
Weak solutions to gradient flows
in metric measure spaces

Wojciech Górny
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p-Laplacian evolution equation

Consider the model problem{
ut = div(|∇u|p−2∇u) on (0,T )× RN ;
u = u0 on {0} × RN .

How to formulate this in a metric measure space (X, d , ν)?
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Gradient flow of the Dirichlet energy

One possible way is to consider the energy

Φ(u) =
1

p

∫
Ω
|∇u|p

well-defined over L2(RN) ∩W 1,p(RN) and apply the classical semigroup
theory (Brezis, Crandall, Komura, ...) to get existence and uniqueness
of solutions to the gradient flow

ut + ∂Φ(u) ∋ 0,

where ∂Φ(u) is the subdifferential of Φ.

(Done in the metric setting by Ambrosio, Gigli and Savaré.)

L. Ambrosio, N. Gigli, G. Savaré, Rev. Mat. Iberoam. 29 (2013).

L. Ambrosio, N. Gigli, G. Savaré, Invent. Math. 195 (2014).
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Metric gradient flows

Standard requirements: (X, d) complete, separable. ν is a nonnegative
Borel measure, which is finite on bounded subsets.

We can define the Cheeger energy

Chp(u) =

{ 1
p

∫
X |Du|p dν if u ∈ L2(X, ν) ∩W 1,p(X, d , ν);

+∞ if u ∈ L2(X, ν) \W 1,p(X, d , ν)

and view the p-Laplace equation as its gradient flow in L2(X, ν).

The whole machinery works (existence, uniqueness, gradient bounds...).
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Metric gradient flows

Why do we want to study it in more detail?

- To get a ’pointwise’ characterisation;

- A lot of geometric properties of (X, d , ν) are encoded in the p-Laplace
gradient flow: curvature, tangent spaces, ...

- To cover the case of the total variation flow;

- To allow for initial data in L1(X, ν);

- To study asymptotics.

To this end, we will characterise the subdifferential of Chp using a
first-order differential structure due to Gigli.
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Outline of the talk

1 Analysis in metric spaces

2 Lp-normed modules and differential structure

3 p-Laplacian evolution equation

4 Total variation flow

5 Related results
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Basics for analysis on metric spaces

Standard requirements: (X, d) complete, separable. ν is a nonnegative
Borel measure, which is finite on bounded subsets.

Derivatives are replaced by upper gradients; we say that g is an upper
gradient of u, if for all curves γ : [0, 1] → X

|u(γ(1))− u(γ(0))| ≤
∫ 1

0
g(γ(t)) |γ̇(t)| dt,

where

|γ̇(t)| = lim
s→0

γ(t + s)− γ(t)

s
.
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Wojciech Górny (joint work with J.M.Mazón) Weak solutions to metric gradient flows 24.10.2023 8 / 32



Basics for analysis on metric spaces

We say that u ∈ Lp(X, ν) lies in the Sobolev space W 1,p(X, d , ν),
if it admits an upper gradient g which lies in Lp(X, ν).

For every u ∈ W 1,p(X, d , ν), there exists a minimal p-weak upper gradient
|Du| ∈ Lp(X, ν), i.e., a function which satisfies the property

|Du| ≤ g ν − a.e. for any upper gradient g ∈ Lp(X, ν)

and which is an upper gradient of u up to a negligible set of curves.
It is defined uniquely up to a set of measure zero.

(Important difference with the Euclidean case: |Du| may depend on p!
But in this talk we always work with fixed p.)
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Basics for analysis on metric spaces

The norm in the Sobolev space W 1,p(X, d , ν) is given by

∥u∥W 1,p(X,d ,ν) =

(∫
X
|u|p dν +

∫
X
|Du|p dν

)1/p

.

The space W 1,p(X, d , ν) contains Lipschitz function with bounded support
and thus it is dense in Lp(X, ν).

(However, Lipschitz functions with bounded support are not necessarily
dense in the norm topology of W 1,p(X, d , ν). This requires additional
assumptions on (X, d , ν); more on this later.)
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Gigli differential structure

How to introduce differentials and gradients?

Consider a Riemannian manifold M and its cotangent bundle T ∗M.
It has the following properties:

• It is equipped with a smooth differential structure;

• We can multiply its sections (1-forms) by smooth functions;

• The differential f 7→ df is a linear and continuous map;

• If two functions have the same differential, they differ by a constant.

Gigli’s construction aims to create a metric analogue of T ∗M and TM.

N. Gigli, Mem. Amer. Math. Soc. 251 (2018).

V. Buffa, G.E. Comi, M. Miranda Jr., Rev. Mat. Iberoam. 38 (2022).
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Lp-normed modules

A Banach space M is called an L∞-module (over L∞(X, ν)) if there exists
a bilinear map from L∞(X, ν)×M to M given by

(f , v) 7→ f · v ,

called the pointwise multiplication, such that

(fg) · v = f · (g · v); 1 · v = v ; ∥f · v∥M ≤ ∥f ∥∞∥v∥M ,

which also satisfies locality and gluing properties.

We say that M is an Lp-normed module, if there is a nonnegative map
| · |∗ : M → Lp(X, ν) such that

∥|v |∗∥Lp(X,ν) = ∥v∥M and |f · v |∗ = |f ||v |∗ ν − a.e.

for all f ∈ L∞(X, ν) and v ∈ M. We call | · |∗ the pointwise norm on M.
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Lp-normed modules

A bounded linear map T : M → N is a module morphism whenever

T (f · v) = f · T (v) ∀v ∈ M, f ∈ L∞(X, ν).

HOM(M,N) is the set of all module morphisms between M and N. It has
a canonical structure of an L∞-module, equipped with the operator norm

∥T∥ = sup
v∈M, ∥v∥M≤1

∥T (v)∥N .

Since L1(X, ν) has a structure of an L∞-module, one can define a dual
module to M in the following sense:

M∗ = HOM(M, L1(X, ν)).
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Gigli differential structure
Define the pre-cotangent module

PCMp =

{
{(fi ,Ai )} : fi ∈ W 1,p(X, d , ν),

∑
i

∥Dfi∥pLp(Ai ,ν)
< ∞

}
with Ai a partition of X into Borel sets.

Consider the equivalence relation on PCMp given by

{(fi ,Ai )} ∼ {(gj ,Bj)} ⇔ |D(fi − gj)| = 0 ν − a.e. on Ai ∩ Bj .

The map | · |∗ : PCMp/ ∼→ Lp(X, ν):

|{(fi ,Ai )}|∗ := |Dfi | ν − a.e. on Ai

is the pointwise norm on PCMp/ ∼.

The closure of PCMp/ ∼ with respect to the norm ∥|{(fi ,Ai )}|∗∥Lp(X,ν)
is called the cotangent module Lp(T ∗X). It is an Lp-normed module.
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Gigli differential structure

The map d : W 1,p(X, d , ν) → Lp(T ∗X) given by

df := (f ,X)

is the differential. It is linear and continuous.

The vector fields are defined via duality:

Lq(TX) := (Lp(T ∗X))∗,
1

p
+

1

q
= 1.

X ∈ Lq(TX) is a gradient of f , if

df (X ) = |X |q = |df |p∗ ν − a.e.

(In the Euclidean case, we have X = |∇u|p−2∇u.)
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Divergence of a vector field

f ∈ Lr (X, ν) is the divergence of X ∈ Lq(TX), if∫
X
fg dν = −

∫
X
dg(X ) dν

for all g ∈ W 1,p(X, d , ν) ∩ Lr
′
(X, ν). We write f = div(X ).

These objects are a priori nonlocal!

Wojciech Górny (joint work with J.M.Mazón) Weak solutions to metric gradient flows 24.10.2023 17 / 32



Divergence of a vector field

f ∈ Lr (X, ν) is the divergence of X ∈ Lq(TX), if∫
X
fg dν = −

∫
X
dg(X ) dν

for all g ∈ W 1,p(X, d , ν) ∩ Lr
′
(X, ν). We write f = div(X ).

These objects are a priori nonlocal!
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The p-Laplacian evolution equation

Recall that we study the gradient flow of the Cheeger energy

Chp(u) =
1

p

∫
X
|Du|p dν.

We use the Gigli structure to provide a characterisation of ∂Chp.

Theorem (G.-Mazón, JFA 2022)

Let 1 < p < ∞. We say that (u, v) ∈ Ap iff u ∈ L2(X, ν) ∩W 1,p(X, d , ν),
v ∈ L2(X, ν), and there exists X ∈ Lq(TX) with div(X ) ∈ L2(X, ν) s.t.

−div(X ) = v ;

du(X ) = |du|p∗ = |X |q ν − a.e.

Then, ∂Chp = Ap.
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Sketch of proof

It is easy to check that Ap ⊂ ∂Chp. Since ∂Chp is maximal monotone,
we need to show that also Ap is maximal monotone.

Minty theorem: a monotone operator A is maximal iff R(I +A) = H.

We need to show that for all g ∈ L2(X, ν) there exists u ∈ D(Ap)
and X ∈ Lq(TX) with div(X ) ∈ L2(X, ν) such that

−div(X ) = g − u;

du(X ) = |du|p∗ = |X |q ν − a.e.

We cannot resort to approximations! Instead, we prove this by finding
a functional F such that the above is the dual to the minimisation of F .
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Sketch of proof

For u ∈ W 1,p(X, d , ν) ∩ L2(X, ν), we set

F (u) = E (du) + G (u),

where

E (v) =
1

p

∫
X
|v |p∗ dν

and

G (u) =
1

2

∫
X
u2 dν −

∫
X
ug dν.

The dual problem to the minimisation of F is

sup
v∗∈Lq(TX)

{
− E ∗(−v∗)− G ∗(d∗v∗)

}
.
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Sketch of proof

Most importantly, the extremality conditions between a minimiser u of F
and a maximiser v∗ of the dual problem are

E (du) + E ∗(−v∗) = ⟨−v∗, du⟩

and
G (u) + G ∗(d∗v∗) = ⟨u, d∗v∗⟩.

Once computed, the first condition yields that

du(−v∗) = | − v∗|q = |du|p∗ ν − a.e.

and since d∗ = −div, the second condition gives

−div(v∗) = u − g .

Thus, the range condition is satisfied once we choose X = −v∗.
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Back to the gradient flow

Theorem (G.-Mazón, JFA 2022)

For any u0 ∈ L2(X, ν) and all T > 0 there exists a unique weak solution
u(t) of the p-Laplacian evolution equation in the following sense:

There exists u ∈ C ([0,T ]; L2(X, ν)) ∩W 1,2
loc (0,T ; L2(X, ν)), u(0, ·) = u0,

for a.e. t ∈ (0,T ) u(t) ∈ W 1,p(X, d , ν), and there exist vector fields
X (t) ∈ Lq(TX) with div(X (t)) ∈ L2(X, ν) such that

div(X (t)) = ut(t, ·) in X;

du(t)(X (t)) = |du(t)|p∗ = |X (t)|q ν-a.e. in X.
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Back to the gradient flow

The characterisation of the subdifferential gives immediately some nice
properties of the associated gradient flow:

• It is completely accretive, so we get a contraction estimate;

M. Kell, J. Funct. Anal. 271 (2016).

• It is p-homogeneous, so we may apply the general results of

L. Bungert, M. Burger, J. Evol. Equ. 20 (2020).

to study the asymptotics;

• In some settings, e.g. weighted Euclidean spaces and Finsler manifolds,
this definition leads to a pointwise characterisation of the p-Laplacian.

S.I. Otha, K.-T. Sturm, Comm. Pure Appl. Math. 62 (2009).

J.M. Tölle, J. Funct. Anal. 263 (2012).

G. Akagi, K. Ishige, R. Sato, Adv. Calc. Var 13 (2020).
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The total variation flow

We now study the gradient flow of the 1-Cheeger energy

Ch1(u) =

∫
X
|Du|ν .

L. Ambrosio, S. Di Marino, J. Funct. Anal. 266 (2014).

To provide a characterisation of ∂Ch1, we need to extend the Gigli
structure to functions of bounded variation.

Theorem (G.-Mazón, JFA 2022)

We say that (u, v) ∈ A1 iff u ∈ L2(X, ν) ∩ BV (X, d , ν), v ∈ L2(X, ν),
and there exists X ∈ L∞(TX) with div(X ) ∈ L2(X, ν) s.t.

−div(X ) = v ;

∥X∥∞ ≤ 1; (X ,Du) = |Du|ν as measures.

Then, ∂Ch1 = A1.

Wojciech Górny (joint work with J.M.Mazón) Weak solutions to metric gradient flows 24.10.2023 26 / 32



BV functions and Anzellotti pairings

The total variation of a function in L1(X, ν) is defined as

|Du|ν(X) := inf

{
lim inf
n→∞

∫
Ω
gun dν : un ∈ Liploc(X), un → u in L1(X, ν)

}
,

where gun is a 1-weak upper gradient of u. Whenever |Du|ν(X) < ∞,
|Du|ν defines a Radon measure, and we set

BV (X, d , ν) = {u ∈ L1(X, ν) : |Du|ν(X) < ∞}

with the norm

∥u∥BV (X,d ,ν) = ∥u∥L1(X,ν) + |Du|ν(X).
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BV functions and Anzellotti pairings

To have a similar characterisation of the subdifferential for Ch1, we need
to replace W 1,p(X, d , ν) with BV (X, d , ν), and replace the pairing du(X )
with the Anzellotti pairing given by

⟨(X ,Du), f ⟩ := −
∫
X
u df (X ) dν −

∫
X
u f div(X ) dν

for any f ∈ Lip(X) has compact support.

If ν is doubling and (X, d , ν) satisfies a weak (1, 1)-Poincaré inequality,
so that we have better approximations by Lipschitz functions, this defines
a Radon measure, (X ,Du) ≪ |Du|ν and

|(X ,Du)| ≤ ∥X∥∞|Du|ν .
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Back to the gradient flow

Theorem (G.-Mazón, JFA 2022)

For any u0 ∈ L2(X, ν) and all T > 0 there exists a unique weak solution
u(t) to the total variation flow in the following sense:

There exists u ∈ C ([0,T ]; L2(X, ν)) ∩W 1,2
loc (0,T ; L2(X, ν)), u(0, ·) = u0,

for a.e. t ∈ (0,T ) u(t) ∈ BV (X, d , ν), and there exist vector fields
X (t) ∈ L∞(TX) with div(X (t)) ∈ L2(X, ν) such that

div(X (t)) = ut(t, ·) in X;

∥X (t)∥∞ ≤ 1; (X (t),Du(t)) = |Du(t)|ν as measures.

+ asymptotics, contraction estimates, ...
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Extensions: L1 initial data

If ν(X) < ∞, then for any u0 ∈ L1(X, ν), there exists a unique entropy
solution of the total variation flow in the following sense:

• u ∈ C ([0,T ]; L1(X, ν)) ∩W 1,1
loc ([0,T ]; L1(X, ν));

• u(0, ·) = u0;

• For a.e. t ∈ [0,T ] and all k > 0 we have Tku(t) ∈ BV (X, d , ν);
• There exist vector fields X (t) ∈ L∞(TX) with div(X (t)) ∈ L1(X, ν)
and ∥X (t)∥∞ ≤ 1 s.t.

div(X (t)) = ut(t, ·) in X;

(X (t),DTku(t)) = |DTku(t)|ν as measures for all k > 0.
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Other applications

The techniques introduced to study the operators ∆p,ν and ∆1,ν proved
to be effective tools in the study of several related problems in MMS:

1 Total variation flow on bounded domains;

2 Gradient flows of functionals with inhomogeneous growth;

3 Cheeger cut problem;

4 Characterisation of the Cheeger constant;

5 Least gradient problem.

W. Górny, J.M. Mazón, JFA/ACV/CCM, 2022-23.

W. Górny, J.M. Mazón, Weak solutions to metric gradient flows,
forthcoming book.
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