Evolution equations on two overlapping
random walk structures
Wojciech Gérny
University of Vienna, University of Warsaw

Recent Progress in PDEs
Rome, 20-21 February 2025

Wojciech Gérny (U. Vienna, U. Warsaw) Overlapping random walk structures 20.02.2025 1/57



Nonlocal PDEs in RN

Let J: RN — R be a nonnegative, radially symmetric and continuous
function with f]RN (z) dz = 1. Nonlocal evolution problems of the type

w6 = [ Iy =) uly.©) = el 1) dy
appear in relation to phase transition or image processing models.

[§ G. Alberti and G. Bellettini, Math. Ann. 310 (1998).

[@ S. Kindermann, S. Osher and P. Jones, SIAM J. Multiscale Model.
Simul. 4 (2005).
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PDEs in graphs

Consider a locally finite weighted discrete graph G with vertices V(G)
and edges E(G). If (x,y) € E(G), we assign to this edge a positive
weight wy, = wy,; otherwise, w,, = 0.

One may study PDEs in this setting by introducing the weighted gradient

(Vwf)(x,y) = vwix,y) (fy) — f(x))
and the weighted divergence
(@vwF)x) =5 3 Vo) (Fxy) — Fly.0)
(x,y)€E

With this definition, both operators are linear, and div,, = —V73,.
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PDEs in graphs

The theory for PDEs in weighted graphs was developed primarily in the
90s and 00s, and a common framework may be found in

[d G. Gilboa and S. Osher, SIAM J. Multiscale Model. Simul. 7 (2008).

The PDEs in weighted graphs have many applications in machine learning
and image processing. As a simple example of a second-order differential
operator in this setting, the graph Laplacian is defined as

(Awf)(x) = (divw(Vwf))(x)
= > whxy)(fy) = f(x),

(x,y)€E

and it corresponds to the energy functional

1
E(f) = §|Wwf||%2(5(c))~
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Looking for a joint framework

In both examples, the 'nonlocal gradient’

u(y) — u(x)
is 'integrated’ with respect to some 'kernel’. Other common features are
— lack of singularities;
— existence of invariant measures;

— symmetry of interactions.

A joint framework including these features is called a random walk space.
[ Y. Ollivier, J. Funct. Anal. 256 (2009).

ﬁ J.M. Mazén, M. Solera, J. Toledo, Variational and Diffusion Problems
in Random Walk Spaces, Birkhauser, 2023.
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Outline of the talk

© Random walk spaces
© Nonlocal differential operators
© Two random walk structures

@ Partition of the random walk

W. Gérny, J.M. Mazén, J. Toledo, arXiv:2410.15203.
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@ Random walk spaces
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Random walk spaces

Basic ingredients:
e (X, B) - a measurable space with a countably generated o-field;

e A random walk m on (X, B), i.e., a family of probability measures
(my)xex on B such that

x = my(B)
is a measurable function on X for each fixed B € B.

The probability measure my acts as a replacement of a ball around x € X.
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Random walk spaces
Definition
Let m be a random walk on (X, B) and v a o-finite measure on X. The

convolution of v with m on X is the measure

vxm(A) = /X my(A) dv(x) VA € B.

Definition
If mis a random walk on (X, B), a o-finite measure v on X is invariant
with respect to the random walk m if

vVxm=Vu.

The measure v is said to be reversible if moreover

dmy(y) dv(x) = dmy(x) dv(y).

In fact, reversibility of v implies its invariance.
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Random walk spaces

Definition

Let (X, B) be a measurable space with a countably generated o-field. Let
m be a random walk on (X, B) and v a o-finite measure which is invariant
and reversible with respect to m. Then, we call the quadruple [X, B, m,v]
a random walk space.
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Random walk spaces

Definition

Let (X, B) be a measurable space with a countably generated o-field. Let
m be a random walk on (X, B) and v a o-finite measure which is invariant
and reversible with respect to m. Then, we call the quadruple [X, B, m,v]
a random walk space.

— Sometimes reversibility is omitted (but it is crucial for PDEs!);

— Sometimes a requirement that B is generated by a metric d is added,;
then, [X, d, m,v] is called a metric random walk space.
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Example 1: Euclidean spaces

Example

Consider the metric measure space (RV, dgya, £V) and let B be the
Borel o-algebra. Let J: RN — [0, 4-00) be a measurable, nonnegative
and radially symmetric function verifying [pn J(x) dx = 1. Let m’ be
the following random walk on (RN, B):

ml(A) = /AJ(X —y)dy for x € RN and Borel A c RV,

Applying the Fubini theorem, it is easy to see that £V is reversible
with respect to m?. Therefore, [RN B, m?, cN ] is a random walk space.
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Example 2: Weighted graphs

Example

Consider a locally finite weighted discrete graph G with vertices V(G)
and edges E(G). If (x,y) € E(G), we assign to this edge a positive
weight w,, = w,; otherwise, w,, = 0.

For x € V(G) we define
1
dy == Z Wyy my == 4 Z Wyy Oy .
(x.y)EE(G) " (x.y)€E(G)
It is not difficult to see that the measure v defined as
v(A):=) d. for AC V(G)
xEA

is reversible with respect to m. Therefore, [V(G), B, m,v] is a random
walk space, where B is the g-algebra of all subsets of V(G).

v
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© Nonlocal differential operators
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Gradient and divergence

Given u: X — R, we define its nonlocal gradient Vu : X x X — R as
Vu(x,y) = u(y) —u(x) VYx,yeX.

Forz: X x X — R, its m-divergence divi,z : X — R is defined as

(divmz)(x) = %/X(z(x,y) —2z(y,x)) dmy(y).
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Gradient and divergence
Given u: X — R, we define its nonlocal gradient Vu : X x X — R as
Vu(x,y) = u(y) —u(x) VYx,yeX.

Forz: X x X — R, its m-divergence divi,z : X — R is defined as

(divmz)(x) = %/X(z(x,y) —2z(y,x)) dmy(y).

They are connected by the following integration by parts formula.
Theorem (integration by parts)
IfvelP(X,v) andz € LP'(X x X,v® my), then

/X v(x) divim(z)(x) dv(x) = ~5 /X><X z(x,y) Vv(x,y)d(v ® my)(x,y).
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Memo: subdifferential

Definition

Let F: E — (—00,+00] be proper (i.e. F # +00) and convex. The
subdifferential (or subgradient) OF of the functional F is defined as

OF(x) = {X* eE": Fly)—F(x) > (x*,y—x) Vye€ E},

where E* denotes the dual of E. Equivalently, if we identify a multivalued
operator with its graph, it is a subset of E x E* defined by

OF = {(x,x*) €EEXE": Fly)—F(x)> (x",y —x) Vye E}.

Example

Let E=RN and f : RN — R be differentiable. Then, 9f(x) = {Vf(x)}

v
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Example
Let Q be an open bounded subset of RN with smooth boundary. Let

F: [2(Q) — [0, +00] be given by
/ |Vul2dx ifue W1 2(Q);

F(u) =
+00 if ue L2(Q)\ W,2(Q).

Then, 0 (u) = —Au and D(OF) = W>2(2) 1 W ().

v

The subdifferentials of convex functions in Banach spaces are important in
the optimization theory due to the following fact: observe that

0€0F(x) < F(y)>F(x) Vyc€E,
so 0 € OF(x) is the Euler-Lagrange equation of the variational problem

F(x) = min F(y).
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Memo: evolution equations in Hilbert spaces

Definition

If E is a Hilbert space H equipped with a scalar product (-, -) and a norm
Ix[l# == v/ (x, %),

we will say that an operator A in H is monotone if

(X_)?Ly_.)?) ZO for all (X,_)/),()?,}?) €A

If 7 is defined on a Hilbert space H, 0F is a monotone operator in H.

Moreover, if F is lower semicontinuous, then the subdifferential OF has
a dense domain and is maximal monotone, i.e., it is maximal with respect
to inclusion among monotone operators.
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Memo: evolution equations in Hilbert spaces

Consider the abstract Cauchy problem
du 9F(u(t)) > f(t,-), te(0,T),

u(0) = uo, up € H.

Definition

We say that u € C([0, T]; H) is a strong solution of problem (P), if the
following conditions hold: v € Whl)cz(O, T; H); for almost all t € (0, T) we
have u(t) € D(OF); and it satisfies (P).

Theorem (Brezis-Komura theorem)

Let F : H— (—o0, 0] be a proper, convex, and lower semicontinuous
functional. Given ug € D(OF) and f € L%(0, T; H), there exists a unique
strong solution u(t) of the abstract Cauchy problem (P).

v
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Nonlocal p-Laplacian

For p > 1, we consider the functional
Fom [2(X,v) — (—00, +00]
defined by

Fom(u) = % /X luly) = w0l (v m)(x.y)

if Vu e LP(X x X, v ® my) and +oo otherwise. Observe that

LP(X,v) N L2(X,v) C D(Fp,m)-
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Nonlocal p-Laplacian

Since Fp m is convex and lower semicontinuous, the subdifferential
O2(x,)Fp,m
is a maximal monotone operator with a dense domain.

To have a definition consistent with the standard case, we define the
(multivalued) nonlocal p-Laplacian operator A7 by

(U, V) S Ag’ <~ (U, —V) S aL2(X7y)Fp,m-
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Nonlocal p-Laplacian

Theorem (G.-Mazén-Toledo 2024)
Let p> 1. (u,v) € A7 if and only if the following conditions hold:

o u,veL?(X,v);
o Vu e LP(X x X,v® my);

o v(x) = div,(|VulP~2Vu)(x) /|Vux Y)IP2 Vu(x,y) dmy(y).

This result was known already for p = 2; a proof will be presented below.

[§ J.M. Mazén, M. Solera, J. Toledo, J. Math. Anal. Appl. 483 (2020).
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Proof of the characterisation
Proof. For every (u,—v), (4, —V) € A7, by the integration by parts
formula, we have

/X(u— i) (v — 0) dv
_ /X(u — B)(ATu— ATD) dv

=—/(u—a)-Agudu+/(u—a)-Agadu
X X

= 1/ IVulP2VuV(u—id)d(ve my)
2 Jxxx
1
— —/ |ValP2ViV(u—0)d(v® my)
2 Jxxx
_ 1/ (IVulP~2 Vu — [ValP-2Va) V(u — 8) d(v & my) >0,
2 Jxxx

so the operator —A7' is monotone.
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Proof of the characterisation

Since 0Fp m is maximal monotone, it suffices to show that
afp,m C _AZ,.
Let (u,v) € OFp.m. Then, for every w € L}(X,v) N L®(X,v) and t > 0,

we have
Fpm(u+tw) — Fp m(u) > / ww d.
t —Jx

Then, taking limit as t — 0™, we obtain that

1 —
§/X><X [Vu(x,y)P 2Vu(x,y)VW(x,y) dm,(y) dv(x) > /X vw du.

Wojciech Gérny (U. Vienna, U. Warsaw) Overlapping random walk structures 20.02.2025 22 /57



Proof of the characterisation

Since this inequality is also true for —w, we have

%/Xxx |VU(X,)/)|P—2Vu(x,y)VW(x,y) dmy(y) dv(x) = /X vw duv.

Then, applying again the integration by parts formula, we get
/ A7 u( (x) dv(x) = / wdr Yw e LY(X,v)NL%®(X,v).
X

From here, we deduce that v = —Ag'u, and consequently (u, —v) € Ag’.
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Nonlocal 1-Laplacian

We define the space of functions of bounded variation in [X, B, m,v] as

BVn(X,v) = {u:X—HR:/X

|Vu(x,y)| dm(y) dv(x) < oo} )
x X

The total variation functional Fy n, : L2(X,v) — (—o0, +0oc] is defined by
1
Frm(u) =5 u(y) — u(x)[d(v © mc)(x, y)
XxX

if u € BVn(X,v) and +oo otherwise. Observe that

L*(X,v) N L3(X,v) C D(Fim)-
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Nonlocal 1-Laplacian

To have a definition consistent with the standard case, we define the
(multivalued) nonlocal 1-Laplacian operator Af" by

(u,v) € AT <= (u, V) € I2(x 1) F1,m-

An equivalent characterisation is the following: there exists an
antisymmetric function g € L>(X x X, v ® my) such that

gl oo (xx X, vem) < 1;
v(x) = / g(x,y)dmli(y) for v-ae. x € X;
X
g(x,y) €sign(u(y) — u(x)) for (v ® my)-ae. (x,y) € X x X.

[3 J.M. Mazén, M. Solera, J. Toledo, Calc. Var. PDE 59 (2020).
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Outline of the talk

© Two random walk structures
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Nonlocal equations with inhomogeneous growth

Our goal is to propose a framework to study evolution problems with
inhomogeneous growth on random walk spaces. We consider two cases:

Wojciech Gérny (U. Vienna, U. Warsaw) Overlapping random walk structures 20.02.2025 27 / 57



Nonlocal equations with inhomogeneous growth

Our goal is to propose a framework to study evolution problems with
inhomogeneous growth on random walk spaces. We consider two cases:

— The measurable space (X, B) supports two random walk structures
m' and m? (with invariant measures 1 and 1), which may overlap,
and the functional has different growth on the two structures;
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Nonlocal equations with inhomogeneous growth

Our goal is to propose a framework to study evolution problems with
inhomogeneous growth on random walk spaces. We consider two cases:

— The measurable space (X, B) supports two random walk structures
m' and m? (with invariant measures 1 and 1), which may overlap,
and the functional has different growth on the two structures;

— We have a single random walk space [X, B, m,v] and a partition of m,
where again the functional has different growth on the two pieces.
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Two random walk structures

Let [X, B, m*,v1] and [X, B, m?, 5] are two random walk spaces defined

on the same measurable space. We assume that
v <L 17

and

d1/2
L°(X
d1/1 < (X,m),

where © > 0 vi-a.e. Due to these assumptions, we may consider the
evolution in a joint Hilbert space, denoted by

H = L%(X,11).

(This is satisfied by our most of the standard examples.)
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Two random walk structures

For 1 < g < p, consider the functionals F, 1 : L?(X,v1) — (—00, +00]
and Fom? L2(X7V1) — (—o00, +00] given by

Fom(@)i= 5 /X ) = w7 d @ ) (x.y)

if [Vu|9 € L1(X x X,v1 ® ml) and +oc0 otherwise, and

Foma() 1= 2—1p /X ) = wl? (2 m)(x,)

if [VulP € L1(X x X,v2 ® m2) and +00 otherwise. Both functionals are
convex and lower semicontinuous in H.
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Two random walk structures

Theorem (G.-Mazén-Toledo 2024)
Let 1 < g < p. Assume that

dl/2

L>(X
dl/l € ( Ul)

and there exists ¢ > 0 such that ©u > c vi-a.e.
Suppose that one of the following conditions holds:
(a) vi(X) < oo and g < 2;

(b) n(X)=+occand g < 55
Then, we have

1 <2<p.

Ot (Fqmt + Fop) = —AT — uAIT.

Moreover, this operator has a dense domain in H.
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Two random walk structures

Under these conditions, we get the following existence result.

Theorem (G.-Mazén-Toledo 2024)

Let T > 0. Forany ug € L?(X,v1) and f € L2(0, T; L2(X,11)), the
following problem has a unique strong solution:

u(0) = wp.

{ ug — qulu—,uAg’zu >f onl0,T]
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Two random walk structures: asymptotics

In the case f = 0, we can get more information concerning the asymptotic
behaviour of solutions to the problem

Ue— A™u— uA™u30 on [0, T
{t a T HSp 071 (2RW)

u(0) = wp.

For this, we need to assume a structural condition on the random walk
space. Let v1(X) < co. We say that F . satisfies a (g, 2)-Poincaré
inequality, if there us a constant A(Fg 1) > 0 such that

Ao (F,

q,ml) ”U - E”Z2(X,V1) < Fq,ml(u) Yue L2(X,V1),

where

1
u:= yl(X)/Xudyl.
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Two random walk structures: asymptotics

Theorem (G.-Mazén-Toledo 2024)

Assume that v1(X) < oo and F ,u satisfies a (q,2)-Poincaré inequality.
For up € L2(X,11), let u(t) be the solution of (2RW) with q < 2. Then,

= — 2 +
”U(t) - u0”L2(§I(7V1) < (HUO - UOHLz(S’(,yl) - Az(fq,ml) t) Vvt > 0.
In particular, if we denote by
Tex(up) :==inf{T >0: u(t)=1uw Yt>T}

the extinction time, it is finite and we have the following bound

luo — Wl 2% 1)
(2 - q))‘2(Fq,m1) '

Results of this type hold also for v1(X) = 400 and q = 2.

Tex(UO) <
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The (1, 2)-Laplace equation on a linear graph

Example

Consider a linear graph G = (V/, E) with three vertices V = {1, 2,3}, two

edges E = {(1,2),(2,3)}, and with positive weights

W172 = a, W273 = b.

We have
v({1}) =a v({2})=a+b, v({3}) =0,

and the random walk m is given by

my =092, my = o+ 03, m3 = 0.

o
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Two random walk structures: asymptotics

Example
Consider the evolution problem

ur = Af'u+ AJ'u in V.

Let us call x(t) := u(1,t), y(t) = u(2,t) and z(t) = u(3,t). Then, the
above equation can be written as the following system of ODEs

X'(t) = ge(1,2) + y(t) — x(t);
y'(t)= _ﬁ?bgt(lﬁ) + rbbgt(2=3)

+335(x(0) = ¥(9) + 325(2(0) — ¥(0))

Z/(t) = —8:(2,3) + y(t) — 2(1).
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Two random walk structures: asymptotics

Example
The antisymmetric functions g:(1,2), g:(2, 3) satisfy

g8:(1,2) € sign(y(t) — x(t)), :(2,3) € sign(z(t) — y(t)).
We add the initial condition u(0) = cxy1}, or equivalently

x(0)=c¢c, y(0)=0, z(0)=0.

We now examine the behaviour of this system in three special cases.
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Two random walk structures: asymptotics

Example

0.8
0.6
0.4 +

0.2 oo

0.1 0.2 0.3 0.4 0.5 0.6

Figure: Case A. a= b =1, ¢ = 1. x(t) continuous line; y(t) = z(t) dashed line.

After t ~ 0.51986, x(t) = y(t) = z(t).

0.7
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Two random walk structures:

Example

10

asymptotics

Figure: Case B. a= b =1, ¢ = 10. x(t) continuous line; y(t) dashed line;

z(t) dotted line. Valid for 0 < t < 1.609438.
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Two random walk structures: asymptotics

Example

1.861792

Figure: Case B. a= b =1, ¢ = 10. x(t) continuous line; y(t) = z(t) dashed line.
Valid for t > 1.609438. After t ~ 1.861792, x(t) = y(t) = z(t).
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Two random walk structures: asymptotics

Example

0.8

0.6

0.4 | ---

0.2 + o

Figure: Case C. a=10, b=1, ¢ = 1. x(t) continuous line; y(t) dashed line;

z(t) dotted line. Valid for 0 < t < 0.376844.
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Two random walk structures: asymptotics

Example

0.48 |
0.46 |
0.44 |
0.42 |

0.4 »

Figure: Case C. a=10, b=1, ¢ = 1. x(t) = y(t) continuous line; z(t) dotted

0.430724

line. Valid for t > 0.376844. After t ~ 0.430724, x(t) = y(t) = z(t).
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Two random walk structures: asymptotics

Example

The solution behaves much different depending in the three cases:
— Case A: The value of u is at all times equal in the vertices 2 and 3;

— Case B: The value of u is larger in the vertex 2 than 3, until at some
point u(1) > u(2) = u(3);

— Case C: The value of u is larger in the vertex 2 than 3, until at some
point u(1) = u(2) > u(3).
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Two random walk structures: asymptotics

Example
The solution behaves much different depending in the three cases:

— Case A: The value of u is at all times equal in the vertices 2 and 3;

— Case B: The value of u is larger in the vertex 2 than 3, until at some
point u(1) > u(2) = u(3);

— Case C: The value of u is larger in the vertex 2 than 3, until at some
point u(1) = u(2) > u(3).
Still, there are two important shared properties:

— There is a finite extinction time;

— The mean of the initial data (with respect to v) is preserved.
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Outline of the talk

@ Partition of the random walk
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Partition of a random walk
Let [X, B, m,v] be a random walk space. Fix measurable sets Ay, Bx with
supp(my) = Ax U By.

The sets Ax and B, may overlap. Consider the energy functional

F6) = [ (5 [ 16 = stoiseme(n) + 5 [ 1uty) = ae)Pam. ()

where F(u) = +oo if the integral is not finite. By reversibility of v with
respect to m, we have that

- / ) - u(x)|q""*(”§“y(x) () ()
//| |pXBX(}’)42'XBy( )dmx(y) dv(x).
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Partition of a random walk

Consider the symmetric functions K4, Kg : X — R defined by

Ka(x, y) = Xa(y) + xa,(x) and  Ka(x,y) :

_ xa(y) +x5,(x)
5 = .

2

Then, we define Fa g.m, FBp.m : L2(X,v) = (=00, +0] as

Fagqm(u) = % /X ) = w0l Kalx.y) (v @ mi)(x.)

and

Fopml(u) = i /X luly) =~ w1 Ks(xoy) d(v @ mi)(x.y)

Both functionals are convex and lower semicontinuous with respect to
convergence in L2(X,v).
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Partition of the random walk

For p > 1, we define the m-p-B-Laplacian operator AZ’,B in [X,B,m,v] as

(u,v) e A = (u,—v) € O12(X 1) F B,p,m- (2)

Theorem
For p > 1, we have

(u,v) € AP g <= u,v e L*(X,v), [VulPt € LN(X x X,v®m,) and
v(x) = div,(Kg|VulP~2Vu)(x)

N /X KB(X7y)|Vu(X>y)’p_2 VU(X,y) de(y)'
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Partition of the random walk

We have a similar characterisation of the m-1-A-Laplacian operator A[TA

Theorem
We have
(u,v) € Diz(x ) Farm < u,v € L*(X,v)
and there exists g € L°°(X x X, v ® my) antisymmetric with
&l oo (xx X p@mye) < 1;

v(x) = — /X g(x,y)Ka(x,y)dmy(y) for v-a.e. x € X;

and

8(x, y)Ka(x,y) € sign(u(y) — u(x))Ka(x,y) (v® my)-a.e.
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Partition of the random walk

Theorem (G.-Mazén-Toledo 2024)

Let 1 < g < p. Suppose that one of the following conditions holds:

(a) v(X) < o0, g<2;
(b) ¥(X)=+4occandg< By <2<p.

Then, we have
aL2(X,u) (]:A,q,m + FB,p,m) = - Z:'A - A:B-

Furthermore, this operator has a dense domain in L2(X,v).

We immediately obtain the corresponding existence and uniqueness result.
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Partition of the random walk: asymptotics
Example

Consider the graph G = (V, E) with vertices V = {1,2,3,4} and edges
E=1{(1,4),(1,2),(2,3),(3,4)}. We assign to the edges positive weights

wip=a, wa3=Db, wzg=c, wg1 =d.

4 c 3
d b
1 a 2

The invariant measure v is

v{1)=a+d, v({2})=a+b v({3)=b+c, v({4})=c+d.
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Partition of the random walk: asymptotics

Example
4 ¢ 3
d b
1 a 2

The random walk m is given by

a d a b
ml_a+d52+a+d54’ m2_a+b61+a+b53’
m3 b oo + ¢ 04, my = < 03 + d 01.

:b+c b+ c c+d c+d
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Partition of the random walk: asymptotics

Example
4 ¢ 3
d b
1 a 2

We make the following partition on the random walk:

AL = {4}7 Ax = {3}’ Az = {2}7 Ay = {1}

and

By = {2}7 By = {1}7 B3 = {4}7 By = {3}

This corresponds to the 1-Laplacian in the edges (1,4) and (2,3), and the
Laplacian in the edges (1,2) and (3,4).

v
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Partition of the random walk: asymptotics

Example
We now consider the equation

ur — A7 a(u) — Ag'g(u) 3 0.
We denote
x(t) :=u(t, 1), y(t):=u(t,2), z(t):=u(t,3), w(t):=u(t,4),

and see how the evolution differs from the previous case.
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Partition of the random walk: asymptotics

Example
The equation then becomes the following ODE

;

X(t) = 5958:(1,4) + 575 (v(t) — x(1));
y'(t) = 5758¢(2,3) + 575(x(t) — y(1);
2(t) = —57c8:(2,3) + g (w(t) — 2(1)));
| w/(t) = —ca.e(1,4) + 55 (2(t) — w(t))

for antisymmetric functions g; satisfying

g:(1,4) € sign(w(t) — x(1)), 8:(2,3) € sign(z(t) — y(t)).

We take equal weights a = b = ¢ = d = 1 and the initial datum

x(0)=2, y(0)=0, z(0)=1, w(0)=0. )
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Partition of the random walk: asymptotics

Example

2 -
15 r
1
0.5 + 297
e -
o2
PR
I, a"‘
s
e
se
7~
B e e e e

0.1 0.2 0.3 0.4 0.5

Figure: x(t): continuous line; y(t): dashed line; z(t): dotted line;
w(t): dashed-dotted line. Valid for 0 < t < 0.510826.

v
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Example

Figure: x(t): continuous line; y(t) = z(t): dotted line; w(t): dashed-dotted line.

1.4 +

1.2 +

0.8 | -

0.6 =

04

0.6 0.8 1 1.2

Valid for 0.510826 < t < 1.32176.
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Partition of the random walk: asymptotics

Example

0.8
0.75 +

0.7 |+

Figure: x(t) = z(t): continuous line; y(t) = z(t): dotted line.
Valid for t 2 1.32176.

.
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Partition of the random walk: asymptotics

Example

There are two main differences with respect to the previous example:

— The solution converges to the mean of the initial data, but has an
infinite extinction time.

— The graph effectively splits into two pieces; the sets {1,4} and {2,3}.
The evolution within them is primarily governed by the 1-Laplacian (and
has a finite extinction time within the smaller set).
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Partition of the random walk: asymptotics

Example
There are two main differences with respect to the previous example:

— The solution converges to the mean of the initial data, but has an
infinite extinction time.

— The graph effectively splits into two pieces; the sets {1,4} and {2,3}.
The evolution within them is primarily governed by the 1-Laplacian (and
has a finite extinction time within the smaller set).

Due to the fact that the partition of the random walk in general bears no
relation to the invariant measure, validity of a Poincaré inequality in this
setting does not imply finite extinction time.
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