ G , which is well-defined for
functions in W 1,1(Ω) ∩ L2(Ω), to the whole L2(Ω). Since G is coercive,
convex and lower semicontinuous, the primal minimisation problem

min
v∈L2(Ω)

G(u) = inf
v∈W 1,1(Ω)∩L2(Ω)

{
E (Av) + G (v)

}
(P)

admits a solution u.
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Sketch of proof

Now, for u0 ≡ 0 we have E (Au0) = G (u0) = 0 < ∞ and E is continuous
at u0, so by the Fenchel-Rockafellar duality theorem there is no duality gap
and the dual problem

sup
p∗∈L∞(∂Ω,HN−1)×L∞(Ω;RN)

{
− E ∗

0 (−p∗0)− E ∗
1 (−p∗)− G ∗(A∗p∗)

}
(P*)

admits at least one solution. Moreover, for any minimising sequence un for
(P) and a maximiser p∗ of (P*), we have

0 ≤ E (Aun) + E ∗(−p∗)− ⟨−p∗,Aun⟩ ≤ εn

0 ≤ G (un) + G ∗(A∗p∗)− ⟨un,A∗p∗⟩ ≤ εn

with εn → 0.
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Back to the range condition

Since E ∗
0 takes only values 0 and +∞, for the maximiser we have

E ∗
0 (−p∗0) = 0, from which we infer that

[p∗0 , νΩ] = [−p∗, νΩ] = 0.

Moreover, the condition

0 ≤ G (un) + G ∗(A∗p∗)− ⟨un,A∗p∗⟩ ≤ εn

on the minimising sequences implies that

−div(p∗) = A∗p∗ ∈ ∂G (u) = {u − g}.
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Back to the range condition

Finally, the condition

0 ≤ E (Aun) + E ∗(−p∗)− ⟨−p∗,Aun⟩ ≤ εn

coupled with the Reshetnyak continuity theorem yields that∫
Ω
f (·,∇u) dx +

∫
Ω
f ∗(x , p∗) dx =

∫
Ω
−p∗ · ∇u dx ,

so −p∗ ∈ ∂ξf (x ,∇u), and∫
Ω
f 0
(
·, dDsu

d |Dsu|

)
d |Dsu| =

∫
Ω
(−p∗,Du)s ,

so −p∗ · Dsu = f 0(x ,Dsu). Therefore, the range condition is satisfied for
the pair (u,−p∗), where u is a minimiser of G and p∗ is a solution of the
dual problem.
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Definition of solutions

Definition

Given u0 ∈ L2(Ω), we say that u is a weak solution of the Neumann
problem in [0,T ], i.e. u ∈ C ([0,T ]; L2(Ω)) ∩W 1,2

loc (0,T ; L2(Ω)),
u(0, ·) = u0, and for a.e. t ∈ (0,T ) we have

0 ∈ ut(t, ·) +Au(t, ·).

In other words, we have u(t) ∈ BV (Ω) and there exist vector fields
z(t) ∈ X2(Ω) such that:

ut(t) = div(z(t)) in D′(Ω);

z(t) ∈ ∂ξf (x ,∇u(t)) LN − a.e. in Ω;

z(t) · Dsu(t) = f 0(x ,Dsu(t)) as measures;

[z(t), νΩ] = 0 HN−1 − a.e. on ∂Ω.
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Existence and uniqueness

Since A = ∂F , we can apply the classical theory of gradient flows
of maximal monotone operators and get the following result.

Theorem

For any u0 ∈ L2(Ω) and all T > 0 there exists a unique weak solution
of the Neumann problem

ut(t, x) = div(∂ξf (x ,Du(t, x))) in (0,T )× Ω;

∂u
∂η = 0 on (0,T )× ∂Ω;

u(0, x) = u0(x) in Ω.

A similar result holds for the Dirichlet and Cauchy problems.
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Highlight of used techniques

1 The Green formula:∫
Ω
u div(z) dx +

∫
Ω
(z,Du) =

∫
∂Ω

u [z, νΩ] dHN−1.

2 Pointwise estimates for the normal trace: the formula

[z, νΩ](x) = lim
ρ→0+

lim
r→0+

1

2rωN−1ρN−1

∫
Cr,ρ(x ,νΩ(x))

z(y) · νΩ(x) dy

holds for HN−1-a.e. x ∈ ∂Ω, where

Cr ,ρ(x , α) := {ξ ∈ RN : |(ξ−x)·α| < r , |(ξ−x)−[(ξ−x)·α]α| < ρ}.

A similar formula holds for the Radon-Nikodym derivative d(z,Du)
d |Du| .

3 Reshetnyak continuity theorem.

4 Fenchel-Rockafellar duality theorem.
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