Weak solutions to gradient flows in metric measure spaces

Wojciech Górny

University of Vienna, University of Warsaw

J.M.Mazón's 70th birthday conference València, 24 October 2023

p-Laplacian evolution equation

Consider the model problem

$$\begin{cases} u_t = \operatorname{div}(|\nabla u|^{p-2}\nabla u) & \text{on } (0,T) \times \mathbb{R}^N; \\ u = u_0 & \text{on } \{0\} \times \mathbb{R}^N. \end{cases}$$

How to formulate this in a metric measure space (X, d, ν) ?

Gradient flow of the Dirichlet energy

One possible way is to consider the energy

$$\Phi(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^p$$

well-defined over $L^2(\mathbb{R}^N) \cap W^{1,p}(\mathbb{R}^N)$ and apply the classical semigroup theory (Brezis, Crandall, Komura, ...) to get existence and uniqueness of solutions to the gradient flow

$$u_t + \partial \Phi(u) \ni 0,$$

where $\partial \Phi(u)$ is the subdifferential of Φ .

Gradient flow of the Dirichlet energy

One possible way is to consider the energy

$$\Phi(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^p$$

well-defined over $L^2(\mathbb{R}^N) \cap W^{1,p}(\mathbb{R}^N)$ and apply the classical semigroup theory (Brezis, Crandall, Komura, ...) to get existence and uniqueness of solutions to the gradient flow

$$u_t + \partial \Phi(u) \ni 0$$
,

where $\partial \Phi(u)$ is the subdifferential of Φ .

(Done in the metric setting by Ambrosio, Gigli and Savaré.)

🔋 L. Ambrosio, N. Gigli, G. Savaré, Rev. Mat. Iberoam. 29 (2013).

🔋 L. Ambrosio, N. Gigli, G. Savaré, Invent. Math. 195 (2014).

Standard requirements: (X, d) complete, separable. ν is a nonnegative Borel measure, which is finite on bounded subsets.

We can define the Cheeger energy

$$\mathsf{Ch}_{p}(u) = \begin{cases} \frac{1}{p} \int_{\mathbb{X}} |Du|^{p} d\nu & \text{if } u \in L^{2}(\mathbb{X}, \nu) \cap W^{1, p}(\mathbb{X}, d, \nu); \\ +\infty & \text{if } u \in L^{2}(\mathbb{X}, \nu) \setminus W^{1, p}(\mathbb{X}, d, \nu) \end{cases}$$

and view the *p*-Laplace equation as its gradient flow in $L^2(\mathbb{X}, \nu)$.

Standard requirements: (X, d) complete, separable. ν is a nonnegative Borel measure, which is finite on bounded subsets.

We can define the Cheeger energy

$$\mathsf{Ch}_{p}(u) = \begin{cases} \frac{1}{p} \int_{\mathbb{X}} |Du|^{p} d\nu & \text{if } u \in L^{2}(\mathbb{X}, \nu) \cap W^{1, p}(\mathbb{X}, d, \nu); \\ +\infty & \text{if } u \in L^{2}(\mathbb{X}, \nu) \setminus W^{1, p}(\mathbb{X}, d, \nu) \end{cases}$$

and view the *p*-Laplace equation as its gradient flow in $L^2(\mathbb{X}, \nu)$.

The whole machinery works (existence, uniqueness, gradient bounds...).

Why do we want to study it in more detail?

Why do we want to study it in more detail?

- To get a 'pointwise' characterisation;

Why do we want to study it in more detail?

- To get a 'pointwise' characterisation;

- A lot of geometric properties of (X, d, ν) are encoded in the *p*-Laplace gradient flow: curvature, tangent spaces, ...

Why do we want to study it in more detail?

- To get a 'pointwise' characterisation;

- A lot of geometric properties of (X, d, ν) are encoded in the *p*-Laplace gradient flow: curvature, tangent spaces, ...

- To cover the case of the total variation flow;

Why do we want to study it in more detail?

- To get a 'pointwise' characterisation;

- A lot of geometric properties of (X, d, ν) are encoded in the *p*-Laplace gradient flow: curvature, tangent spaces, ...

- To cover the case of the total variation flow;
- To allow for initial data in $L^1(\mathbb{X}, \nu)$;

Why do we want to study it in more detail?

- To get a 'pointwise' characterisation;

- A lot of geometric properties of (X, d, ν) are encoded in the *p*-Laplace gradient flow: curvature, tangent spaces, ...

- To cover the case of the total variation flow;
- To allow for initial data in $L^1(\mathbb{X}, \nu)$;
- To study asymptotics.

Why do we want to study it in more detail?

- To get a 'pointwise' characterisation;

- A lot of geometric properties of (X, d, ν) are encoded in the *p*-Laplace gradient flow: curvature, tangent spaces, ...

- To cover the case of the total variation flow;
- To allow for initial data in $L^1(\mathbb{X}, \nu)$;
- To study asymptotics.

To this end, we will characterise the subdifferential of Ch_p using a first-order differential structure due to Gigli.

Outline of the talk

- Analysis in metric spaces
- 2 L^p-normed modules and differential structure
- 9 p-Laplacian evolution equation
- 4 Total variation flow
- 5 Related results

Outline of the talk

Analysis in metric spaces

- 2 L^p-normed modules and differential structure
- B p-Laplacian evolution equation
- 4 Total variation flow
- 5 Related results

Standard requirements: (X, d) complete, separable. ν is a nonnegative Borel measure, which is finite on bounded subsets.

Standard requirements: (X, d) complete, separable. ν is a nonnegative Borel measure, which is finite on bounded subsets.

Derivatives are replaced by upper gradients; we say that g is an upper gradient of u, if for all curves $\gamma:[0,1] \to X$

$$|u(\gamma(1))-u(\gamma(0))|\leq \int_0^1 g(\gamma(t)) \left|\dot{\gamma}(t)
ight| dt,$$

where

$$|\dot{\gamma}(t)| = \lim_{s \to 0} rac{\gamma(t+s) - \gamma(t)}{s}.$$

We say that $u \in L^{p}(\mathbb{X}, \nu)$ lies in the Sobolev space $W^{1,p}(\mathbb{X}, d, \nu)$, if it admits an upper gradient g which lies in $L^{p}(\mathbb{X}, \nu)$.

For every $u \in W^{1,p}(\mathbb{X}, d, \nu)$, there exists a *minimal p-weak upper gradient* $|Du| \in L^p(\mathbb{X}, \nu)$, i.e., a function which satisfies the property

$$|Du| \leq g$$
 $\nu - a.e.$ for any upper gradient $g \in L^p(\mathbb{X}, \nu)$

and which is an upper gradient of u up to a negligible set of curves. It is defined uniquely up to a set of measure zero.

We say that $u \in L^{p}(\mathbb{X}, \nu)$ lies in the Sobolev space $W^{1,p}(\mathbb{X}, d, \nu)$, if it admits an upper gradient g which lies in $L^{p}(\mathbb{X}, \nu)$.

For every $u \in W^{1,p}(\mathbb{X}, d, \nu)$, there exists a minimal *p*-weak upper gradient $|Du| \in L^p(\mathbb{X}, \nu)$, i.e., a function which satisfies the property

 $|Du| \leq g$ ν – a.e. for any upper gradient $g \in L^p(\mathbb{X}, \nu)$

and which is an upper gradient of u up to a negligible set of curves. It is defined uniquely up to a set of measure zero.

(Important difference with the Euclidean case: |Du| may depend on p! But in this talk we always work with fixed p.)

The norm in the Sobolev space $W^{1,p}(\mathbb{X}, d, \nu)$ is given by

$$||u||_{W^{1,p}(\mathbb{X},d,\nu)} = \left(\int_{\mathbb{X}} |u|^p d\nu + \int_{\mathbb{X}} |Du|^p d\nu\right)^{1/p}.$$

The space $W^{1,p}(\mathbb{X}, d, \nu)$ contains Lipschitz function with bounded support and thus it is dense in $L^p(\mathbb{X}, \nu)$.

(However, Lipschitz functions with bounded support are not necessarily dense in the norm topology of $W^{1,p}(\mathbb{X}, d, \nu)$. This requires additional assumptions on (\mathbb{X}, d, ν) ; more on this later.)

How to introduce differentials and gradients?

How to introduce differentials and gradients?

How to introduce differentials and gradients?

Consider a Riemannian manifold M and its cotangent bundle T^*M . It has the following properties:

• It is equipped with a smooth differential structure;

How to introduce differentials and gradients?

- It is equipped with a smooth differential structure;
- We can multiply its sections (1-forms) by smooth functions;

How to introduce differentials and gradients?

- It is equipped with a smooth differential structure;
- We can multiply its sections (1-forms) by smooth functions;
- The differential $f \mapsto df$ is a linear and continuous map;

How to introduce differentials and gradients?

- It is equipped with a smooth differential structure;
- We can multiply its sections (1-forms) by smooth functions;
- The differential $f \mapsto df$ is a linear and continuous map;
- If two functions have the same differential, they differ by a constant.

How to introduce differentials and gradients?

Consider a Riemannian manifold M and its cotangent bundle T^*M . It has the following properties:

- It is equipped with a smooth differential structure;
- We can multiply its sections (1-forms) by smooth functions;
- The differential $f \mapsto df$ is a linear and continuous map;
- If two functions have the same differential, they differ by a constant.

Gigli's construction aims to create a metric analogue of T^*M and TM.

N. Gigli, Mem. Amer. Math. Soc. **251** (2018).

V. Buffa, G.E. Comi, M. Miranda Jr., Rev. Mat. Iberoam. 38 (2022).

Outline of the talk

Analysis in metric spaces

2 L^p-normed modules and differential structure

3 p-Laplacian evolution equation

4 Total variation flow

5 Related results

L^p-normed modules

A Banach space M is called an L^{∞} -module (over $L^{\infty}(\mathbb{X}, \nu)$) if there exists a bilinear map from $L^{\infty}(\mathbb{X}, \nu) \times M$ to M given by

 $(f, v) \mapsto f \cdot v,$

called the pointwise multiplication, such that

 $(fg) \cdot v = f \cdot (g \cdot v); \quad 1 \cdot v = v; \quad \|f \cdot v\|_M \le \|f\|_{\infty} \|v\|_M,$

which also satisfies *locality* and *gluing* properties.

L^p-normed modules

A Banach space M is called an L^{∞} -module (over $L^{\infty}(\mathbb{X}, \nu)$) if there exists a bilinear map from $L^{\infty}(\mathbb{X}, \nu) \times M$ to M given by

 $(f, v) \mapsto f \cdot v,$

called the pointwise multiplication, such that

$$(fg) \cdot v = f \cdot (g \cdot v); \quad 1 \cdot v = v; \quad \|f \cdot v\|_M \le \|f\|_{\infty} \|v\|_M,$$

which also satisfies *locality* and *gluing* properties.

We say that *M* is an *L^p*-normed module, if there is a nonnegative map $|\cdot|_*: M \to L^p(\mathbb{X}, \nu)$ such that

$$|||v|_*||_{L^p(\mathbb{X},\nu)} = ||v||_M$$
 and $|f \cdot v|_* = |f||v|_*$ ν - a.e.

for all $f \in L^{\infty}(\mathbb{X}, \nu)$ and $v \in M$. We call $|\cdot|_*$ the *pointwise norm* on M.

L^p-normed modules

A bounded linear map $T: M \rightarrow N$ is a module morphism whenever

$$T(f \cdot v) = f \cdot T(v) \qquad \forall v \in M, \ f \in L^{\infty}(\mathbb{X}, \nu).$$

HOM(M, N) is the set of all module morphisms between M and N. It has a canonical structure of an L^{∞} -module, equipped with the operator norm

$$||T|| = \sup_{v \in M, ||v||_M \le 1} ||T(v)||_N.$$

Since $L^1(\mathbb{X}, \nu)$ has a structure of an L^{∞} -module, one can define a dual module to M in the following sense:

$$M^* = \mathrm{HOM}(M, L^1(\mathbb{X}, \nu)).$$

Define the pre-cotangent module

$$\mathsf{PCM}_{\mathsf{P}} = \left\{ \{(f_i, A_i)\} : \quad f_i \in W^{1, \mathsf{P}}(\mathbb{X}, d, \nu), \quad \sum_i \|Df_i\|_{L^{\mathsf{P}}(A_i, \nu)}^{\mathsf{P}} < \infty \right\}$$

with A_i a partition of X into Borel sets.

Define the pre-cotangent module

$$PCM_p = \left\{ \{(f_i, A_i)\} : \quad f_i \in W^{1,p}(\mathbb{X}, d, \nu), \quad \sum_i \|Df_i\|_{L^p(A_i, \nu)}^p < \infty \right\}$$

with A_i a partition of X into Borel sets.

Consider the equivalence relation on PCM_p given by

$$\{(f_i, A_i)\} \sim \{(g_j, B_j)\} \Leftrightarrow |D(f_i - g_j)| = 0 \quad \nu - a.e. \text{ on } A_i \cap B_j.$$

Define the pre-cotangent module

$$PCM_{p} = \left\{ \{(f_{i}, A_{i})\} : f_{i} \in W^{1,p}(\mathbb{X}, d, \nu), \sum_{i} \|Df_{i}\|_{L^{p}(A_{i}, \nu)}^{p} < \infty \right\}$$

with A_i a partition of X into Borel sets.

Consider the equivalence relation on PCM_p given by

$$\{(f_i, A_i)\} \sim \{(g_j, B_j)\} \Leftrightarrow |D(f_i - g_j)| = 0 \quad \nu - \text{a.e. on } A_i \cap B_j.$$

he map $|\cdot|_* : PCM_p / \sim \rightarrow L^p(\mathbb{X}, \nu):$
$$|\{(f_i, A_i)\}|_* := |Df_i| \quad \nu - \text{a.e. on } A_i$$

is the pointwise norm on PCM_p/\sim .

Т

Define the pre-cotangent module

$$PCM_{p} = \left\{ \{(f_{i}, A_{i})\}: \quad f_{i} \in W^{1,p}(\mathbb{X}, d, \nu), \quad \sum_{i} \|Df_{i}\|_{L^{p}(A_{i}, \nu)}^{p} < \infty \right\}$$

with A_i a partition of X into Borel sets.

Consider the equivalence relation on PCM_p given by

$$\{(f_i, A_i)\} \sim \{(g_j, B_j)\} \Leftrightarrow |D(f_i - g_j)| = 0 \quad \nu - a.e. \text{ on } A_i \cap B_j.$$

The map $|\cdot|_* : PCM_p / \sim \to L^p(\mathbb{X}, \nu)$:

$$|\{(f_i, A_i)\}|_* := |Df_i| \quad \nu - \text{a.e. on } A_i$$

is the pointwise norm on PCM_p/\sim .

The closure of PCM_p/\sim with respect to the norm $\||\{(f_i, A_i)\}|_*\|_{L^p(\mathbb{X}, \nu)}$ is called the *cotangent module* $L^p(T^*\mathbb{X})$. It is an L^p -normed module.

The map $d: W^{1,p}(\mathbb{X}, d, \nu)
ightarrow L^p(\mathcal{T}^*\mathbb{X})$ given by $df:=(f,\mathbb{X})$

is the differential. It is linear and continuous.

Gigli differential structure

The map $d: W^{1,p}(\mathbb{X}, d, \nu) \to L^p(T^*\mathbb{X})$ given by

 $df := (f, \mathbb{X})$

is the differential. It is linear and continuous.

The vector fields are defined via duality:

$$L^{q}(T\mathbb{X}) := (L^{p}(T^{*}\mathbb{X}))^{*}, \quad \frac{1}{p} + \frac{1}{q} = 1.$$

 $X \in L^q(T\mathbb{X})$ is a gradient of f, if

$$df(X) = |X|^q = |df|^p_* \quad \nu - \text{a.e.}$$

Gigli differential structure

The map $d: W^{1,p}(\mathbb{X}, d, \nu) \to L^p(T^*\mathbb{X})$ given by

 $df := (f, \mathbb{X})$

is the differential. It is linear and continuous.

The vector fields are defined via duality:

$$L^{q}(T\mathbb{X}) := (L^{p}(T^{*}\mathbb{X}))^{*}, \quad \frac{1}{p} + \frac{1}{q} = 1.$$

 $X \in L^q(T\mathbb{X})$ is a gradient of f, if

$$df(X) = |X|^q = |df|^p_* \quad \nu - a.e.$$

(In the Euclidean case, we have $X = |\nabla u|^{p-2} \nabla u$.)

Divergence of a vector field

 $f \in L^{r}(\mathbb{X}, \nu)$ is the divergence of $X \in L^{q}(T\mathbb{X})$, if

$$\int_{\mathbb{X}} \mathsf{fg} \ \mathsf{d}
u = - \int_{\mathbb{X}} \mathsf{d} \mathsf{g}(X) \ \mathsf{d}
u$$

for all $g \in W^{1,p}(\mathbb{X}, d, \nu) \cap L^{r'}(\mathbb{X}, \nu)$. We write $f = \operatorname{div}(X)$.

Divergence of a vector field

 $f \in L^{r}(\mathbb{X}, \nu)$ is the divergence of $X \in L^{q}(T\mathbb{X})$, if

$$\int_{\mathbb{X}} \mathsf{fg} \; d
u = - \int_{\mathbb{X}} \mathsf{dg}(X) \, d
u$$

for all $g \in W^{1,p}(\mathbb{X}, d, \nu) \cap L^{r'}(\mathbb{X}, \nu)$. We write $f = \operatorname{div}(X)$.

These objects are a priori nonlocal!

Outline of the talk

Analysis in metric spaces

2 L^p-normed modules and differential structure

9 p-Laplacian evolution equation

4 Total variation flow

5 Related results

The *p*-Laplacian evolution equation

Recall that we study the gradient flow of the Cheeger energy

$$\mathsf{Ch}_p(u) = \frac{1}{p} \int_{\mathbb{X}} |Du|^p \, d\nu.$$

We use the Gigli structure to provide a characterisation of ∂Ch_{p} .

Theorem (G.-Mazón, JFA 2022) Let $1 . We say that <math>(u, v) \in \mathcal{A}_p$ iff $u \in L^2(\mathbb{X}, \nu) \cap W^{1,p}(\mathbb{X}, d, \nu)$, $v \in L^2(\mathbb{X}, \nu)$, and there exists $X \in L^q(T\mathbb{X})$ with $\operatorname{div}(X) \in L^2(\mathbb{X}, \nu)$ s.t. $-\operatorname{div}(X) = v$: e.

$$du(X) = |du|_*^p = |X|^q \quad \nu - a.$$

Then, $\partial Ch_p = \mathcal{A}_p$.

It is easy to check that $\mathcal{A}_p \subset \partial Ch_p$. Since ∂Ch_p is maximal monotone, we need to show that also \mathcal{A}_p is maximal monotone.

It is easy to check that $\mathcal{A}_p \subset \partial Ch_p$. Since ∂Ch_p is maximal monotone, we need to show that also \mathcal{A}_p is maximal monotone.

Minty theorem: a monotone operator A is maximal iff R(I + A) = H.

It is easy to check that $\mathcal{A}_p \subset \partial Ch_p$. Since ∂Ch_p is maximal monotone, we need to show that also \mathcal{A}_p is maximal monotone.

Minty theorem: a monotone operator A is maximal iff R(I + A) = H.

We need to show that for all $g \in L^2(\mathbb{X}, \nu)$ there exists $u \in D(\mathcal{A}_p)$ and $X \in L^q(T\mathbb{X})$ with $\operatorname{div}(X) \in L^2(\mathbb{X}, \nu)$ such that

 (\mathbf{N})

$$-\operatorname{div}(X) = g - u;$$
$$du(X) = |du|_*^p = |X|^q \quad \nu - \text{a.e.}$$

We cannot resort to approximations! Instead, we prove this by finding a functional F such that the above is the dual to the minimisation of F.

For $u \in W^{1,p}(\mathbb{X}, d, \nu) \cap L^2(\mathbb{X}, \nu)$, we set F(u) = E(du) + G(u),

where

$$E(v) = \frac{1}{p} \int_{\mathbb{X}} |v|_*^p \, d\nu$$

and

$$G(u) = rac{1}{2} \int_{\mathbb{X}} u^2 \, d\nu - \int_{\mathbb{X}} ug \, d\nu.$$

The dual problem to the minimisation of F is

$$\sup_{v^* \in L^q(T\mathbb{X})} \bigg\{ -E^*(-v^*) - G^*(d^*v^*) \bigg\}.$$

Most importantly, the extremality conditions between a minimiser \overline{u} of F and a maximiser \overline{v}^* of the dual problem are

$${\sf E}(d\overline{u})+{\sf E}^*(-\overline{
u}^*)=\langle -\overline{
u}^*,d\overline{u}
angle$$

and

$$G(\overline{u}) + G^*(d^*\overline{v}^*) = \langle \overline{u}, d^*\overline{v}^* \rangle.$$

Once computed, the first condition yields that

$$d\overline{u}(-\overline{v}^*) = |-\overline{v}^*|^q = |d\overline{u}|^p_* \quad \nu - \text{a.e.}$$

and since $d^* = -\text{div}$, the second condition gives

$$-\operatorname{div}(\overline{v}^*) = \overline{u} - g.$$

Thus, the range condition is satisfied once we choose $X = -\overline{v}^*$.

Back to the gradient flow

Theorem (G.-Mazón, JFA 2022)

For any $u_0 \in L^2(\mathbb{X}, \nu)$ and all T > 0 there exists a unique weak solution u(t) of the p-Laplacian evolution equation in the following sense:

There exists $u \in C([0, T]; L^2(\mathbb{X}, \nu)) \cap W^{1,2}_{\text{loc}}(0, T; L^2(\mathbb{X}, \nu)), u(0, \cdot) = u_0$, for a.e. $t \in (0, T)$ $u(t) \in W^{1,p}(\mathbb{X}, d, \nu)$, and there exist vector fields $X(t) \in L^q(T\mathbb{X})$ with $\operatorname{div}(X(t)) \in L^2(\mathbb{X}, \nu)$ such that

$$\operatorname{div}(X(t)) = u_t(t, \cdot)$$
 in \mathbb{X} ;

$$du(t)(X(t)) = |du(t)|_*^p = |X(t)|^q \quad \nu$$
-a.e. in X.

Back to the gradient flow

The characterisation of the subdifferential gives immediately some nice properties of the associated gradient flow:

- It is completely accretive, so we get a contraction estimate;
- M. Kell, J. Funct. Anal. 271 (2016).
- It is p-homogeneous, so we may apply the general results of
- L. Bungert, M. Burger, J. Evol. Equ. 20 (2020).

to study the asymptotics;

• In some settings, e.g. weighted Euclidean spaces and Finsler manifolds, this definition leads to a pointwise characterisation of the *p*-Laplacian.

- S.I. Otha, K.-T. Sturm, Comm. Pure Appl. Math. 62 (2009).
- 🔋 J.M. Tölle, J. Funct. Anal. **263** (2012).
- G. Akagi, K. Ishige, R. Sato, Adv. Calc. Var 13 (2020).

Outline of the talk

Analysis in metric spaces

- 2 L^p-normed modules and differential structure
- 3 p-Laplacian evolution equation
- 4 Total variation flow

5 Related results

The total variation flow

We now study the gradient flow of the 1-Cheeger energy

$$\mathsf{Ch}_1(u) = \int_{\mathbb{X}} |Du|_{\nu}.$$

L. Ambrosio, S. Di Marino, J. Funct. Anal. 266 (2014).

To provide a characterisation of $\partial Ch_1,$ we need to extend the Gigli structure to functions of bounded variation.

Theorem (G.-Mazón, JFA 2022)

We say that $(u, v) \in A_1$ iff $u \in L^2(\mathbb{X}, \nu) \cap BV(\mathbb{X}, d, \nu)$, $v \in L^2(\mathbb{X}, \nu)$, and there exists $X \in L^{\infty}(T\mathbb{X})$ with $\operatorname{div}(X) \in L^2(\mathbb{X}, \nu)$ s.t.

$$-\operatorname{div}(X) = v;$$

$$\|X\|_{\infty} \leq 1; \quad (X, Du) = |Du|_{
u}$$
 as measures.

Then, $\partial Ch_1 = A_1$.

BV functions and Anzellotti pairings

The total variation of a function in $L^1(\mathbb{X}, \nu)$ is defined as

$$|Du|_{\nu}(\mathbb{X}) := \inf \left\{ \liminf_{n \to \infty} \int_{\Omega} g_{u_n} d\nu : u_n \in \operatorname{Lip}_{\operatorname{loc}}(\mathbb{X}), u_n \to u \text{ in } L^1(\mathbb{X}, \nu) \right\},$$

where g_{u_n} is a 1-weak upper gradient of u. Whenever $|Du|_{\nu}(\mathbb{X}) < \infty$, $|Du|_{\nu}$ defines a Radon measure, and we set

$$BV(\mathbb{X}, d, \nu) = \{u \in L^1(\mathbb{X}, \nu) : |Du|_{\nu}(\mathbb{X}) < \infty\}$$

with the norm

$$||u||_{BV(\mathbb{X},d,\nu)} = ||u||_{L^1(\mathbb{X},\nu)} + |Du|_{\nu}(\mathbb{X}).$$

BV functions and Anzellotti pairings

To have a similar characterisation of the subdifferential for Ch₁, we need to replace $W^{1,p}(\mathbb{X}, d, \nu)$ with $BV(\mathbb{X}, d, \nu)$, and replace the pairing du(X) with the Anzellotti pairing given by

$$\langle (X, Du), f \rangle := - \int_{\mathbb{X}} u \, df(X) \, d\nu - \int_{\mathbb{X}} u \, f \operatorname{div}(X) \, d\nu$$

for any $f \in Lip(\mathbb{X})$ has compact support.

If ν is doubling and (\mathbb{X}, d, ν) satisfies a weak (1, 1)-Poincaré inequality, so that we have better approximations by Lipschitz functions, this defines a Radon measure, $(X, Du) \ll |Du|_{\nu}$ and

$$|(X, Du)| \leq ||X||_{\infty} |Du|_{\nu}.$$

Back to the gradient flow

Theorem (G.-Mazón, JFA 2022)

For any $u_0 \in L^2(\mathbb{X}, \nu)$ and all T > 0 there exists a unique weak solution u(t) to the total variation flow in the following sense:

There exists $u \in C([0, T]; L^2(\mathbb{X}, \nu)) \cap W^{1,2}_{\text{loc}}(0, T; L^2(\mathbb{X}, \nu)), u(0, \cdot) = u_0$, for a.e. $t \in (0, T)$ $u(t) \in BV(\mathbb{X}, d, \nu)$, and there exist vector fields $X(t) \in L^{\infty}(T\mathbb{X})$ with $\operatorname{div}(X(t)) \in L^2(\mathbb{X}, \nu)$ such that

$$\operatorname{div}(X(t)) = u_t(t, \cdot)$$
 in \mathbb{X} ;

 $\|X(t)\|_{\infty} \leq 1; \quad (X(t), Du(t)) = |Du(t)|_{
u}$ as measures.

+ asymptotics, contraction estimates, ...

Outline of the talk

Analysis in metric spaces

- 2 L^p-normed modules and differential structure
- B p-Laplacian evolution equation
- 4 Total variation flow

Extensions: L^1 initial data

If $\nu(\mathbb{X}) < \infty$, then for any $u_0 \in L^1(\mathbb{X}, \nu)$, there exists a unique *entropy* solution of the total variation flow in the following sense:

• $u \in C([0, T]; L^1(X, \nu)) \cap W^{1,1}_{loc}([0, T]; L^1(X, \nu));$

•
$$u(0, \cdot) = u_0;$$

- For a.e. $t \in [0, T]$ and all k > 0 we have $T_k u(t) \in BV(\mathbb{X}, d, \nu)$;
- There exist vector fields $X(t) \in L^{\infty}(T\mathbb{X})$ with $\operatorname{div}(X(t)) \in L^{1}(\mathbb{X}, \nu)$ and $\|X(t)\|_{\infty} \leq 1$ s.t.

$$\operatorname{div}(X(t)) = u_t(t, \cdot)$$
 in \mathbb{X} ;

 $(X(t), DT_k u(t)) = |DT_k u(t)|_{\nu}$ as measures for all k > 0.

Other applications

The techniques introduced to study the operators $\Delta_{p,\nu}$ and $\Delta_{1,\nu}$ proved to be effective tools in the study of several related problems in MMS:

- Total variation flow on bounded domains;
- Ø Gradient flows of functionals with inhomogeneous growth;
- One Cheeger cut problem;
- Oharacterisation of the Cheeger constant;
- Least gradient problem.
- W. Górny, J.M. Mazón, JFA/ACV/CCM, 2022-23.
- W. Górny, J.M. Mazón, Weak solutions to metric gradient flows, forthcoming book.