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Overview of the course

The goal of this course is to present the theory of functions of bounded varia-
tion (in short: BV functions) in the context of variational problems and associated
PDEs. The space of BV functions appears naturally when one considers varia-
tional problems with linear growth, i.e., where the minimised object depends on the
gradient via a term

| #eu
)
where f: Q x RV — R is a Borel function which satisfies

cilp] — 2 < f(z,p) < es(1+p|)

for positive constants ci,co and c3. Variational problems with linear growth are
currently the subject of intense mathematical research and commonly arise in image
processing and denoising, in materials science, and in phase transitions. Some
important examples of such minimisation problems include the minimal surface
equation, which corresponds to the minimisation of the area functional

J V1t |Dup?
Q

and the least gradient problem, which is the minimisation of the total variation

J D,
Q

the Rudin-Osher-Fatemi functional, used for image denoising,

L \Dul + %L(u — 2da,

or the Mumford-Shah functional, used for image segmentation,

J \Vu|2dm+aj (u— f)?de +HYH(K N Q).
Q\K Q\K

These problems are usually considered in the presence of some boundary conditions
or a penalisation term. Since the functionals of the above form are not lower
semicontinuous in the space W', due to the fact that a bounded sequence in W!:!
does not necessarily have a limit in W! even in the weak* topology, we need to
consider a larger function space.

The goal of this course is to provide an introduction to the theory of functions
of bounded variation and present some functional analytical tools which enable the
mathematical treatment of linear-growth functionals, most notably the Anzellotti
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pairing theory. Then, we will discuss some examples of minimisations and degener-
ate partial differential equations including the Rudin-Osher-Fatemi model of image
denoising, the least gradient problem, and the total variation flow.

The main references to this lecture are: for the theory of BV functions, Chapters
2-3 of the monograph by Ambrosio, Fusco and Pallara [1] and Chapter 5 of the book
by Evans and Gariepy [23]; most of the necessary measure-theoretic notions appear
in earlier chapters of these books. For the part concerning the area-minimising sets,
and a different view on the basic properties of BV functions, see the book of Giusti
[28]. The main reference concerning the Anzellotti pairings, the subdifferential
of the total variation, and the total variation flow is the monograph by Andreu,
Caselles and Mazén [3]; one can also find there the basic information concerning
subdifferentials and gradient flows of convex functionals.

Funding. The work of the author of these lectures was funded partially by the
Austrian Science Fund (FWF), grant 10.55776/ESP88.

W. Goérny, Vienna, January 2024.




0. Overview of the course ix

Basic notation

In this Section, we briefly summarize the standard notations used throughout
the lectures. The underlying assumption in most of them is that Q is a bounded
Lipschitz domain in RY, i.e. that Q < RY is an open bounded set with Lipschitz
boundary. We typically denote (possibly with indices) by u, v, w functions defined
in Q and by f, g, h functions defined on 2. Below, we briefly present the notation
for function spaces which we often use and some objects associated with them.

C(X): space of continuous functions on a set X < RY;

Ce(X): space of continuous functions with compact support in X < R¥;
C*(X): space of smooth functions with compact support in X < R¥Y;

WkP(Q): Sobolev spaces on an open set 2 c RY;

Weak derivative of a Sobolev function: Vu;

BV (9): space of functions of bounded variation on an open set Q = RY;
Distributional derivative of a BV function: Du;

Total variation of a BV function: |Du|() or {, [Dul;

Traces of Sobolev/BV functions on 0Q: Tu, u|sq, or u if clear from the context;
% the outer unit normal to a Lipschitz boundary 0€;

H*: Hausdorff measure of dimension k;

LP(09): the LP space on 09 (for = RY open) with respect to HV~1;

(0
P(Q,RYN): space of integrable vector fields;

~

Xp(€2): space of bounded vector fields with divergence in L?(12);
M(X): space of finite Radon measures on a set X < RV;

M (X): space of positive finite Radon measures;

M(X,RY): space of finite vector-valued Radon measures;

SN=1: the unit sphere in RY;

wy: the measure of the unit ball in RY;

Furthermore, we will use the following two sign functions
1 if r > 0; 1 if r > 0;
signg(r) :=< 0 ifr=0; sign(r):=< [-1,1] if r = 0;

—1 ifr<0 —1 if r <0.







CHAPTER 1

Functions of bounded variation

The space of functions of bounded variation shares many properties with the
Sobolev spaces WP and, indeed, it is introduced by a generalisation of the distri-
butional definition of Sobolev spaces. As such, these spaces share many properties;
therefore, we start this lecture with a short recollection of definition and properties
of Sobolev functions. For this purpose, assume that € is a sufficiently regular open
subset of RY.

DEFINITION 1.1. For p € [1, 0], the Sobolev space W1P(Q) consists of functions
u € LP(Q) whose distributional derivative Vu (also called the weak derivative) lies
in LP(;RY). In other words, u e W1P(Q) if and only if u € LP(£2) and

J udiv(p)dr = —J - Vudr VYyoe CP(Q;RY).
Q Q

The space W1P(Q), endowed with the norm

lullwroiy = (lulf o) + IVul}, @)

is a Banach space.

Equivalently, v € W1P(Q) if and only if v € LP(Q) and there exist functions
Ugyy ooy Uz € LP () such that foralli=1,.... N

f ﬁxl —Jﬂgoumidx Yo e CP(Q).
Upy)-

Here, Vu = (ug,, ...,
Among the properties of Sobolev functions, let us list these which are the most
relevant to the present topic:

(a) Smooth functions with finite Sobolev norm form a dense subset of W (Q);

(b) We have WP(Q) < LNP/(N=P)(Q));

(c) For bounded 2, W1P(Q) — Li(Q) for all ¢ < J\J,V—f’ and this embedding
is compact;

(d) For N > 1, we have the Sobolev inequality

1/p
[l - vy < c( | vupdx)
R

for all u € WP (RY);
(e) We have the Poincaré inequality

1/p
lu — vl rye/v—r () < C(J |Vul? d:c)
Q

1

N



2 1.1. Definition and basic properties

for some constant C' depending only on the width of Q. Here,

1
uQ = o) L u(x) dx

denotes the mean value of u in 2;
(f) For bounded €, there is a bounded and linear trace operator T : W1P(Q) —
LP(092) with the following property:

f udiv(go)dx—l—‘[ @-Vudw=f o -V TudHN !
Q Q 0

for all u e W1P(Q) and ¢ € CH(RN,RYN);
(g) The image of the trace operator is the space Wlf%’p(o“ﬂ) (for p > 1),
where

1, B . |f(z) = f)”
W P(0Q) = {f e LP(09) : LQ LQ . _y|(n71)+p(17%)d5’(x,y) < oo},

or L*(9Q) (for p = 1). The extension operator in the reverse direction is
linear for p > 1 and nonlinear for p = 1;

(h) Once we fix a direction in RY, Sobolev functions are absolutely continuous
along almost every line in this direction.

We will see that the BV functions exhibit a lot of similar behaviour. The
main difference concerns the last point - the property of absolute continuity along
a.e. line implies that Sobolev functions cannot have jump-type discontinuities. On
the other hand, the space of bounded variation functions includes characteristic
functions of sufficiently regular sets, and allows for the study of functions which are
discontinuous along a sufficiently regular set.

1.1. Definition and basic properties
First, let us recall the definition of vector-valued measures.

'MEMO 1 (Vector-valued measures). Let (X, F) be a measurable space. A set func-
tion p : F — RY is a vector-valued measure, if u(&) = 0 and

M(CJA) = 3 (A

i=1
for any sequence A; or pairwise disjoint elements of F. The variation |u| of a
vector-valued measure is given by

0 a0
|| (A) = sup { Z ln(A4;)]: A e F, U A; = A, A; are pairwise disjoint}
i=1 i=1
for any A € F. This formula defines a positive measure on X. The space of
vector-valued measures with finite total variation |u|(X) is denoted M(X;RY),
‘and equipped with the norm p — || (X) it is a Banach space.
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For N = 1, one usually says that u is a signed measure. Then, one can uniquely
decompose p into a positive and negative part, i.e., u = ut — u~, where

1 1
ph=gul+p) and T = o(lul - p)

are positive measures on X.

DEFINITION 1.2. The space BV () consists of functions u € L'(Q) distribu-
tional derivative Du lies in M(£2;RY), i.e., it is a vector-valued Radon measure
with finite total variation in 2. In other words, u € L'(Q) is a function of bounded
variation (i.e., u € BV(Q)) if and only if u € L'(Q) and

f udiv(yp) dx = —J @d[Du] Vee CP(Q;RN).
Q Q

Endowed with the norm
lul Bv (@) = llul1 () + [Dul(R2)

it is a Banach space.

Equivalently, u € BV () if and only if u € L'(£2) and there exist Radon mea-
sures U1, ..., uy with finite total mass in €2 such that for alli =1,.... N

fu&pdx=—J pdu; YoeCP(Q).
)

Here, Du = (g1, ..., in)-

'MEMO 2 (Riesz representation theorem). Let L : Co(RN;RN) — R be a linear
functional which satisfies

sup{L(f) : f € Cc(RY;RY), |f| <1, supp(f) = K} < o

for each compact set K < RN. Then, there exists a Radon measure p on RN and
a p-measurable function o : RY — RY such that

lo(x)| =1 for u— a.e zeRY

and

L(fy=)| [f-odu
RN
for all f € C.(RN;RYN). We call i the variation measure associated with L, and
in each open set V. RYN it holds that
p(V) =sup{L(f) : f e C(RV;RY), |f| <1, supp(f) = V}.

THEOREM 1.3 (An equivalent definition). Suppose that u € L*(Q). If

(1.1) sup{J udiv(p)dr : ¢ € CP(QRY), |p(z)| <1 forze Q} < o,
Q

then w € BV (). In the other direction, if u € BV (Q)), then for any open set U <

|Dul(U) = sup{JUudiv(ga)dm: 0 e CP(U;RYN), |p(x)| <1 forze U}.
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In particular, the total variation of the measure Du is
| Du|(2) = sup {J udiv(p)dr : ¢ € CP(Q;RY), |p(x)| < 1forz e Q} .
Q

Therefore, in the literature it is sometimes equivalently taken as a definition of BV
functions that u € BV (Q) if and only if u € L*(2) and |Du|(2) < oo, where | Du|(Q2)
is given by the formula above.

PROOF. Suppose that u € L*(£) satisfies condition (T.1]). Define a linear func-
tional L : C*(;RY) — R by the formula

L(yp) :=— J-Q udiv(p) dz

for any ¢ € C*(Q;RY). By condition (L.I)), we have that
sup{L() : v € CT(HRY), ol <1} <0

and consequently for all ¢ € CL ()

(1.2) IL(p)] < Cllelloo,

where C' is the left-hand side of (1.1).

We now extend the functional L to the space C.(£2; R™). For each ¢ € C.(Q; RY),
pick a sequence ¢, € CZ(€2;RY) which converges uniformly to . Define

L) := lim L(gn);

by estimate ([1.2]) this limit exists and does not depend on the choice of the ap-
proximating sequence. Therefore, L can be uniquely extended to a linear functional
L : C.(;RY) — R which satisfies

sup{L() : ¢ € Cc(GRY), [l <1} < c0.

We conclude by the Riesz representation theorem: we get existence of a function o
with norm one and a (positive) measure o such that

—J udiv(yp) dz :J p-odu
Q Q

for all ¢ € C.(Q;RY). Therefore, once we denote |Du| = p and Du = o|Dul|, we
have that Du is the distributional derivative of u; its total variation | Du|(f2) is finite
by virtue of condition ([1.1) and the explicit formula for p.

For the second part, assume that u € BV (Q). Then, for any p € C*(Q;RY)

with ||¢]e < 1 we have
=‘—J wd[Du] SJ- | Du,
Q Q

so condition (|1.1)) is satisfied. Thus, applying the Riesz representation theorem as
above, the claim follows from the explicit formula for u. |

L wdiv(e) da

This proof, with minimal modifications, works also for functions which are
locally of bounded variation, i.e., the total variation of their distributional derivative
is finite on bounded subsets.
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EXERCISE 1.4. Show that this is a more general property, i.e., for any vector-
valued measure € M(2,RY) we have

|£|(92) = sup {(pd,u: e Ceo(QRY), |p(z)| <1 forze Q}

It is clear from the definition that W1(Q) < BV(Q), since the distributional
derivative of Sobolev functions can be viewed as a Radon measure which is abso-
lutely continuous with respect to £V; let us see that this inclusion is strict.

DEFINITION 1.5. An £V measurable subset E of RN has finite perimeter in Q
if Xg € BV(Q). The perimeter of E in Q is P(E,Q) = |DXg|(9).

We denote P(E,R™) by Per(E). The following example shows that sufficiently
regular subsets of RV are sets of finite perimeter; since a characteristic function
of a set with positive Lebesgue measure cannot lie in W11(Q) (because it is not

absolutely continuous along a.e. line in a given direction), this implies that the
inclusion WH1(Q) c BV(Q) is strict.

EXAMPLE 1.6. Assume that E is an open smooth subset of RN such that
HN~Y(OE n Q) < 0. Then, by the classical Gauss-Green formula,

J div(go)dac:f o -vdHNT!
E

oE
for all ¢ € C*(€;RY), where v denotes the outer unit normal to 0E. Thus, if we
consider ¢ € CL(Q;RY) with |¢], < 1,

J div(p) dx :J o -vdHN P < HYTYHOE A Q) < oo,
E oE

so E is a set of finite perimeter. Since F is smooth, we may find ¢ € C(Q;RY)
such that ¢ - v = 1 on any compact subset of 0E n €; by taking supremum over
such ¢ we get that

P(E,Q)=HN"10E N Q)

and vg agrees with v H¥"1—a.e. on 0E n Q.

A well-known “defect” of the Sobolev space W' is that its unit ball is not
weakly closed. More explicitly, there exist bounded sequences in Wh1(Q) which
converge in L'(Q) to a function which does not lie in W11(Q); see the following
example.

ExAMPLE 1.7. Let Q = (—1,1) and take the function v : Q — R given by
-1 ifzx < —¢;
u(r) =14 2 if—e<a<g
1 ifz>e
Then, for all e € (0, 1) we have that u. € W' ((—1,1)) and |lucJy1.1(q) < 3. Clearly,
ue — u in L*((—1,1)), where

u(z) — -1 ifx<0;
h 1 if x > 0.

However, u ¢ W11((—1,1)), as it is not absolutely continuous.
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The BV space does not have this defect, and the reason is that in the space
of vector-valued measures every bounded sequence has a convergent subsequence.
Looking at it from another perspective, the total variation is lower semicontinuous
with respect to convergence in L!(€2). More concretely, we have the following result.

THEOREM 1.8. Suppose that u,, € BV () and u, — u in L*(Q). Then,
(1.3) |Du|(Q) < liminf |Du,,|(€).
1— 0

PROOF. Let ¢ € CH(Q;RY). Assume that ||, < 1. Then,

| andivtrds = - | paiDu < | felIDunl < | Dl
Q Q Q Q

hence after taking the limit as n — o0 we get

J udiv(e)de = lim | wu,div(p)dz < liminf |Du,|(£2).
Q

We conclude by taking a supremum of the left-hand side with respect to ¢ . |

COROLLARY 1.9. The same result holds if we replace the convergence in the L'
norm with weak convergence in LP(Q) for any p € [1, ).

It is easy to see that we may have a strict inequality in (|1.3); consider the
following one-dimensional example.

EXAMPLE 1.10. Let = (—1,1) and take the function v : Q@ — R given by

0 ifz<—¢
us(x) =4 1 if—e<z<e;
0 ifz>e.
Then, for all € € (0,1) we have that u. € BV((—1,1)) and Du, = §_. — §.. Clearly,
ue. — u in L*((—1,1)), where v = 0. Hence,
[Duc|((—1,1)) = 2> 0 = |Du|((-1,1))
for all £ > 0, so the sequence u. is such that there is a strict inequality in (1.3]).

For many applications, the requirement that a sequence converges in the BV
norm is too strong; for instance, it is clear from the definition that one cannot
approximate a general BV function by smooth functions in the norm topology; for
this purpose, we revisit the previous Example.

'MEMO 3. Given a measure space (X, %), i.e., a set and a collection of measurable
sets, and two measures p, v defined on (X,X), we say p and v are mutually singular
(denoted by p L v) if for every A € ¥ there exist disjoint sets E, F € 3 such that

wA) =p(AnE) and v(A)=v(AnF)

for all A € . For instance: measures with disjoint supports are mutually singular
(e.g. Dirac deltas at different points); the measures L', 8o and the derivative of
the Cantor function are mutually singular on R; and the Lebesque measure LN is
‘mutually singular with any measure supported on an n — 1-dimensional object.

EXERCISE 1.11. Show that for mutually singular measures p and v, we have
|p + v| = |p| + |v| as measures.
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EXAMPLE 1.12. Let Q = (—1,1) and take

u(z) -1 ifz <0
11 if z > 0.

Then, v € BV((—1,1)) and
Du = 2(50.

However, for any approximating sequence u,, — u with u,, € Wh((—1,1)), we have
that Du, = Vu,dz, so Du, « L'; since the measures £' and §; are mutually
singular, we have that

1D(u = un)[((=1,1)) = [Dul((=1,1)) + [Dun|((=1,1)) = 2,

so the sequence u,, does not converge in the BV norm to u.

Therefore, we will often rely on weaker modes of convergence, namely strict
convergence and weak® convergence.

DEFINITION 1.13. Let w,,u € BV(Q). We say that u,, strictly converges to u
in BV () if the following conditions hold:

(i) up — win LY(Q);
(ii) |Dun|(2) — |Dul(Q) as n — 0.

DEFINITION 1.14. Let u,,u € BV (Q). We say that u, weakly* converges to u
in BV () if the following conditions hold:

(i) up — win LY(Q);
(ii) Du, — Du weakly* as measures as n — o0.

We have the following characterization of weak* convergence in BV (which,
essentially, comes from the fact that BV (Q) is the dual of a separable space; for
more information we refer to [1]).

THEOREM 1.15. Let u,,u € BV (). Then, u,, weakly* converges tou in BV ()
if and only if u, — u in L*(Q) and {u,} is a bounded sequence in BV ().

PROOF. One implication is very simple: if Du, is a weakly™ convergent se-
quence of measures, it is bounded in M(£2;RY); thus, any weakly* convergent
sequence u, in BV () is bounded in BV (). In the other direction, assume that
{u,} is a bounded sequence in BV (Q) and u,, — u in L'(Q). Then, {Du,} is a
bounded sequence in M (Q; RY), so it has a weakly* convergent subsequence. Thus,
we only need to show that any limit point of Du,, in the weak™ topology coincides
with Du. By definition of the weak derivative

f Up Op dx = —f wdD;(uy,) for all ¢ € CX(Q)
Q 8331 [¢)

for all i = 1,..., N, where without restriction Du, is the convergent subsequence
and p = w*-limg_, o, Du,,. Passing to the limit k — oo we get

f uﬁgp dx=fj wdu; for all ¢ € CF(Q).

Thus, p satisfies the definition of the distributional gradient of w. |
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Therefore, it is clear that strict convergence implies weak* convergence; the
converse is not always true. Due to compactness properties of the BV space (see
later in Theorem it is easy to obtain a weakly™ converging subsequence of
a bounded family of functions; on the other hand, the strict topology appears
naturally when we try to approximate general BV functions by smooth functions.
Namely, we have the following result.

THEOREM 1.16. Assume that w € BV (Q). There exists a sequence of functions
up € C*(Q) N BV (Q) such that

(i) un — u in L*(Q);
(i) |Dun|(Q) — |Du|(R2) as n — .

Moreover,

(iti) if uw e BV (Q) n L1(Q) for some q < o0, we can additionally require that
u, € LY(Q) and u, — u in LI(Q);

(iv) ifue BV ()~ L*(Q), we can additionally require that |u, |« < ||ulw and
Uy — u weakly™ in L ().

Moreover, if ue WH(Q), we also have that Vu, — Vu in L*(Q;RY).
PROOF. We proceed similarly to the proof of the corresponding result for
Sobolev functions. Take a sequence of open sets {); with the following property:

2; € Q and every point x € Q lies in at most four sets ;. Take a partition of
unity ¢, relative to this covering, i.e. ¢; € CFP(Q), ¢; = 0, supp(¢;) < Q; and
Z(le p; =1in Q.

We give the proof for ¢ < o0. Let p. be a family of standard mollifiers and
take 6 € (0,1). We may require that €; is large enough so that |Du|(Q\Q) < 6.

Then, for every j € N there exists £; > 0 such that supp(p., * (p;u)) < Q; and the
following conditions hold:

| 1oy = o) = pyult o < 20y
and

L lpe; * (uVp;) —uVs|dr < 2774.
If u e WH1(Q), then instead we have

| 1o+ o) = Vsl do < 26

Then, we set us = Z;OZI pe; * (upj). The function us is smooth because each of the
terms is smooth and the sum is locally finite. Our choice of the sequence ¢; yields

that
1/q 0 1/q
(J lus — Uqufﬂ) <) (f |pe; * (ju) — sojulqdw> <0
@ j=1 N8
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similarly,

[e¢]
f | Dus| :f |Vus| do < ZJ gaj|Du|+§=J |Dul + 6.
Q Q =19 Q

Since 0 € (0, 1) was arbitrary, we conclude the proof of points (i)-(iii). Finally, the
claim for functions in W11(Q) follows from

0
fﬂ |[Vus — Vu|dx < Z JQ lpe; * V(pju) — V(pju)|dr < 6.
j=1

and letting § — 0. O
EXERCISE 1.17. Prove point (iv).

EXERCISE 1.18. For u, as in the statement of the Theorem, show that the
measures Vu, dr converge weakly to the measure Du.

One of the most important properties of functions of bounded variation is the
coarea formula, which related the total variation of a BV function with perimeters
of its superlevel sets.

MEMO 4 (Co-area formula for Lipschitz functions). Suppose that Q < RY is open\
and u : Q — R is Lipschitz. Then, for any g € L*(Q) (or nonnegative), we have

0
J g\Vu|dx:J <J gd?—[N1> dt.
Q —0 u=L(¢)

In particular, taking g = 1 we obtain

L |Vul dz = KO HN =L (w=L(t)) dt.

This second equality can be generalised to the following statement.

THEOREM 1.19 (Coarea formula). For u € L'(2), denote E; := {x € Q :
uw(x) > t}. Ifue BV (Q), then E; has finite perimeter for L'-a.e. t € R and

|Dul(R) = JOO P(E.,Q)dt.
—
Conversely, if u e L* () and
(1.4) Jw P(E;,Q)dt < o,
—0
then u € BV (Q).

An even stronger claim is true: for every Borel set B < §2, we have

\Du|(B) = f DX |(B)dt and  Du(B) _f DXg, (B) dt.

PRrROOF. Step 1. We start by proving the second part. Assume that u € L'()
satisfies condition (1.4). First, we show that for all ¢ € CX(Q;RY) with [p] < 1
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we have

(1.5) JQ wdiv(e) dz — f; < fE div(,) dx) dt.

To see this, consider the following two cases. First, let u > 0. Then, for £N-a.e.
x € ) we have

u(z) = f X () d.

0

Therefore,
0
J Xg, (x) dt> div(p)(z) dx

Jﬂudiv(ga) do = L ( )
- L - ( L Xz, (z) div(p)(z) dx> dt = L - ( JE div(y) d:c) dt.

Similarly, for u < 0 observe that for £LV-a.e. z € Q we have

0
u(x) = f—m(XEt () —1)dt

and hence

L wdiv(y) dz — L ( f_ow(xa ()~ 1) dt) div(,)(z) dz

_ JOOO ( L(XE" (@) — 1) div(e)(2) d:c) dt = JOQO ( L div(y) da:> dt.

The general case follows by decomposing u into a positive and negative part, i.e.,
u =u" —u~; thus, formula (1.5) is proved. Consequently,

L wdiv(p) dz = FOO (L div(y) dx) dt < f; | DX, |(€2) dt.

By taking supremum over ¢, we get
o0
Dul) < | D)
-0

which concludes the proof of the second part.

'MEMO 5 (Fatou lemma). Fiz a measure space (X,p). Let f, : X — [0, 4] be a
sequence of p-measurable functions (not necessarily integrable). Then

J <lim inf fn) dp < lim inff fndpu.

Step 2. We now prove the first part. For smooth functions, by Sard’s theorem the
preimage of almost every level set is a smooth manifold, and therefore the perimeter
of E; coincides with the Hausdorff measure of 0F;, so the claim follows from the
co-area formula for Lipschitz functions (Memo [4).
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We need to show that this implies the co-area formula for any BV function.
Take u € BV(Q) and let u,, € C*(Q) be the approximation sequence given by the
Meyers-Serrin theorem (Theorem [1.16). Then, u,, — u in L*(2), and if we denote

El ={xeQ: u,(z) >t}
we get that
0 max(u(x),u, (x))
J Xgy () — X, (x)| dt = J dt = |un(z) — u(z)|,
—0 min(u(x),un, (x))

and consequently

[ o) uttas = [ (] pepte) - x ) ar) a.

Since u,, — u in L'(Q2), by the above equation we may find a subsequence which
satisfies Xgn — Xg, in L'(Q) for a.e. t € R. Then, lower semicontinuity of the total
variation implies

|DX g, |(Q) < limigrolf | DX 2| (£2).
Applying the Fatou lemma (Memo [5)) gives
Q0 0
J |DX g, |(Q) dt < liminff |DX gy |(Q) = lim inf | Du,[(2) = |Du|(Q),
—0 n—o0 —0 n—o0

since the co-area formula holds for smooth functions and w,, converges strictly to w.
O

1.2. Embedding theorems and compactness

The next several results concern bounds on the LY/V=1) norm of a function of

bounded variation in terms of its total variation. We present results both of Sobolev
and Poincaré type.

THEOREM 1.20 (Sobolev inequality). Let N > 1. There exists a constant
C > 0 depending only on the dimension such that

HUHLN/N—I(RN) < C|Du\(RN)
for all u e BV (RYN).
PROOF. The result follows by approximating with Sobolev functions and a
corresponding inequality for Sobolev functions. To be precise, let u, € C*(RY)
be the sequence given by the Meyers-Serrin theorem (Theorem [1.16)), i.e., u, — u

in LY(RY) and £N-a.e., and |Du,|(RY) — |Du|(RY). Then, by the Fatou lemma
(Memo [5),

HUHLN/(N—I)(RN) < lim inf HUnHLN/(N—l)(RN),
n—o0

and since for the approximating sequence we have the Gagliardo-Sobolev-Nirenberg
inequality, i.e.,

|wn]l prsov—1) ®ry < ClVun| @y,
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we conclude that
HU”LN/(N—I)(]RN) < lim inf CHVUTLHLl(RN) = lim C’HVunHLl(RN) = C‘DUKRN)
n—o0 n—oo
and in particular the left-hand side is finite. O
A second result of this type is the Poincaré inequality. The proof is very similar,
but we give it for completeness. In what follows, we consider €2 to be a bounded
Lipschitz domain. The main reason is that Lipschitz domains are extension domains

for the Sobolev space W', and so we will be able to deduce the LY/V=1 bound
using approximations by Sobolev functions.

THEOREM 1.21 (Poincaré inequality). Fiz N > 1 and let Q be a bounded
Lipschitz domain in RN . If Q is connected, then for all u € BV () we have

| —uq| L r/v—1) () < ClDul(2)
for some constant C depending only on the width of Q). Here,

1
) JQ u(x) dx

ug =
denotes the mean value of u in €.

PROOF. Let u,, € CL () be the sequence given by the Meyers-Serrin theorem
(Theorem , ie., u, — v in LY(Q) and LN-a.e., and |Du,|(Q) — |Du|(9).
Clearly, the condition that u, — u in L() implies that (u,)o — ugq. Thus, the
Fatou lemma (Memo [5]) yields

Ju—uq|Lxiv-n (@) < iminf u, = (un)o|Lyov-n @),
and since for the approximating sequence we have the Poincaré inequality, i.e.,
lun = (un)allLyvov-1q) < ClVun| Ly a),
we conclude that
Ju— UQHLN/(N—I)(Q) < linniizgf CHvunHLl(Q) = nh—I>r310 C”vunHLl(Q) = C|Du|(?)
and in particular the left-hand side is finite. O
Let us turn to some interesting geometric implications of the two embedding

theorems above. First, as a consequence of the Sobolev inequality, we get a simple
proof of the isoperimetric inequality in a very general setting.

THEOREM 1.22. Let N > 1. For any set E of finite perimeter in RY we have
LN(E) < C[Per(E)] ¥ T

for some dimensional constant C'.

PROOF. Take u = Xg in the Sobolev inequality (Theorem [1.20]). Then,

(N-1)/N
( f (Xg)N/ (N1 dx) < C - Per(E).
RN

Since X takes only values zero and one, we have (Xg)™/(V=1 = X, and taking

both sides to power % yields the result. O
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EXERCISE 1.23. Use the Poincaré inequality (Theorem[1.21)) in a similar fashion
to prove the following relative isoperimetric inequality: take any ball B(z,7) < RV.
For any set F of finite perimeter in B(z,r), show that

min {£Y (B(z,7) n E), L (B(z,r)\E)} < C[P(E, B(x,r))] 3=
for some dimensional constant C'. Hint: take f = Xp; )nE-

THEOREM 1.24 (Embedding Theorem). Let Q be a bounded Lipschitz do-
main in RN. Then, the embedding BV () — LN/ WN=1(Q) is continuous and the
embedding BV (Q) — LP(Q) is compact for all 1 < p < 5.

PRrROOF. Continuity of the embedding follows from the Poincaré inequality (The-

orem ; observe that
lull viov-1 () < lual Ly @) + v —uallLvo-1 @)
< lug| - LY QNN 1 C|Du|(Q) < Cllul py (@)
Consequently, we also get the embeddings for all p < %

Concerning compactness of the embeddings for p < %: by the Meyers-Serrin
approximation theorem, for any sequence f, bounded in BV (2), one can find a
sequence g, bounded in W'(Q) such that ||f, — gn|rr@) < . By the Rellich-
Kondrachov theorem for Sobolev functions, the sequence g, (and therefore also f,,)
converges to some f in LP(2), which in this case does not need to lie in any Sobolev
space, but by the lower semicontinuity of the total variation lies in BV (Q). (Il

The main application of the above result is that from a bounded family in
BV () we can extract a subsequence which converges in L!(€2).

COROLLARY 1.25. Let Q be a bounded Lipschitz domain in RY. For every
sequence u, € BV (Q) with ||u,| pyvq) < M, there exists a subsequence which con-
verges to some u € BV () LN —a.e. and in LP(2) for allp € [1, 2= ). In particular,
Up, — u weakly* in BV (§2).

Finally, let us comment on the one-dimensional case. Then, the isoperimet-
ric inequality cannot be formulated in a similar manner, and it is clear that the
Lebesgue measure of a set cannot be estimated from above by its perimeter.

ExAMPLE 1.26. Consider the sequence of sets E,, = [—n,n] < R. Then, for all
n € N we have Per(E,) = |DXg, |(R) = 2, but L1(E,,) — .

However, the Sobolev and Poincaré inequality themselves are valid for N = 1 if
we understand the exponent % as +00, but we need to proceed a bit differently;
we leave the proof as an exercise (a similar result holds on bounded domains).

EXERCISE 1.27. Show that for all u € C¥(R) we have

b
IMM—MWN<JIUM%

and thus |Julle, < Cfufwr1@). Conclude using the Meyers-Serrin approximation
theorem that for all u € BV(R) we have |u[x < Cllu| gy (w)-
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1.3. Traces of BV functions

‘We now turn our attention to boundary values of functions of bounded variation.
Similarly to the case of Sobolev spaces, one can define a trace operator from BV ()
to L1(092, HN~1), which for continuous functions agrees with the restriction to 0€2.

'MEMO 6. Let A< RN and fix s € [0,00). Then, for any § > 0, we define
5 . L dlam(Cj) s @ .

H;5(A) = inf Z als)| ——=| :Ac U C;, diam(C;) <4 ¢,

j=1 2 j=1

where a(s) = F’Ts/z

INEESIE For s integer, it is the volume of the unit ball. We call
2

HE(A) := lim H3(A) = sup Hj(A)
6—0 §>0

the s-dimensional Hausdorff measure on RN . It is a Borel reqular measure.

Keeping in mind that for an open bounded set 2 with Lipschitz boundary the
outer unit normal v exists H¥ ~!-a.e. on 052 (as a consequence of the Rademacher
theorem, which states that Lipschitz functions are differentiable almost everywhere),
we have the following result.

THEOREM 1.28. Let Q be a bounded Lipschitz domain in RY. There ezists a
bounded linear mapping

T:BV(Q) — L'(6Q,HN 1)
such that
f udiv(y) dx + J - d[Du] = f @ -V TudHN !
Q Q oQ

for all w € BV(Q)) and ¢ € CH(RN ,RY). Furthermore, T is continuous between
BV (Q) endowed with the topology induced by strict convergence and L*(0Q, HN1).

PROOF (OMITTED). Adaptation of the analogous result for W1? functions,
with some minor complications due to using strict approximation in place of ap-
proximation in norm. See for instance [1l, [23]. |

The function Tu is called the trace of u on 092. To simplify the notation, we
write LP(09) in place of LP(0Q, HN 1) for all p € [1,00]. We will also use u|sq and
u®? for Tu, and when it is clear from the context, we omit the letter 7" and simply
denote it by u. Similarly, one can consider traces of functions defined in RV\Q in
place of fur}]ctions in . We still denote it by 7" when it is clear from the context,
RY\Q

and use u when necessary.

COROLLARY 1.29. For any u e BV (Q) and HV-a.e. x € 0Q we have
(1.6) lim lu(y) — Tu(z)|dy = 0.
r—0+ B(z,r)nQ

In particular, the trace defined in the previous Theorem agrees with restriction to
the boundary for continuous functions, i.e., for any u € C(2) n BV (Q) we have

Tu = U|(‘)Q.




1. BV functions 15

PRrROOF (OMITTED). Applying the Vitali covering theorem and the Lebesgue-
Besicovitch differentiation theorem (Memo [§]below) to some fine estimates from the
previous proof. See for instance [1l, [23]. |

Also, let us notice that property (1.6)) shows that the pointwise trace can be
defined only using information about the behaviour of u near 0€2, and is itself
suitable as a definition of the trace.

EXERCISE 1.30. Using a similar argument as in the proof above, prove that the
approximation given by the Meyers-Serrin theorem (Theorem [1.16) has the same
trace as the original function.

The trace operator is not continuous with respect to weak™ convergence in
BV (2); in other words, if we only assume that a sequence u,, converges weakly* to
uw in BV (§2), it does not follow that the traces also converge. To this end, consider
the following example.

ExampLE 1.31. Let © = (—1,1) and let up, = X;_y;1 ;_1). Clearly, u, — u
weakly* in BV (Q2), where u = 1. However, u,(—1) = u,(1) = 0 for all n € N, but
u(=1) =u(l) =1.

It was proved by Gagliardo in [24] that the trace operator is actually onto
L'(09Q); given a boundary datum in L!(0f2), one can find a function in W11(Q)
with desired trace. Moreover, one can require some additional properties of the
extension; to be exact, we have the following result.

LEMMA 1.32. Let Q be a bounded Lipschitz domain in R . Then, for any given
function f e L*(0Q) and € > 0 there exists a function u € WH1(Q) satisfying:

uloq = f;

J |Vu|da:<f |f|dHN 7! + ¢
Q oQ

[ullzro) <e.

In the case when the boundary datum is continuous, one can require that the
extension is also continuous.

PROOF (SIMPLIFIED). Since 0f) is Lipschitz and we only need to extend the
boundary datum in a neighbourhood of 02, using an argument based on a partition
of unity and a straightening of the boundary we can reduce the proof to the case
when 09 = RV~ f has compact support in RV~1, and u is a function defined in

Ri\_] = {(y1,--»yn) : y1 > 0}.

We first pick a sequence of smooth functions f; € Co(RV 1) which converges to f
in LY(RN-1) as j — c0. We can assume that fy =0 and

0
Z Hfj - fj+1HL1(]RN—1) < 00.
7=0
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Since f; have compact support, for every j € N u {0} we have that

(17) g i éfw (’jylf

Take a decreasing sequence t; converging to zero; we will fix the exact values of ¢;
at the end of the proof. Denote the y; variable by ¢ and set

‘ 0

afylfjﬂ

>d:c<oo.

(t /) 0 if t > t(),
u s = — i — .
Y () + 7tjtitjt+lfj+1(y,> if t € [tj11,t5]

ti—tj+1

for t > 0 and 3 € RV~1. By the mean integral formula for the trace (Corollary [1.29)
the trace of u is correct; we only need to prove the desired bound.

To this end, observe that for ¢ € [tj41,%;] we have the following pointwise
bounds:

and for all [ = 2,..., N we have

<UfW) = Fs It —t) ™

0 /
— W)+
' our g W)
We will show that the desired estimates follow. Observe that

Nl o
=ul + U
;‘ayl

0 0
—uf(t, N < _f. .
’ayIU( y) ‘aylf]"rl(y)

[Vl < <1 = fiwalty = tj4) ™!

2

‘ f]+1

)

and integrating this inequality over RN we get

(1.8) J |Vuldzx < Z I1fj = firrlor@n—ry + Z —tj+1) 95,

7=0
where g; is given by (1.7). Choosing the sequence ¢; in such a way that ty < ¢ and

Hf“Ll(RN*U 9—i—2,
1+ g

)

tj —tjp1 <

using (|1.8)) we obtain that the estimate involving the gradient. It is easy to see that
the bound on the support holds, which concludes the proof. O

EXERCISE 1.33. Make precise the first part of the argument involving the par-
tition of unity.

EXERCISE 1.34. Make precise the part of the argument showing that the trace
is correct.

The following result concerns the total variation of a function constructed from
a function in BV (Q) and a function in BV (RM\Q). It turns out that it is given by
is the total variations of the original functions plus a boundary term.
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THEOREM 1.35. Let u; € BV () and uz € BV (RN\Q). We define

ui(z) if xeQ;
v(z) = _
us(x) if v e RV\Q.

Then, v e BV(RYN) and

|Do|(RY) = |Duy [(Q) + | Dug|(RM\Q) + J |Tuy — Tug| dHN 1.
oQ

PROOF. Take a test function p € CX(RY;RY) with || < 1. Then, applying
the trace theorem (technically, R¥\Q does not satisfy the assumptions as it is not
a bounded domain, but we may restrict to the case of a bounded domain as ¢ has
compact support), we see that

(1.9)
J vdiv(p) dr = J uy div(p) dz + J ug div(p) dz
RN Q RN\Q

= —J wd[Duy] — J @ d[Dus] + f (Tuy — Tug) @ - v dHN 1
Q RN\Q oQ

<J |Du1|+f | Dus| +J |Tuy — Tug| dHN 1,

Q RN\Q oQ

which proves the inequality in one direction, and in particular we conclude that
ve BV (RYM).

To obtain an equality, observe that by testing the definition of the distributional
derivative with functions whose support lies entirely in the open set Q or RM\Q,

| Du; in @
(1.10) Duv = { Duy  in RM\Q.

Then, applying the first part of (1.9), we have

—J pd[Dv] = f vdiv(y) dz
RN RN
= —f pd[Duq]| — J wd[Dusg] + f (Tuy — Tuy) @ - v dHN T,
Q RN\Q oQ
so equation ([1.10]) implies that
—f pd[Dv] = J (Tuy — Tus) ¢ - VRN
oQ oQ
Thus, |Dv|(0) = § ¢, |Tur — Tug| dHN !, which concludes the proof. O
1.4. Fine properties of BV functions
Finally, we turn our attention to pointwise properties of functions of bounded

variation. We recall the notions of the reduced boundary and measure-theoretic
boundary of a set of finite perimeter and use them to describe pointwise behavior
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of BV functions at the discontinuity points. As a preparation, let us recall the
Radon-Nikodym theorem.

MEMO 7. Let w and v be two Radon measures on RY and assume that v < p, i.e.,\
for every Borel set A = RY the condition u(A) = 0 implies v(A) = 0. For every
z e RY, denote

. v(B(z,r)) . )
Zl(x) " lgr%) (B.r) if w(B(x,r)) >0 for all r > 0;
K +00 if w(B(z,r)) =0 for some r > 0.
Then, g—:(aj) is well-defined pi-a.e., and for any Borel set A < RN
dv
v(A)=| —du,
(4) L
dv

i.€., e 1s the density of v with respect to u. In particular, every Radon measure

w 1s absolutely continuous with respect to its total variation |u|, so the Radon-

Nikodym derivative % is well-defined |p|-a.e.

With this definition in mind, from now on we will denote by Igiuul the Radon-

Nikodym derivative of the distributional gradient Du with respect to its total vari-

ation |Dul; and by vg we denote the measure-theoretical outer normal to a set E

of finite perimeter, i.e., vg = f‘g—z‘.

DEFINITION 1.36. Let E be a set of finite perimeter in RY. We say that
x € 0*E, the reduced boundary of E, if the following conditions hold:

(i) |DXg|(B(z,r)) > 0 for all r > 0;
(if)

lim Vg d|DXE| = Z/E(.’E),
r—0+ B(z,r)

(iil) |ve ()] = 1.

By definition, the reduced boundary of a set of finite perimeter is where the
perimeter measure |[DXg| is concentrated; by the Lebesgue-Besikovitch differentia-
tion theorem (Memo [§ below), we have

|DXg|(RM\O*E) = 0.

'MEMO 8 (Lebesgue-Besikovitch differentiation theorem). Let p be a Radon mea-
sure on RN and let f e LL (RN, ). Then,

loc
lim fdp = f(x)
r—0+ B(z,r)

Jor p-a.e. T€ RY.

,/

An important related notion is that of the measure-theoretic boundary of E,
which has a bit weaker properties, but is easier to deal with in specific applications.

DEFINITION 1.37. Given a measurable set E < RY, we denote

o . LN(B(z,r) n E) _
EW = {xERN : }1_1)1(1) CN(B(z.1) = 1}
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to be the set of points of density one. Similarly,

. - EN(B(:U,r)mE)_
B0 = {eem : i S TR0TE ~of

is the set of points of density zero. Finally, we call

OmE = RM\(E©® L EW)

the measure-theoretic boundary of F.
EXERCISE 1.38. Let E = [0,1]> < R% Find the sets 0*E and 0, E.

THEOREM 1.39. Suppose that E is a set of finite perimeter. Then, we have the
inclusions

0*E < 0,,FE c OF.

PRrROOF. The inclusion 0,,FE < OF is obvious; let us focus on the inclusion
0*F < 0,,E. First, observe that replacing E with E() does not change 0*FE or
Om E, as these objects remain the same after modifications of E on a set of measure
zero; for the rest of the proof, we will work with E = E(1),

Fix € 0*FE. By the trace theorem (Theorem [1.28]) applied to the case 2 =
B(xz,r) and u = Xg~B(z,r), for all g € CHRN:RY) we have

(1.11) f div(p) dy = f ¢ - vpd|DXg| +J @ -V dHN !
EnB(xz,r) B(z,r) EndB(z,r)

for Ll-a.e. v > 0, i.e., those for which |DXg|(B(z,7)) = 0. The minus sign in the
second term disappears because vg is the outer normal. Thus, considering |p| < 1
and using the representation of the total variation as a supremum, we get

(1.12) |DX g (e (RY) < | DXg|(B(z, 7)) + HN"HE n 0B(z,1)).

Choose a test function p € CP(RN;RY) such that ¢ = vg(z) on B(z,r); this is
clearly possible since vg(z) is a constant. Then, equation (1.11]) becomes

0= j vip(x) - vepd|/DXg| + f vg(x) - vPdHN !
B(z,r) EndB(x,r)
We rewrite this as
f vg(x) - vepd/DXg| = —f vg(x) - vPdHN
B(x,r) EndB(x,r)

and observe that the left hand side is arbitrarily close to |DXg|(B(x,r)) asr — 0 by
the definition of reduced boundary; on the other hand, the right-hand side can be
estimated from above by the N — 1-dimensional Hausdorff measure of E n dB(z, ).
Thus, for sufficiently small » > 0 we have

1
§|DXE|(B(x,r)) < HY"YE n 0B(x,r)).
The above and estimate (1.12)) give that

(1.13) DX g 5oy |(RY) < 3HN1(E 2 0B(a, ).

for sufficiently small » > 0.
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Now, denote g(r) = LN(B(xz,7) n E). By the Fubini theorem in spherical
coordinates, we have that

g(r) = LT HN"Y(0B(x,s) N E)ds

and consequently ¢'(r) = HN~Y(0B(x,r) n E) for a.e. r > 0. Thus, by the isoperi-
metric inequality (Theorem [1.22)) and estimate ((1.13)) we obtain

g(r)'=% = (LY (B(x,1) n E)'™¥ < CIDXp(a,nm)|(RY)
< CHN"Y0B(z,r) n E) = Cd'(r).
This differential inequality for g implies that

& <gF = n(gt ().,

s0 g~ (r) = = and consequently g(r) = cr¥ for some ¢ > 0 and sufficiently small
r > 0. Thus,

LN(B(z,r) n E)

lign jélf N >c>0.
An analogous argument applied to RV\Q yields
N(B E
hminf%]v’r)\) >c>0,
r—0 T
and consequently x € 0,, 2. The constant ¢ depends only on N. O

The main feature of the reduced boundary of a set of finite perimeter is a
well-defined approximate tangent hyperplane. For each x € 0*F, we define the
hyperplane

H(z) = {y e RY : vp(e)- (y— ) = 0}
and the half-spaces
H(z):={yeRY: vg(z) - (y—z) >0}
and
H (z):={yeRY: vg(z)- (y —x) <0}.
The following result describes the local behaviour of E around a point in 0*E.
THEOREM 1.40. Assume x € 0*E. Then,

LN(B(z,7) n En H*(x))

r1—1>r(r)1+ TN 207
similarly
N —
g £ (BEE 0 @)
r—0+ r
and

L DXBI(B )

r—0+t wN_er*1
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In fact, even a stronger claim is true, called the blow-up of the reduced boundary:
for each x € 0*FE, we have

X{yERN::H—T(y—m)EE} - XH*(z) in Llloc(RN)
asr — 0.
To conclude the discussion on the set 0* E, we recall (without proof) the main

result underlining the importance of 0* E, which in particular shows that this set is
nonempty for any set of finite perimeter.

THEOREM 1.41 (Structure theorem for sets of finite perimeter). Let E be a set
of finite perimeter. Then, we have
|DXg| = HY " oxp.

Furthermore,

o8]
= JKeUN,
k=1
where |DXg|(N) = 0, Ky, is a compact subset of a C* hypersurface Sk, and vg|s,
18 normal to Sy.

As an immediate consequence of this result, we have that
HN=Y(0*E) = P(E,RY).

N
Moreover, for any x € 0,, E there exists a subsequence r,, — 0 such that M

converges to a € (0, 1); applying the relative isoperimetric inequality to this subse-
quence, we get
min(a, 1 — ) rV ) |DXg|(B(x,r))

0 < limsup ¥ < C-limsup ————"",
r—0 r r—0 r

and since |DXg|(RN\0*E) = 0, using a standard covering argument we get that
HN=1(0,, E\0*E) = 0. As a consequence, 0,, F has finite ! measure and

HN Y0, F) = HN 1 (0*E) = P(E,RY).
The sets 0*F and 0,, F are used to describe a regular part of the boundary of a set

of finite perimeter; the topological boundary, on the other hand, can in general be
quite irregular.

EXAMPLE 1.42. Let Q < R? be a bounded Lipschitz domain and consider the
following sequence of open balls B(zg, 7). Enumerate the points of (Q x Q) n Q
as {zr}. Fix € > 0, take r; < § small enough so that B(x1,r1) < , and denote
Fy = By(x1,7r1). Then, for any k > 2, we denote by x,) the first point among xy,
for which @,y ¢ Fj—1, fix 1, < g7 small enough so that B(w, ), ) © Q\Fi_1,
and set

k
Fy = U B(x,33y, 7).
=1

Then, F} is an open set of finite perimeter which satisfies

|Fy| = Z e < Z me?27% < 1e?
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and
k k
P(Fy, Q) = > 27m, < ). 21627 < 2me.
i=1 i=1
Thus, if we denote

0
Fy = U B(wp ey, 74),
i=1
we see that by Xg, — Xp,, in L'(Q2) and the above bounds we have Xr,, € BV ().

Yet, F,, is dense in Q, so F,, = Q, and consequently 0F,, has positive Lebesgue
measure (almost equal to the measure of ).

EXERCISE 1.43. Identify 0*F and 0,,F in the above example.

We turn our attention to a more precise description of the discontinuity set
of functions of bounded variation. We first recall the notion of the approximate
discontinuity set of a locally integrable function.

DEFINITION 1.44. For a function u € L] (), we denote by u”(z) and u" ()
respectively its lower and upper approximate limits, i.e.:

Ay — i LY{u=th 0 Bar)
u” (z) = sup {teR : 1)1_1}r(1]1+ N (B(r) = 1},

9 . - LN ({u <t} n B(z,7r)) _
u” (z) = inf {156}1%.T1_1)r61+ N (Br) —1}.

We say that z € S, the approzimate discontinuity set of w, if u”(x) and u" (z)
do not coincide. For any x € Q\S,,, the real number u”(z) = u" (), is called the
approzimate limit of v at z and is denoted by @(z). Note that for x € Q\S,, u(x) is
the unique real number satisfying

lim lu(y) — a(z)|dy = 0.
r—0+ B(z.r)

Now, we recall the definition of the jump set J,, of a BV function.

DEFINITION 1.45. Let uw € BV (). We say that x € J,, the jump set of u, if
there exists a unit vector v (called the normal vector) and real numbers a # b such
that

lim lu(y) — al dy = 0,
r=0" JB(z,r)n{{y—z,v)>0}
lim |u(y) — bl dy = 0.

r—0+ B(z,r)n{{y—z,v)<0}
The triple (a, b, v) is uniquely determined up to permutation of a, b and the sign of
v and is denoted by (u™ (z),u™ (z), v ()).

Clearly, for a set E of finite perimeter, the approximate discontinuity set Sy,
agrees with 0,, F, and by the structure theorem for sets of finite perimeter the jump
set Jy, agrees with the reduced boundary 0* E up to a set of zero HN 1 _measure
zero. In general, the relationship between the two sets is a bit more complicated; we
give without proof the following result (which essentially follows from the structure
theorem for sets of finite perimeter).
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THEOREM 1.46 (Federer-Vol’pert theorem). Letu € BV (Q)). Then, S, is count-
ably HN ~1-rectifiable, i.e., it is contained in a countable union of Lipschitz (even C*)
hypersurfaces up to a set of zero HN~'-measure; J, is a Borel subset of S,; and

HN (S, \J) = 0.
On a final note, let us discuss how we can use the definition of the jump set to

analyse in more detail the properties of the distributional derivative Du. To this
end, we first recall the Lebesgue decomposition theorem.

‘MEMO 9 (Lebesgue decomposition theorem). Let p and v be Radon measures on|
RN . Then, one can uniquely decompose

V = Vye + Vg,
where vy, Vs are Radon measures on RY which satisfy Vae < wand vs L p.
DEFINITION 1.47. For u € BV (), we call
D% = Vu LN

where Vu is the Radon-Nikodym derivative of Du with respect to the Lebesgue
measure LV, the absolutely continuous part of the derivative; we call the measure

DI := Dful;,

the jump part of derivative; and we call

Dty := DSU‘Q\SH

the Cantor part of derivative.

Observe that the definition of the jump set implies that
Diu = (ut —u”) v, HN 7Y,
as measures. Applying twice the Lebesgue decomposition theorem, we see that the
following decomposition of Du holds:
Du = D% + D?u + D°u.
We stress that this decomposition of the measure Du does not necessarily hold at
the level of function; the following example appears in [1].

EXAMPLE 1.48. Let © = B(0,1) < R? and take S = (—1,0] x 0. Define the
function u : © — R using polar coordinates by the formula u(r,6) = /rsin(%).
Then, it is clear that v € BV(Q) with J, = S, = S\{0,0}, and that the Cantor
part of the derivative is equal to zero. Then, if one could decompose u as u = u,+u;,

where u € W(Q) and u; has only jump-type derivative, we would have
V(u—uq) = Vu,; =0,

so by the Poincaré inequality u — u, is a constant, since u — u, € WH1(Q\S) and
Q\S is connected. But then u = u, + (u — u,) € WH(Q), a contradiction.

DEFINITION 1.49. We say that v € BV(Q) is a special function of bounded
variation, and we write u € SBV(Q), if the Cantor part of its derivative Du is
zero. In other words, for all u e SBV () we have

Du = D% + Diu=Vu Ll + (u" —u" ) v, HN 1L J,.
The space SBV () is a closed subspace of BV (2).
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1.4. Further reading

Further reading

For more information, we refer to [1, [23], [28], and [42].




CHAPTER 2

First look at variational problems

In this lecture, we present some basic features a variational problems involving
functionals of linear growth. It turns out that many techniques known from the
p-growth case, when the problems are formulated in the Sobolev space WP with
p > 1, fail in this case. As a model problem, consider the Dirichlet problem for the
p-Laplacian in a smooth domain Q < RY, i.e.,

div<|Vu|p2Vu> =0 in
u=f on 052,

where f e W' 5P (09) (the trace space of Sobolev functions), which is the Euler-
Lagrange equation of the minimisation problem

(2.1) min {; J |VulP : we WHP(Q), wlaq = f}

Using the direct method of calculus of variations, it is easy to prove existence of
minimisers to this problem. Clearly, the functional on W1P(Q) given by

3l
- Vu Poifu on = f
Py =1 p ) Vel i
+00 otherwise
is bounded from below and proper (i.e., not identically equal to +o0). Thus, we can

find a minimising sequence u,, for the minimisation problem (2.1). Now, observe
that the functional F' is finite and coercive on

W, P(Q) = {u eWLP(Q):  wuloq = f},

i.e., boundedness of F'(u,) implies boundedness of |u,|lw1.r(): indeed, if v €
WLP(Q) denotes any extension of f, then by the Poincaré inequality for any u €
W}’p(Q) we have

< |V(u =) + [v]Le )

< [Vul o) + VU] Lo(0) + [V o)

= (PF ()" + [Vo| o0y + 0] Lo ()
which yields the claim since v is a fixed function. Therefore, the minimising sequence
Uy, is bounded in W1P(€) and as such has a weakly convergent subsequence. Since
W} P(Q) is weakly closed, we obtain that the limit function w lies in W} P(Q), and
hence the functional F' is sequentially weakly lower semicontinuous. Therefore,

F(u) < liminf F(uy,) — inf F,
n—a0

lullLr ) < [lu —v]e) + [vlzr )

25
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S0 u is a solution to problem (2.1)). It is unique since F' is a strictly convex functional.

If we now consider the least gradient problem, i.e., set p = 1 in the above
calculation, the argument falls apart. The corresponding functional is bounded
from below and proper, and it is finite and coercive on

BV(Q) = {u eBV(Q):  ulag = f}7

so the minimising sequence u,, exists and is bounded in BV(Q), but this is not
enough to conclude the proof. Indeed, the subsequence we would obtain is only
weakly* convergent, and the space BVy(2) is not closed with respect to weak™® con-
vergence (as we saw in Example [[.31)). Thus, the functional F is not sequentially
weakly* lower semicontinuous, and we cannot conclude that a minimiser exists; in-
deed, at the end of the lecture we will give an example of nonexistence of minimisers
for this problem. Furthermore, we will also see that uniqueness of solutions may
also fail.

In general, we are interested in minimisation problems which involve functionals
of linear growth, i.e., ones for which the term involving the gradient is of the form
S, f(Du) with

mlp| —c < f(p) < M(1+ |p)

for all p e RY. The particular cases we consider in these lectures are the ROF func-
tional, the associated gradient flow, and the least gradient problem. For simplicity,
from now on in the whole lecture series we assume that Q c RY is an open bounded
set with Lipschitz boundary.

2.1. First example: ROF functional

The Rudin-Osher-Fatemi functional E : L2(Q2) — [0, +-o0], which is the basis of
total variation denoising, is defined by the formula

A 9 ) .
E(u) = JQ'D“‘+§L<“‘f> deif ue BV (Q) 0 L*(Q);
+0 if ue L*(Q)\BV(Q),

where A\ > 0 is a bias parameter which measures how close the denoised image u
is to the original image f. This model first appeared in [39] and was designed to
sharpen existing edges in a given picture; we will say more about motivations and
relationship to other problems in the next lectures, and for now we focus only on
its analytical properties.

PROPOSITION 2.1. The functional E is lower semicontinuous with respect to
convergence in L2(2).

PROOF. Suppose that u, — u in L?(Q2). Without loss of generality, we may
assume that

liminf E(u,) < M < o,

n—aoo0

which implies

liminfj |Dup| < M < oo,
Q

n—o0
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and consequently by the lower semicontinuity of the total variation u € BV (Q)
(since u,, also converges to u in L'(£2)). Thus,

A
lim inf Duy|+ = | (un — f)*d
e <JQ| el + QJQ(U f) ac)
o A 2 A 2
=liminf | |Du,|+ lim — | (up — f)*de = | |Dul+ = | (v— f)°dz,
) 2 Jo 0 2 Jo

n—o0 n—0o0
which concludes the proof. O
Recall that for any given normed space X if a convex function £ : X —
(—00, +0] is lower semicontinuous with respect to norm convergence, then it is

lower semicontinuous with respect to weak convergence; thus, F is also lower semi-
continuous with respect to weak convergence in L?(2).

THEOREM 2.2. The functional E has a unique minimiser in L?(Q).
PRrROOF. We use the direct method of calculus of variations. Obviously, the

functional E is bounded from below and proper. Thus, there exists a minimising
sequence u,, for the minimisation of F; since a minimising sequence satisfies

liminf E(u,) < M < o,
n—0o0
we also have

n—o0

limian lu, — fI> < M < o,
Q

and therefore u,, is bounded in L?(£2) (up to taking a subsequence), so u,, converges
on a subsequence in the weak topology of L?(2) to some u € L?(2). Then, since E
is lower semicontinuous with respect to weak convergence in L?(Q), we have

inf £ = lim E(u,) = E(u),
n— 00
hence w is a minimiser of F. Since F is strictly convex, the minimiser is unique. [

EXERCISE 2.3. Verify whether the ROF functional with L! fidelity term also
has similar properties, i.e., if Ep1 : L1(Q) — [0, +o0] given by
A
| Du| + §J |lu— fldz if ue BV (),
Q Q
+0o0 if ue L'(Q)\BV(Q)

ELI (U) =
is lower semicontinuous with respect to L'-convergence and has a unique minimiser.

2.2. Relaxation of the functional for the least gradient problem

The next part of this lecture is dedicated to an example of a functional which
is not lower semicontinuous. The lack of lower semicontinuity here is related to
the Dirichlet boundary data; we briefly mention other types of failure of lower
semicontinuity in Theorem |2.9
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The least gradient problem concerns the minimisation of total variation of a
function for given Dirichlet boundary data f e L'(0Q), i.e.,

(2.2) min{fQ|Du|: ue BV(Q), u|m=f}.

Let us consider the energy functional J : L'(2) — [0, 0] associated to the least
gradient problem ({2.2)), i.e., defined by the formula

f | Dul, ifue BV(Q) and u = f on 0;
J(u) = Q
+00 otherwise.

Following the classical reasoning appearing for instance in [2] or [26], we will see
that the functional J : L1 (Q) — (—o0, +00] defined by

- L|Du| +LQ lu— fldHN= if u e BV(Q);

+00 if ue LY(Q)\BV (),

J(u

is the relaxation of the functional J.

‘MEMO 10 (Relaxation). Given a functional F : L*(Q) — R U {+00}, we call its
sequentially lower semicontinuous envelope F : L'(Q) — R U {+w0}, i.e.,

F(u) = inf {limian(un) DUy > U in Ll(Q)}
n—0o0
the relazation of F'.

This definition is strongly related to the notion of I'-convergence: relaxation of
a functional arises once one considers a I'-limit of a constant sequence.

'MEMO 11 (T-convergence). Assume that X is a topological space such that each|
point has a countable local basis of neighbourhoods (e.g., X is metric). Then, we
say that a sequence of functionals F,, : X — R u {400} T'-converges to a functional
F: X > Ru {+w}, if the following two conditions are satisfied:

1. For any sequence x, € X such that x,, — x, we have
F(z) < liminf F, (x,);
n— 00
2. For any x € X there exists a sequence x, — x such that
F(x) = limsup F,(x,).
n— 00
The main property of I'-convergence related to calculus of variations is that if x,
are minimisers of Fy,, then every cluster point of the sequence {x,} is a minimiser

of F. Furthermore, I'-limits are automatically lower semicontinuous, and the I'-
limit of a constant sequence F), := F' is its relazation F.

,/

To compute the relaxation of J, we first prove the following result.

PROPOSITION 2.4. The functional J is lower semicontinuous on L*(Q).
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PROOF. Let 1 € WHL(RM\Q) be a function with compact support and trace f
on 0. Denote by uy € BV(RY) the function defined by

u(z) fze
uy(@) = { P(z) if v e RN\QL

By Theorem [I.35]

J |Du¢|:J \Du|+f |u—f|d”HN_1+f |Vap(x)]| d.
RN Q o0 RN\Q

We rewrite the above as follows:
) = | ul+ [ Ju flan = [ Dul - [ Vet d.
Q oQ RN RN\Q

Now, suppose that u, — u in L*(Q). In particular, also (up)y — uy in L1(RY).
Then, by the lower semicontinuity of the total variation,

n—ao0 n—ao0

liminf J (u,) = liminf | [D(up)y| — J [V (z)| dx
RN RN\Q

> [ puil = [ vet)lde = T,
RN RN\Q
so the functional J is lower semicontinuous on L*(). O

PROPOSITION 2.5. Given u € BV (Q), there exists a sequence u, € WH1(Q)
such that u,, — u in L*(Q), u, = f on 02 and

J(u) = nh_r)réc J(up).

PrOOF. We set g = f—u on 09). Let w, be the sequence given by the Meyers-
Serrin theorem (Theorem , applied for u, and let v, be the sequence given by
the Gagliardo extension theorem (Lemma , applied for g. We have w,, — u in
LY(Q), v, — 0in L1(Q) and v, = g on Q. Moreover, we rewrite the estimate in
Lemma [1.32] as

1
J\Dvn|<J lu— fldHN = 4 =,
Q o0 n

Set u,, = v, + wy,. Then, u, € WH1(Q), u,, — v in LY(Q) and u,, = f on Q. We
estimate

_ 1
I (uy) = J |Du,, | < J | Dy, | +J |Dw,| < J lu— fldHN "+ = —I—J | Dwp,|.
Q Q Q oQ n 9
Now, we take the upper limit in the above series of inequalities. By the lower

semicontinuity of J given in Proposition 2.4] we get

n—o n—00 n—0

J(u) < liminf J (u,) < limsup J (uy,) < limsupf |Dw,| + J lu — fldHN !
Q o0

n—o0

= lim J |Dwn|+J lu— fldHN ™ = T (u).
Q o0

Hence, all the inequalities above are in fact equalities and u,, satisfies all the desired
properties. O
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Finally, notice that Propositions [2.4] and [2.5] immediately imply the following
Theorem.

THEOREM 2.6. Then, the relaxation of the functional J is the functional 7,

i.e.,
J(u) = inf {liminf J(up) ¢ wp —u in LYQ), u, = f on 69} .
n—0o0

Therefore, the functional 7 is the ’correct’ functional when we want to study
the least gradient problem. We will come back to this in the last lecture. Once
we identified the relaxed functional, we can apply the direct method of calculus of
variations to conclude that the functional J has a minimiser.

PROPOSITION 2.7. The functional J has a minimiser for any f € L*(Q).

PRrROOF. Clearly, the functional J is bounded from below and proper (i.e., not
identically equal to +o0) on BV (). Moreover, J is coercive, i.e., boundedness of
a family J(u,) implies boundedness of |u,|pv(q): indeed, if we extend u by zero
to a function in BV (RY), then by the Sobolev inequality (Theorem see that
the support of u is bounded) and Theorem we have

ull ey = Jul gy < cj Du| = C f Dul + C f ] AN
RN Q o0
cf | D +cf lu — fldHN L + Cf |f| dHN 1
Q oQ o0

<CJ(u) + OJ |f| dHN L.
oQ

Thus, there is a minimising sequence u, for the least gradient problem and it is
bounded in BV (). By Theorem it admits a convergent subsequence in L!(2).
Since J is lower semicontinuous in L!(Q) by virtue of Proposition

J(u) < lim iorgfj(un) — inf 7,

so w is a minimiser of J. O

However, in this case the minimiser may fail to be unique as J is only convex
and not strictly convex; consider the following simple example.

EXERCISE 2.8. Let Q = (0,1) and take boundary data given by f(0) =
and f(1) = 1. Then, show that any nondecreasing function v € BV ((0,1)) w
u(0),u(1) € [0,1] is a minimiser of J.

For general functionals of linear growth, identification of the relaxed functional
is one of the main priorities in their study. The results are much more difficult
to show and we restrict ourselves to the following statement (without proof; the
assumptions are not optimal, see [4] or [1]).

THEOREM 2.9. Suppose that f : Q x RY — R is smooth and that for all pe RN
the following limit exists:
t
fe(x,p) = tlim 7]0(2’ p)'

—00
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Assume additionally that there exists positive constants such that the following con-
ditions are satisfied:

(a) f is nonnegative and convex in the second variable;
(b) f has linear growth, i.e.,

clpl = c2 < f(x,p) < e3(1+[pl);
(c) [ is locally uniformly continuous with respect to x, or more precisely
[ —xo| <6 = |f(z,p) = fzo,p)| < ccall + |p));
(d) The rate of convergence f to f® along each ray is of order O(t™™), i.e.,
For all t > 1 we have |f(x,tp)/t — f*(z,p)] < cst™™.
Then, if we define a functional E : L*(Q) — [0, +00] by the formula

JQ flx, Vu(z))dz if ue WH1(Q);

+o0 otherwise,

E(u) =

its relazation is the functional E : L*(2) — [0, +0] given by

© dD%u s ) )
JQ f(z, Vu(z)) dz + JQ f (:r, d|DSu|) d|D*u| if ue BV (Q);

+o0 otherwise,

E(u) =
where D*u is the singular part of Du with respect to the Lebesgue measure (i.e.,
D%u = Diu + Du) and d‘Dz“‘ 1s the Radon-Nikodym derivative.

ExaMPLE 2.10. Using this theorem, we immediately see that the relaxation of

f |Vu(z)|dz if we WHH(Q);
Q

400 otherwise

E1 (U) =

is the total variation, i.e.,

— Vuda:+f Dfu| if ue BV (Q);
Bt - | | IVulda [ D% (@

400 otherwise,
and the relaxation of the area functional
f V14| Vu()2de  if ue WHY(Q);
otherwise
is the functional

J«/l—l—\Vu |2dx+f |D*ul if we BV(§);

otherwise.
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2.3. Why we need to consider relaxations

The variational problem of minimising the integral of the gradient of a function
was first considered by Miranda in [35] in connection to the study of area-minimising
sets. Because this functional has linear growth, the natural energy space for mini-
mizers is the space of functions of bounded variation. The first rigorous definition
of solutions was proposed by Miranda in [35].

DEFINITION 2.11. Let Q < RY be an open bounded set. Given u e BV (Q), we
say that w is a function of least gradient in Q, if for all g € BV(Q) with compact

support K < € we have
f |Dul < f D(u+ g)|-
K K

Equivalently, one may assume that g is a BV function with zero trace on 0f).

This definition is a local version of the minimisation of J; the relationship is
described in the following result.

PROPOSITION 2.12. For v e BV () satisfying v|on = f € L*(09), the following
conditions are equivalent:

(i) J(v) < J(u) for all ue BV(Q).

(i) v is a function of least gradient.
PRrROOF. (i) implies (ii): If we consider competitors which satisfy u|sq = f, we get
|Dv| = J(v) < J(u) = | |Dul,
Q Q

which proves the first implication.

(i) implies (i): Given uw € BV (), we have to see that J(v) < J(u). Fix e > 0
and apply the Gagliardo extension theorem (Lemma [1.32). We find w € W11(Q)
satisfying

(2.3) wloa = uloa — f;

(2.4) f |Dw| < J lu — fldHN ! + ¢
Q o0

and

w(z) =0 if dist(z, Q) >

Now, consider the function v — w. By (2.3)), its trace on 0Q is f. So we may use
(iii) to deduce that

J |Dv\<f |D(u—w)\<f |Du\+J | Du|
Q Q Q Q
gj |Du\+J lu— fldHN " + ¢
Q oQ

J \DU| J(u

Since € was arbitrary, it follows that J(v) < J (u) holds. O

due to (2.4). Thus,
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Now, we prove Miranda’s theorem on stability of functions of least gradient
functions (see [35]). It was first used to study the local properties of regular points
of area-minimising sets.

THEOREM 2.13. Let Q < RN be an open set. Suppose that u, € BV () is a
sequence of functions of least gradient in Q, uniformly bounded in L™(2), and let
Uup — u in LY(Q). Then, u e BV () and it is a function of least gradient in 2.

In place of the assumption that u,, is uniformly bounded in L*(Q), we may
just assume that the limit function lies in BV (£2); this assumption is only used to
show that the sequence u,, is bounded in BV (Q).

PROOF. By the lower semicontinuity of the total variation, it is enough to show
the following estimate

(2.5) supf |Duy,| < oo.
Q

neN

To see this, denote
Q= {zxeQ: dist(z,00) > t}

and recall that for sufficiently small ¢ > 0 the set €2; has Lipschitz boundary. Clearly,
Q, is relatively compact in 2. Then, for almost all ¢ > 0 we can pick ¢ in such a
way that for all n e N

(2.6) f Duy| = 0.

EIoR
Now, for any n € N, we let

0 lfoQt,

gn(z) :=
Up, if . e Q\Q;.

Since 0€); is Lipschitz, by Theorem and equation (2.6 we have
f |Dg,| = f |un| dHN™! ¥n e N.
Q 09

Since u,, is a function of least gradient in 2, we get

| 1wl = | 10wl < | 1Dga] = [ funfan¥
Q, Q. Q 0

By the assumption that w, is uniformly bounded in L*(f2), the right hand side
is uniformly bounded for all n» € N and ¢ > 0, so (2.5) holds and by the lower
semicontinuity of the total variation we have u € BV ().

Finally, let us see that u is a function of least gradient in . Suppose that
g € BV (Q) has compact support K < . We need to show that

(2.7) L{ |Du| < L{ |D(u + g)|.

Let A be an open set with Lipschitz boundary, relatively compact in €2. Assume
additionally that K < A, it satisfies (2.6]),

f \Dul = 0
0A
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and

lim |u—un|d7-lN_1 =0
(we can find such a set thanks to the co-area formula for Lipschitz functions applied
to u = dist(z, 092), see Memo . For n e N| let

u+g in A;

fn =
Up, in Q\A.

Then, by (2.6) and (2.7)), applying Theorem and the fact that ¢ = 0 in Q\K,

we have
J7|Dfn|=f \D(u+g)\+J lu —up| dHN T ¥neN.
A A 2A

Hence, since u,, is a function of least gradient in {2, we have

f |Dun|<f |D(u+g)|+f |u — un| dHN ™! ¥neN,
A A oA
S0

J|Dun|<f |D(u+g)|+f |u — up,| dHN ™! ¥neN.
A A 0A

Thus, by the lower semicontinuity of the total variation with respect to the conver-
gence in L', we obtain that

(2.8) JA |Du| < JA |D(u + g)|.

Finally, (2.7) is consequence of the inclusion K < A, property (2.8) and the fact
that g =0 in Q\K. O

EXERCISE 2.14. Let Q = (0,1). Show that if u € L'((0,1)) is an unbounded
increasing function, then the truncations u,, = T;,(u) are functions of least gradient
which converge to u in L*(Q), but the limit does not lie in BV ().

The main motivation behind the above result (as suggested by the title of
Miranda’s paper [35]) is that if we consider a set which is a limit of a sequence of
area-minimising sets, then it is itself area-minimising. We start with the following
classical definition.

DEFINITION 2.15. Suppose that £ c RY is a set of finite perimeter in an open
set ). We say that E is area-minimising in (), whenever
P(E,Q) =inf{P(F,Q): EAF € Q}.

Clearly, whenever F is a set of finite perimeter in an open set ) and Xg is a
function of least gradient in €2, then F is area-minimising in €.

EXERCISE 2.16. Use the co-area formula to prove that the converse also holds,
i.e., F is area-minimising in €2 if and only if Xg is a function of least gradient in 2.

The most important property of functions of least gradient is their connection to
area-minimising sets. The result in the general setting was proved in [8] and states
that boundaries of superlevel sets of a function of least gradient are area-minimising.
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THEOREM 2.17. Suppose that uw € BV (Q) is a function of least gradient in ).
Then, for all t € R, the functions Xy~ and Xy,>¢ are also functions of least
gradient in €.

PROOF. By the coarea formula (Theorem , for almost all t € R we have
X{u>t} € BV (Q) and

(2.9) L |Du| = r: ( L |Dx{u>t}|) dt.

For t e R, let
Uy 1= max{u —t, O}, Ug 1= min{u, t}.

Clearly, we have uy,us € BV(Q2). Moreover, u = uj + ug and by equation (2.9)

J | D =J |Du1|+f | Dug).

Then, given any g € BV (Q), we have

f|Du1|+f |Du2|—f Dul < f\pwg J|Du1+g|+f | Dus)|
J|Du1|+J|DuQ|—J|Du\ J|Du+g J|DuQ+g|+J|Du1|,

which shows that w; and us are functions of least gradient in 2. Therefore, the
functions

1
Ue ¢ = —min{e, (u—t)"}
5

are functions of least gradient in Q) for every € > 0 and ¢ € R. Now, since

e—0t

lim J [Ue,t — Xqusey| dz =0,
Q

by Theorem it follows that X~ € BV(Q) and that X{,-, is a function of
least gradient in Q. If additionally £V ({x € Q : wu(z) = t}) = 0, then the two
functions coincide and the proof for Xy, is also concluded.

Now, consider the case when LY ({z € Q : u(z) = t}) > 0. Then, there exists
a sequence t,, /' t such that LN ({x € Q: u(z) =t,}) =0 and

lim J‘ |X{u>tn} - X{u?t}| dr = 0,

n—o0 Q
whence by the previous result and Theorem we have that X(,>¢) € BV (Q) and
that Xy,> is a function of least gradient in (2. O

In other words, whenever u € BV (Q) is a function of least gradient, then the
sets {u >t} and {u >t} are area-minimising in €2, and by the regularity theory
for area-minimising sets to conclude that the singular set of their boundaries is of
dimension N — 8 (and in dimensions up to seven it is empty).
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MEMO 12. For a set E RY, we say that x € OF is a reqular point of 0F, if there,
exists 7 > 0 such that 0E n B(x,r) is a C? hypersurface. We denote the set of all
reqular points of OE by reg(0F). We also say that x € OF is a singular point of
OF, if x ¢ reg(0F), and denote the set of all singular points of OF by sing(0F).

The size of the singular set for area-minimising hypersurfaces is a classical problem
in geometric measure theory. We have the following result, fully presented in [28]:
suppose that E is area-minimising in an open set Q < RN and E = EY) . Then:

(a) If N <7, we have sing(0F) n Q = J;

(b) If N = 8, the set sing(0E) n Q2 consists only of isolated points;

(¢) If N > 8, we have dimy (sing(0E) n Q) < N — 8.
The estimate in point (a) follows from the fact that for N < 7 there are no minimal
cones in RN other than halfspaces. As a particular case, in two dimensions 0E
consists of a locally finite union of pairwise disjoint line segments. This result is
optimal in the sense that in dimension eight the Simons cone

S={zeR®: 22 + 23 + 13+ 23 > 22 + 2% + 2% + 23}

is minimal in R8. The analysis in points (b) and (c) follows from the estimates on
‘the Hausdorff dimension of the singular set of the minimal cones.

This result implies that if u is a function of least gradient in two dimensions,
then (up to a choice of representative) for all ¢ € R each connected component of
o{u > t} is a line segment. To be more precise, we may write

[oe]
Hu>t} =l
i=1

where each /;; is a line segment or the empty set. This union is locally finite and
the sets /;; are pairwise disjoint in . If © is convex, they are pairwise disjoint
in Q. As a consequence of this and the pointwise formula for the trace (Corollary
, whenever one of the line segments /;; intersects €1, it does so either at a
discontinuity point of the boundary datum f or at a point in f~1(#).

We will use these facts to give explicit solutions to the least gradient problem
in order to highlight some possible irregular behaviour of solutions. The first two
examples concern an explicit construction of solutions (which is a general technique
for strictly convex domains and continuous boundary data, see [41] for the least
gradient problem or [32] for the area functional).

EXAMPLE 2.18. Let Q = B(0,1) < R? and consider the boundary datum
f(z,y) = x. Then, the unique solution to the least gradient problem u(z,y) = x.

EXAMPLE 2.19. Let Q = B(0,1) < R? and consider the boundary datum f(6) =
cos(26). Then, the unique solution to the least gradient problem is given by

222 — 1 if x| > L2, |y| < ¥2;
u(z,y) =4 0 if o] < %2, Jy| < ¥2;
1—2y2 if|x|<§,|y|>§.

The second example shows that in general solutions may be nonunique.
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EXAMPLE 2.20. Let Q = B(0,1) = R? and consider the boundary datum f :
00 — R given by the formula

1 if |z > L
f(z,y) —{ v

—1 if |y > %
Then, the functions u) given by
1 if |z > 2, |y < ¥%2;
ua(z,y) =< A if |z < %2, |y < ¥%2;
—1if |z < M2, |y > L2

with A € [—1, 1] are functions of least gradient.

The final example shows that when the domain fails to be strictly convex (or, in
higher dimensions, when the mean curvature of the boundary is not positive), then
the boundary condition may fail to be satisfied in the trace sense even for smooth
boundary data. Therefore, in general we are forced to consider relaxations.

EXAMPLE 2.21. Let Q = [0,1]> < R? and consider a boundary datum f €
C*(09) such that f = 0 on three sides of the square {0} x [0,1], {1} x [0,1] and
[0,1] x {0}. On the remaining side [0,1] x {0}, we allow for any f € CZ((0,1)).
Then, there is no solution to the least gradient problem in the trace sense (clearly,
the solution to the relaxed problem exists and it is everywhere equal to zero).

Further reading

The Rudin-Osher-Fatemi model first appeared in [39]; a mathematical overview
of the problem can be found in [3]. Relaxation theorems for general linear growth
functionals first appeared in [4]; the current statement was taken from [I]. Finally,
the Miranda theorem first appeared in [35] and the Bombieri-de Giorgi-Giusti the-
orem in [8]; in both cases, the proof is a bit different as the original formulations
were for functions which only locally have the least gradient property. An up-to-date
overview of topics concerning the least gradient problem can be found in [30].







CHAPTER 3

Anzellotti pairing theory

In this lecture we give a brief description of the pairing between measures and
bounded variation functions given by Anzellotti in [4] and its main properties. Let
1 < p < N; following Anzellotti, for an open bounded set with Lipschitz boundary
Q c RY we denote

X,(Q) :={ze L?(Q,RY) : div(z) e LP(Q)}.

Our goal is to define a weak normal trace of a vector field in X,(Q2) and a pairing
between such a vector field and a function in BV ()~ L4(Q2), where %—i—% = 1, which
will act as a replacement of the pointwise product z-Vu and enable a generalisation
of the Gauss-Green formula. We assume that N > 2; the case N = 1 is considered
separately due to the fact that the divergence is just the derivative and vector fields
with integrable divergence are Sobolev functions. Throughout the whole lecture,
we assume that € is an open bounded set in RY with Lipschitz boundary, and we
denote by q € [%7 o] the conjugate exponent of p € [1, N, i.e., % + % =1.

3.1. The generalised pairing (z, Du)

Our main assumption for this lecture is the following joint condition on the
function u and vector field z. Let 1 < p < N; from now on, we assume that

(3.1) ue BV(2) n LI(Q) and ze X,(Q).
The main settings to which we apply this construction is when p = N and ¢ = %,

i.e., the exponent given by the Sobolev embedding, and p = ¢ = 2, which we will
use for the study of the total variation flow in the last lecture.

DEFINITION 3.1. For every test function ¢ € CL(Q), we set

{(z, Du), p)y := — JQ udiv(pz) de = — JQ wodiv(z) dx — fﬂ uz- Vdr.

We call (z, Du) the Anzellotti pairing.

Note that under condition (3.1)) all the integrals are well-defined and finite. The
newly defined object (z, Du) a priori is a distribution; in the next Proposition, we
prove that it is actually a Radon measure.

PROPOSITION 3.2. Assume that w € BV (Q) n LY(Q) and z € X,(). Then, the
distribution (z, Du) is a Radon measure in Q. Moreover,

] [ w.0w| < sl [ 1Dul
B B
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for any Borel set B < €, i.e., it is absolutely continuous with respect to |Du| with
density bounded in L*(Q2) by |z|s.

PRrROOF. For now, assume additionally that v € C®(£2). We note that ¢z €
X,(Q) for all ¢ € CP(2). Therefore, using the distributional definition of the
divergence we get

[{(z, Du), p)| = ’— L udiv(yz) dz

L Vu- (4z) dz

fﬂ o(z - Vu)dx

< el

f z - Vudx
Q

< lololzle L IVl de.

In the general case, assuming that v € BV (Q) satisfies the assumption (3.1)), take
the sequence u; € WH1(Q) n C*(12) given by the Meyers-Serrin theorem (Theorem

11.16)). Then, for any p € CL(Q)) we get
(3.2)

lim {(z, Du;), p) = lim —f u; div(pz) dr = —j udiv(pz) dz = {(z, Du), ¢).
J—=®© J—®© Q Q

As a consequence,
[{(z, Du), )| = lim [{(z, Duy;), p)| < lim lelooHZHooJ V| d
J—®0 J—=0 Q

= 1 9lolzlo j |Dul.
Q

Thus, (z, Du) is a continuous functional on the space of smooth functions (equipped
with the supremum norm). Since smooth functions are dense in continuous functions
in the supremum norm, (z, Du) defines a continuous functional on the space C(Q).
By the Riesz representation theorem (Memo , we get that (z, Du) is a Radon

measure and
| @Dw)| <1zl | Dul
B B

which concludes the proof. (Il

As a consequence of the above result, by the Radon-Nikodym theorem (Memo@
there exists a | Du|-measurable function

0(z,Du,-): Q>R
such that

J (z, Du) = J 0(z, Du, x) | Dul| for all Borel sets B < Q)
B B
and
10(z, Du, )| L= (9,1 pu)) < [12]c0-
EXERCISE 3.3. Show that for u e W(Q), we have
(z,Du) = z-Vudx

as measures in 2.
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3.2. Weak integration by parts formula

Our main goal in this lecture is to prove a weak integration by parts formula,
i.e., the weak Gauss-Green formula given in Theorem We first prove existence
of the weak normal trace of a vector field with integrable divergence in Theorem
from which follows the Gauss-Green formula for Sobolev functions, and then
use an approximation as in the Meyers-Serrin theorem (Theorem to conclude
the proof in the general case. The heart of the proof lies in Proposition [3.4] and
Theorem [B.5

We now prove that there exists a function [z, v*}] which has an interpretation of
a weak normal trace of the vector field z € X1(2) on 2. To simplify the notation,
we denote

BV (Q2) = BV(Q) n L*(Q).
The proof follows in two steps: in Proposition [3.4 we introduce an auxiliary pairing
(Z,uypq : X1() x BVx(Q) - R

and then in Theorem we provide its integral representation, from which we
deduce existence of a function in L*(9€) which has an interpretation of a weak
normal trace of the vector field z.

PROPOSITION 3.4. There exists a bilinear map {z,uysq : X1(Q) x BV, () > R
such that
<Z,U>aQ:J uz - v dHN ! ifz e CH(Q;RY),
o2
where vt denotes the outer unit normal to Q, and

Kz, waeal < [2]ow - lullLr20)-
PRrROOF. For all z € X;(Q) and u € BV, () n WH(Q) we set

(3.3) (2 uyse = f

udiv(z) dx + J z - Vudz.
Q

Q
Clearly, this map is bilinear.

In the general case, due to the fact that Du may be only a measure, the formula
above is not well-defined; we will extend it by approximating general u € BV (Q)
using smooth functions. To this end, we notice that if u,v € BV, (Q) n WH1(Q)
have the same trace, then

(34) <Z7 u>aQ = <Z, ’U>aQ.

To prove this, consider an approximation g; of the function u—wv by smooth functions
given by the Meyers-Serrin theorem (Theorem. Since u—wv has trace zero, with
a minor modification of the proof we can require that u — v has compact support
in Q. Then,

(Z,u — V)yoq = fﬂ(u —v)div(z) dz + JQ z-V(u—v)dx

lim <f g; div(z) dz + f z- Vg, dx) =0,
I\ Jo Q
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where the last equality follows from the distributional definition of the divergence;
this concludes the proof of property . Since by the Gagliardo extension theorem
(LemmalL.32) for every u € BV/(2) there exists a function in W1 () with the same
trace, for arbitrary u € BV, (Q2) we define (z,uysq by

(z,w)e0 = {2, v)sq,
where v is any function in BV, (Q) n W11(Q) with the same trace as u. In view of
equation ([3.4)), this uniquely defines (z, u)sq for any u € BV, ().

Now, we have to prove the second property. Let us take a sequence u; €
BV, (Q) n C*(§2) which converges to u as in the Meyers-Serrin theorem (Theorem

11.16)). Then, we get that

Kz, woen| = Kz, u; 00| = ‘J u; div(z) dz + J z-Vu;dz
Q Q

< f w; div(z) de| + HZHOOJ IV, da
Q Q
We pass to the limit with 5 — oo and obtain
(3.5) Kz, ubon| < U wdiv(z) de| + ”Z“wf \Dul.
Q Q

Fix € > 0. Observe that by property (3.4), we may take u to be the function
given by the variant of the Gagliardo extension theorem proved in Proposition |1.32
therefore,

| [wulde < 0+ o)l o,
and w is supported in Q\Q)., where
Q. = {zeQ: dist(z,00) > e}.
We insert it in the estimate and obtain
j div(z) dx
Q

Qe

Kz, waal < llullo + (1 +8)lz]oo]ulr o)

Since € was arbitrary, we pass to the limit ¢ — 0 and obtain

[z, woal| < |z]owo|ulL 00)

which concludes the proof. O

Now, we provide an integral representation of the bilinear map (z, u)sq, from
which follows that for every vector field z € X (£2) there exists a function in L®(0Q2)
which has an interpretation of its normal trace.

THEOREM 3.5. There exists a linear operator v : X1(2) — L*(0RQ) such that
17(2) ][ L= 20y < |20,
and we have the following integral representation: for all u € BV, ()

(3.6) (2, uoer — Ja (T

and
v(z)(z) = z - V% if z e CH(Q; RY).
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The function y(z) is a weakly defined normal trace of z on 0); for this reason, we
will denote it by [z,v*].

PROOF. Given z € X;(2), consider the linear functional G : L*(0Q) — R
defined by the formula
G(f) = <Z’ u>8Q,
where u € BV (Q) is such that u = f on 0. By Proposition we have

1G] = Kz, waal < |z1lo]flLro0)

Since G is a continuous functional on (a dense subset of) L!(0%2), there exists a
function v(z) € L*(02) with norm at most equal to ||z|« such that

G(f)=| frz)dnH™ ",
o0

which concludes the proof. (|

REMARK 3.6. In [5], Anzellotti proved the following pointwise characterization
of the weak normal trace. Given r, p > 0, denote

Crplz,a) == {€eRY : |(€—2) of <7, |6 —2) [ —2) ala| <p}
for x € 9Q and a € SN, Assume that z € X;(Q2). Then,

1

Q : : Q
=1 1 P . d
[2,v7(2) pir(r)l+ ri%lJr 2rwoy_1pN-1 Jc,,,,p(w,l,szu)) 2(y) v () dy

for HN1-a.e. x € 0.

COROLLARY 3.7. For all z € X,(Q) and ue WHY(Q) n L9(Q) we have
J udiv(z) dz + f z-Vudr = J- u [z, v dHN L.
Q Q o0

PROOF. Since z € X,(Q2), we also have that z € X;(Q2) and in particular the
weak normal trace [z, %] is well-defined. Take a sequence u; which approximates
u as in the Meyers-Serrin theorem (Theorem . By considering truncations, we
can assume that wu, is bounded; then, the functions may be no longer smooth or
satisfy the trace constraint, but we have u; € Wh1(Q) n L®(Q) and the sequence
still satisfies

uj —u in LY(Q)
and
Vu; — Vu in L'(Q;RY),
which follows from the assumption that u € W11(£2). Then, by the definition of the
bilinear form {z, u)sq given in equation and the integral representation ,
we have that

f u; div(z) dz + J z-Vu;dr = J uj [z, v dHN L
Q Q o0

Passing to the limit j — o0, we obtain the desired result: convergence on the left-
hand side follows from our assumption on the sequence u; and on the right-hand
side from the fact that the trace operator is continuous with respect to convergence
in Whi(Q). O
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Before we prove the Gauss-Green formula, we need one additional technical
result concerning the pairing (z, Du).

LEMMA 3.8. Assume thatw e BV (Q)nLI(Q) andz € X,(Q). Let u; € C*(Q)n
BV () converge to u € BV(Q) as in the Meyers-Serrin theorem (Theorem [1.16)).

Then, we have
J (z, Duj) — J (z, Du).
Q Q

PrOOF. Fix € > 0 and choose an open set A € Q2 such that

J |Du| < e.
oA

Let ge CP(Q) besuchthat 0 < g < 1inQand g=1in A. We write 1 = g+ (1—g)
and estimate

(3.7) L(Z,DW - L(Z,Du)

< ‘<<z, Duy), gy — {(z, Du), g>‘

J|zDuJ |(1—g¢g J|zDu (1-g).

We already proved in equation ({3.2)) that for any g € C(€2) we have {(z, Du;), g) —
{(z, Du), g). Moreover, we have

f (1 g)l(z, Du)| < f (2, Du)| < |1zl J |Dul < ez
Q a\A o\A

and similarly

limsupj (1 —9)l(z, Duy)| < limsup HZHOOJ |Du;j| < €]z,
Q oA

Jj—00 J—0

so the right-hand side of (3.7) goes to zero as j — o0. a

We conclude by proving the Gauss-Green formula, which relates the measure
(z, Du) with the weak normal trace [z, %]

THEOREM 3.9 (Gauss-Green formula). For all functions u € BV (Q2) n L1()
and vector fields z € X,(Q) we have

JQ udiv(z) dz + fﬂ(z7 Du) = f u [z, v dHN L

oQ

PrROOF. Take an approximation u; € C®(Q) n Wh(Q) of u given by the
Meyers-Serrin theorem (Theorem [1.16)). Then, by Corollary we have

J u; div(z) dz + J z-Vu;de = J uj [z, v dHN L
Q Q o0

We now pass to the limit separately in each term. Since u; — wu in L(Q) and
div(z) € LP(2), we have

lim [ w;div(z)dz = f udiv(z) dx.
Q

Jj—© Jo
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By Lemma we have
lim | z-Vu,;dx = J (z, Du).
I=oJa Q

Finally, since u;j|a0 = u|an, we have

lim [z, v uj dHN 7! = J- [z, v udHN 1,
I Joq o0

which concludes the proof. O

EXERCISE 3.10. One can prove most of the results in this Section under a
slightly weaker assumption on the vector fields and a slightly stronger assumption
on the functions, namely in place of condition (3.1]) assume that

ue BV(Q) nCy() and ze X,(Q),

where
X, (Q) = {z e L(;RY) : div(z) € M(Q)}

This corresponds to assumption (c) from the classical paper [4] due to Anzellotti.
Then, we can define (z, Du) as in Definition and all the subsequent results
remain true with only minor modifications of the proofs. Work out the necessary
details.

EXERCISE 3.11. Make a similar construction for N = 1, when the divergence is
just the derivative and vector fields with integrable divergence are Sobolev functions.

EXERCISE 3.12. Make a similar construction for Q = R", leading to a Gauss-
Green formula in the following form: for all functions u € BV (2) and vector fields
z € X,,(Q) satisfying a suitable compatibility condition, we have

fQ uwdiv(z) dz + J (z, Du) = 0.

Q

3.3. Co-area formula for the pairing

We now move to the last topic concerning Anzellotti pairings, which is a gen-
eralisation of the co-area formula. For u € BV (£2), we denote by @—“ul the Radon-
Nikodym derivative of Du with respect to |Du|. Denote Ey = {u > t}. As a
consequence of the co-area formula (Theorem [L.19)), for almost all t € R

DXEt Du
= —— |DXg,|—a.e. in .
Dxe] D PN
A natural question is whether the Anzellotti pairing defined above satisfies an ana-
logue of the co-area formula, and how to formulate it. Our main goal in this section

is to first prove that

(@ Dup) = | DXe)

holds for all functions ¢ € CL(2), and from this deduce the co-area formula for the
measure (z, Du) itself.
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EXERCISE 3.13. Prove that for almost all £ e R
DXEt o Du
|DXEg,|  |Dul

|DXE,| — a.e. in Q.

First, let us state some technical results. By Proposition the measure
(z, Du) is absolutely continuous with respect to the measure |Du|. By the Radon-
Nikodym theorem, there exists a measurable function 6(z, Du, x) which is the den-
sity of the measure (z, Du) with respect to |Dul, i.e. for all Borel sets B <  we
have

J (z,Du) = f 0(z, Du, z) d| Dul.
B B
Moreover, by the estimate in Proposition we have that

|0(z, Du,x)| < ||z||lc  |Du| —a.e. in Q.

Taking a sequence of mollifications of a vector field z € X,(£2), we can easily
prove the following result.

LEMMA 3.14. For every z € X, (), there exists a sequence z, € C*(;RYN) A
Xp(Q2) with the following properties:

(a) |zn)o < 2] w;

(b) 2z, — z weakly* in L (Q;RN) and z,, — z in LT, (4 RY) for allr € [1,0);

(c) zn(x) — z(x) at every Lebesque point x of z and uniformly in sets of
uniform continuity of z;

(d) div(zy,) — div(z) in L?

loc

().
As a consequence, we get the following pointwise representation result for the
density function 6(z, Du, x).

PROPOSITION 3.15. Assume that u € BV () n L1(Q) and suppose that z €
X,(Q) N C(RYN). Then, we have

Du

(3.8) 0(z, Du,x) = z(x) - Dul

(z) |Du| — a.e. in Q.
PrOOF. By the definition of the Radon-Nikodym derivative HD)—“ul, condition
(3.8) is equivalent to
(3.9 {(z,Du),p) = J pzd[Du] for all p € CF(Q).
Q
We first prove the claim for z € C*(Q;RY). Take a sequence u; — u as given by

the Meyers-Serrin theorem (Theorem [1.16). By the distributional definition of the
divergence, for all ¢ € C () we have

(2, Duy), ) = — L w; div(ez) dr — L Vu, - (¢z) dz — L oz - Vuy) da.

By the continuity of z, passing to the limit j — oo we get that equation (3.9]) holds.
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We now allow for general z € C(Q; RY). Take a sequence of approximations z,,
given by Lemma and for any ¢ € CF () calculate

(310) (2. D)) = Jim (o, D)) = Jim, [ oDl = | padlDu)

where the first equality is a consequence of Lemma applied directly to the
definition of the pairing, and the last equality follows from continuity of z and
uniform convergence of z,, to z on the support of . O

Finally, we have the following coarea formula for the Anzellotti pairing.
THEOREM 3.16. Assume that u e BV () n LY(Q2) and z € X,(Q?). Then:

(i) For all p € C.(Q), the function t — {(z, DXg,), p) is L-measurable and

+o0
<(Z,Du),(p> = <(Z7DXEt)’<p>dt'

(ii) 0(z, Du,x) = 0(z, DXg,,x) |DXg,|-a.e. in Q for L'-almost all t € R.
(iii) For all Borel sets B < Q, the function t — §,(z, DXg,) is L'-measurable

B PR L T P

PROOF. (i) Take an approximating sequence z,, € C*(;RY) 1 X, (Q) as given
in Lemma Then, using Proposition and the co-area formula (Theorem
1.19), we get

Du
.7 (@) e(x) d| Dul

(3.11) {(Zn, Du), ) = JQ Zn () - Dl

T ([ Borsonn)o

= J_OO {(zn, DXE,), @) dt.

Since
[{(2n, DXE,), )| < |2 |¢]o0 L |DXE, |

and by the co-area formula the map t — SQ |DXg,| is an integrable function in ¢,
we may apply the dominated convergence theorem to pass to the limit in (3.11)).
Using an argument as in (3.10) we conclude the proof of point (i).

(ii) For a,b € R with a < b, denote by T, »(u) the truncation of u at levels a, b, i.e.

b u(z) = b;
Top(u) = § w(x) u(z)e (a,b);
a u(z) < a.
Then, by Theorem we have DT, ;(u) € BV(Q) and {, |DT,s(u)| < g, [Dul.

We first prove that for all a,b € R we have
(3.12) 0(z, Du,x) = 6(z, DT, p(u), x) | DT, p(u)| —a.e. in Q.
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Suppose otherwise; then, there exists a Borel set B < ) with positive | DT, ,(u)|-
measure such that a < u(x) < b almost everywhere on B and

0(z, Du,x) > 6(z, DT, (u), z) |DT, p(u)| — a.e. on B;
the case when the opposite inequality holds is handled similarly. Hence,

(3.13) L}(z,Du) = JB 0(z, Du, x)|Du| = fB 0(z, Du, z)| DT, p(u)|

> JB 0(z, DT, p(u), )| DT, p(u)| = J.B(Z,DTa,b(u)).

Now, notice that

JB(Z, Du)— JB(Z, DTa,b(u))' =

[ D= st

o0
<\|z|\ooj ID(u— Toy(u))] = | j j DXty oyt
B —o0 JB

a 0
ol | [ Dxwldt+lale || D=0,
- JB b JB

since a < u < b a.e. on B. This gives a contradiction with (3.13)), so (3.12)) holds.
Now, we use point (i) for the function T, ;(u): for any ¢ € C(£2)

b
(3.14) (2, DT (), ) = f {(z. DXp,). p) dt,

where expanding the right-hand side yields

{(z, DT, (u)), p) = Lb (L 0(z, DXg,,z) o(x) d|DXEt|) dt.

left-hand side of (3.14)) in the following way

Since by equation (3.12)) and the co-area formula (Theorem [1.19)) we can write the

(2. DT (1)), ) = fﬂ o d(z, DT, (u) = L 0(z, DT, y(u), 2) (x) d| DT p(u)

- L 0(z, Du, ) () d| DTy o (u)] = J ' ( L 0(z, Du, z) o(z) d|DXp, ) dt,

we get that

Lb (J;; 0(z, Du, x) () dIDXEt> dt = L” (L 0(z, DX, , ) ap(:c)d|DXEt|> dt.

Since a and b were arbitrary, we get that for almost all ¢ € R we have
| 02 Du2) ot DX = | 803 DX ) (o) DX,
Q Q

and since ¢ was arbitrary, by a density argument we finish the proof of point (ii).
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(iii) This point is an immediate consequence of (ii), since
0
f (2, Du) =f 0(z, Du, )| Dul =f (J 9(z7Du,x)|DXEt> it
B B —o \JB

f; (JB 9(z,DxE,,x)IDXEt|) dt = Ji@ (JB(Z,DxEt)) dt.

‘We now show that the Radon-Nikodym derivative 6 is invariant under monotone
Lipschitz transformations of the real line.

PROPOSITION 3.17. Assume that w € BV (Q) n LY(Q) and z € X,(Q). If T :
R — R is a Lipschitz continuous increasing function, then

0(z, D(T ou),z) = 0(z, Du, x) |Du| — a.e. in Q.

O

PROOF. Denote by Fs the superlevel sets of T o u, i.e., Fs = {(T ou) > s}.

Then, observe that

Ei={zeQ:ulx)>tl={zeQ: (Tou)(r)>T()} = Frp),
so for almost all t € R we have

DXg, = DXpy,,

as measures. Hence, by Theorem ii), for £'-almost all t € R

0(z, Du,v) = 0(z, DXg,,x) = 0(2, DXF,,,, ) = 0(z, D(T o u), )
|DXE,|-a.e. in Q. By the co-area formula (Theorem 7 this equality also holds

| Dul-a.e., which concludes the proof. O

EXERCISE 3.18. Show that whenever the function u satisfies the chain rule
D(f owu) = f'(u)Du for all Lipschitz functions f : R — R, the result above extends
to all nondecreasing Lipschitz functions 7' : R — R (with the desired property valid
|D(T o u)|-a.e. in Q).

Further reading

The original construction of the pairing (z, Du) and the weak normal trace
[z,] is due to Anzellotti [4]. At the same time, a similar pairing has been intro-
duced by Kohn and Temam in [31I]. For further properties of Anzellotti pairings,
see for instance [I4, [17]. An overview of Anzellotti pairings, including their appli-
cations to PDEs, can be found in [3].







CHAPTER 4

Rudin-Osher-Fatemi model of image denoising

This lecture is devoted to the study of the Euler-Lagrange equation for the
minimisation of the Rudin-Osher-Fatemi functional [39], introduced already in the
second lecture, which is the basis of total variation denoising. We set E : L?(Q2) —
[0, +00] by the formula

A 2 200).-
Blu) = JQ | Du| + Eﬁz(u — f)?dx ifue BV(Q)n L*(Q);

oo if ue L2(Q\BV(Q),

where A > 0 is a bias parameter. This is a classical problem in image restoration:
given a corrupted image f € L?(f2), the goal is to remove the “noise” and recover
the uncorrupted image u € L%(f2). In other words, we aim to decompose f as

f=u+n,

where n is the additive noise with small L? norm. The function n includes both the
“white noise” and the textured part, i.e., periodic structures with small amplitude.

The ROF model is closely related to another model from image processing,
called the Chan-Vese model [16]. Let Q < R? be sufficiently regular bounded
domain and g > 0 be a fidelity parameter. Given an initial image f : Q — [0,1],
we aim to find a set of finite perimeter A < © and two constants mg and my, which
represent the light intensity in the foreground and background regions of an image,
which minimise

PO+ [ = p@Pde s [ o= )2 a)

\A
among all sets of finite perimeter and constants between 0 and 1. This corresponds
to the segmentation of the image €2 into a light and dark area. It can be looked
at as a simple case of the Mumford-Shah functional [38], in which one considers
only piecewise constant functions with two values. It is difficult to study the CV
functional directly, due to the lack of convexity, and instead one can do this through
the ROF model; for a suitable choice of A depending on mg,m; and pu, level sets
of the unique minimiser of the ROF functional are solutions to the constrained CV
model with the parameters mg, m; fixed [12].

Since the functional F is not regular enough, as it involves the total variation
measure, we cannot assign to it an Euler-Lagrange in the classical sense (i.e., by
considering variations of E in different directions). We will do so in a generalised
sense using the notions of convex analysis we introduce below.
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4.1. Subdifferentials of convex functions

Let (E,| - |) be a real Banach space. In this Section, by an operator in E we
will understand a multivalued operator, i.e., a mapping

A:E—2F

where 2F denotes the collection of all subsets of E. Equivalently, we can think of a
multivalued operator as a subset of £ x E: if we denote by

G(A) :={(z,y) e Ex E: ye Az}

the graph of an operator A, then the set G(A) determines uniquely the operator A
since

Az ={ye E: (z,y) € G(A)}.
Furthermore, let us denote by

D(A):={xeFE : Az # J}
the effective domain of A and by

R(A) = | J{Az : ze D(A)}

zel

its range. Clearly, to every multivalued operator we can assign its (also multivalued)
inverse, i.e. the operator

A7lz:={ye E : ze Ay}

The most important example of a multivalued operator is the subdifferential of a
convex function.

DEFINITION 4.1. Let F : E — (—00, +0] be proper (i.e. F £ +00) and convex,
ie.
Flz+ (1—-t)y) <tF(x)+(1—-1t)F(y) Yz,ye E andte (0,1).
The subdifferential (or subgradient) 0F of the functional F is defined as

OF (z) = {l‘* eE*: Fly)— F(z) ={x*,y—x) Vye E},

where E* denotes the dual of E. Equivalently, if we identify a multivalued operator
with its graph, it is a subset of £ x E* defined by

OF = {(a;x*) eEExE*: Fly)—F(z) =¥, y—x) Vye E}

The geometric idea behind the subdifferential is that it describes the set of
supporting hyperplanes which lie below the graph of a convex function. Let us
first see several examples of subdifferentials; then, we will discuss how they arise in
calculus of variations and in the study of evolution equations.

EXAMPLE 4.2. Suppose that £ = RY and f : RN — R is differentiable. Then,
of(x) = {Vf(x)}.
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EXAMPLE 4.3. Let E = RY and take f : RN — R given by f(z) = |z|. It is not
differentiable at the origin, but we still can explicitly compute the subdifferential:
z if z # 0;
||

B(0,1) ifz=0.

0f(x) =

EXAMPLE 4.4. Let Q be an open bounded subset of RY with smooth boundary.
Let F: L?*(Q) — [0, +0] be given by
. 1,2/0Y.
Flu) = JQ \Vul?dr  if u e Wy*(Q);
+00 if we L2(Q)\W, %(Q).

Then, 0F(u) = —Au and D(0F) = W22(Q) n W, 2(Q).

The subdifferentials of convex functions in Banach spaces are important in the
optimization theory due to the following fact: observe that

0€edF(r) < Fly) =F(z) VyekE.

Therefore, we have that 0 € 0F (z) is the Euler-Lagrange equation of the variational
problem

F(x) = min F(y).

yeE
ExXAMPLE 4.5. In the notation of the previous example, we have that

F(u) = min F(w) <= 0=—AuonQandu=0on .
weL?(Q)

Note that in the case when F is a Hilbert space H, by the Riesz theorem we
have that for a proper convex functional F : H — (—o0, +0] the subdifferential 0F
is the operator in H defined as

2€0F(z) = Fly)—F(z) = (2,y —x) VyeH.

PROPOSITION 4.6. Let Fy,Fy : H — (—00, 0] be two proper, convezx, and lower
semicontinuous functionals. If there exists ug € D(F1) n D(Fa) such that Fy is
continuous at ug, then

O(F1 + Fo)(u) = 0F 1 (u) + 0F2(u) for allue H.

DEFINITION 4.7. In the case F is a Hilbert space H equipped with a scalar

product (-,-) and a norm
|zl =~/ (=, 2),

we will say that an operator A in H is monotone if

(x—2,y—9) =0 forall (z,v),(Z,7§) € A.

We have the following result due to Minty [36].

THEOREM 4.8 (Minty theorem). Let H be a Hilbert space. An operator A in H
is maximal monotone if and only if it is monotone and satisfies the range condition,

ie., RI+ A) = H.
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It is easy to see that 0F is a monotone operator in H. Moreover, if F is lower
semicontinuous, then 0F is maximal monotone (see [10]); this property is crucial
when it comes to the study of evolution equations.

EXERCISE 4.9. For a non-empty set K < H, its indicator function is defined as

I (@) 0 if zeK;
xXr) =
K too if z¢ K.

Show that: Ik is convex if and only if K is convex; Ix is lower semicontinuous
if and only if K is closed; and

z€0lg(z) < ze K and (y,2) < (z,2) VyeK.

4.2. Fenchel-Rockafellar duality theorem

In this Section, we briefly present some of the convex duality methods for cal-
culus of variations, in particular the Fenchel-Rockafellar duality theorem. Our pre-
sentation follows the one in [22] (in particular Chapters III and V).

DEFINITION 4.10. Given a Banach space V and a convex function F : V —
R U {400}, we define its Legendre-Fenchel transform F* : V* — R u {+o} by the
formula

F*(v*) = sup {(v, vy e — F(v)}
veV
EXERCISE 4.11. For a non-empty set K < V, if Ik is indicator function of K,
show that
I (2*) = sup{(z,z*) : v € K} =: pg(a*).
The function pg is called the support function of K. Also, prove that if K is the
unit ball of V', we have that

I (z*) = |z*| for all z* e V*.

We now state the Fenchel-Rockafellar duality theorem in the form suitable for
calculus of variations and presented in [22]. Let X,Y be two Banach spaces and
let A: X — Y be a continuous linear operator. Denote by A* : Y* — X* its dual.
Then, if the primal minimization problem is of the form

(P) inf {E(Au) + G(u)},

ueX
then the dual problem is defined as the maximization problem
(") sup { = B2 () = 6% .
pkeY*
where E* and G* are the Legendre-Fenchel transformations (conjugate functions)

of F and G respectively. Furthermore, the following result holds.

THEOREM 4.12 (Fenchel-Rockafellar duality theorem). Assume that E and G
are proper, convex and lower semicontinuous. If there exists ug € X such that
E(Aug) < 0, G(ug) < 00 and E is continuous at Aug, then

inf(]E[) = sup
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and the dual problem (P*) admits at least one solution. Moreover, the optimality
condition of these two problems is given by

A*p* € 0G(u), —p* € 0E(Au),
where u is solution of (]ED and p* is solution of @ FEquivalently, we have
E(Au) + E*(=p*) = (Au, =p®)y,y
and
G(u) + G*(A*p*) = (u, A*p*)x x*.
In the case when there is no solution to the primal problem, we have a similar re-

sult, but instead of optimality conditions we have the following e —subdifferentiability
property of minimizing sequences.
PROPOSITION 4.13. Assume that E and G are proper, convezr and lower semi-

continuous. If there exists ug € X such that E(Aug) < 0, G(ug) < o and E is

continuous at Aug, then
inf (P) = sup (P¥)

and the dual problem (P*) admits at least one solution. Moreover, for any mini-
mizing sequence u, for (P) and a maximizer p* of , we have

(4.1) 0 < E(Auy,) + E*(—p*) — (Atp, —p* )y yx < ey
and
(4.2) 0 < G(up) + G*(A*D™) — (up, A*p*)x x* < en

with €, — 0.
We leave the following simple technical lemma concerning the convex conjugate
of a function defined on an intersection of two Banach spaces as an exercise.

EXERCISE 4.14. Let X, Y be two Banach spaces and suppose that G: X nY —
R is a functional which satisfies the bound

G(u) < (u)
with £: X nY — R a convex function such that
[(u)| < Lo(||uly)

for a nondecreasing function ¢ : [0, 400) — R. Then, if G*(u*) < 0o, we have that
u*eY*.

4.3. Euler-Lagrange equation for the ROF functional
This section is devoted to finding the Euler-Lagrange equation corresponding
to the minimisation of F, i.e., giving a precise meaning to the equation
0 € 0E(u)

and characterising the minimisers in this way. To this end, we use Proposition
we may decompose E as the sum of two functionals, i.e.,

E=F+g,
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where F : L2(2) — [0, +0] is defined by

J | D if ue BV(Q) n L?(Q);

F(u) = Q
+00 if ue L2(Q)\BV(Q).

and G : L?(Q) — [0, +00] is defined by

() = %L u— 2 da.

Clearly, the functional F is proper, convex and lower semicontinuous with respect
to convergence in L?(£2). Moreover, the functional G is finite everywhere on L%(2),
convex and continuous with respect to the norm in L?(£2); thus, applying Proposi-
tion we get that for all u e L?(Q)

O0E(u) = 0F (u) + 0G(u),
or equivalently, since G is Fréchet differentiable,
(4.3) 0FE(u) = 0F (u) + A(u — f).

Therefore, the problem of finding the subdifferential of E is reduced to studying
the subdifferential of the total variation. To characterise the subdifferential of F
in L?(Q2), we will use convex duality in the setting presented in Memo to this
end, define the following multivalued operator.

DEFINITION 4.15. We say that (u,v) € A if and only if u,v € L?(2), u € BV (Q2)
and there exists a vector field z € X2(2) such that the following conditions hold:

|zl < 1;
(z, Du) = |Du| as measures;
—div(z) =v in Q;

[z,1%] =0 HN! —ae. on Q.

LEMMA 4.16. We have A < 0F. In particular, A is a monotone operator.

PROOF. Let (u,v) € A and z € X5(Q) satisfy the conditions in Definition
Given w € L*(Q) n BV (Q), by the Gauss-Green formula (Theorem [3.9))

f (w—u)vdx = —J div(z)(w — u) dz = J (z, Dw) — f (z, Du)
Q Q Q Q
< [ 1pul~ [ 1Dul = Fw) - Fw)
Q Q
which concludes the proof. O

‘We now prove the anticipated result that we can characterise the subdifferential
of F using the auxiliary operator A.

THEOREM 4.17. We have A = 0F.
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PROOF. Step 1. By Lemma the operator A is monotone and contained
in 0F. The operator 0.F is maximal monotone; hence, once we prove that A satisfies
the range condition, i.e.

(4.4) Vge L*(Q) Jue D(A) such that g € u + A(u),

or equivalently that (u,g —u) € A, the Minty theorem implies that the operator A
is maximal monotone and consequently that A = 0F. Therefore, we need to prove
existence of uw € BV () and z € X3(€2) such that the following conditions hold:

(45) Jelloe < 1
(4.6) (z,Du) = |Du| as measures;
(4.7) —div(z) =g —u in

(4.8) [z, =0 HN! —ae. on Q.

We will prove that the range condition (4.4) holds using the Fenchel-Rockafellar
duality theorem; we need to present it in the framework described before Theorem

Step 2. We first restrict our attention to W1 1(Q2) and set
U=wH"(Q)nL*Q)
and
V = LY(0Q) x L', RY).
We denote the points v € V in the following way: v = (v, ), where vy € L'(99)
and © € L'(;RY). We will also need the explicit expression of the dual space to
V', which is
V* = LP(09) x L (4 RY),
and we use a similar notation for points v* € V*. The operator A : U — V is
defined by the formula

Au = (u|oq, Vu).
Clearly, A is a linear and continuous operator.

Then, we set E : V — R by the formula
E(vo,v) = Eg(vo) + E1(D),
where
Eo(vg) =0

and
By(@) — J 7] dz.
Q

Clearly, F is a proper, convex, and lower semicontinuous functional. We also set
G:Whi(Q) n L?(Q) —» R by

1
G(u) := 3 J;) u? da — JQ ug dx
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and see that it a proper, convex, and continuous functional. Observe that by the
Young inequality

1
G(u) = ff uzdscfsj u2dx70(5)f g da,
2 Jo 0 0
so if we choose ¢ < %, we get that G is bounded from below.

Step 3. We now consider the convex conjugates E* and G*. Notice that G* only
enters the calculation via A*p*. First, observe that whenever u* € U* is such that
G*(u*) < o0, it holds that u* € L?(2); to this end, we apply Exercise to the
spaces X = WH1(Q) and Y = L?(Q), with

1
L(u) := G(u) = 7.[ u? da —f ug dz
2 Ja Q
and the upper bound ¢, given by

1
lo(t) = g2t + §t2,

which yields the claim.

Now, take any v* = (v, v%) € L®(0Q, HN 1) x L®(;RY) in the domain of
A* with G*(A*v*) < oo. By the previous paragraph, it holds that A*v* € L?(Q).
Now, by definition of the dual operator, we get

f u (A*0*) de = (u, A¥0* )2y = (u, A*0™ )y s
Q

vg udHN ! +J v* - Vudz.
Q

= (Au, v* )y yx = J

o0
If we now consider only functions u € W, () n L2(Q), which are dense in L?(f2),
we see that the boundary term disappears and get

(4.9) A*v* = —div(v™).

In particular, the divergence of 7* is square-integrable, so 7* € X5(2). Therefore,
for any u € Wh(Q) n L?(2) we may apply the Gauss-Green formula (Theorem [3.9)
and get

J u (A*v*) do = (u, A*0*) 2y = (u, A% )y ux = (Au, v* )y v«
Q

:f vé‘udHN_l—&-f v* - Vudz
o0 Q

= J v udHN ! — f wdiv(v™) dz + J u [o%, v dHN !
oQ Q

o0

= —J udiv(v*) dx + f u (v + [0%,v]) dHN L
o o0

By (4.9), the integrals over 2 cancel out, so
J u(vE + [7%, V) dHY "L =0
20
for all u e WH1(Q) n L?(Q). By a density argument, we conclude that

vi = —[v%, "] HNL —ae. on 0Q.
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We now turn to computing the convex conjugates of the functionals E; (for i = 0, 1).
It is clear that the functional Ef : L*(0€2) — [0, ] is

O if v§ = 0;
EO(UO)_{ +oo i vE # 0.

Furthermore, the functional Ef : L% (;RY) — [0, 0] is given by the formula

3 % R
0 ={ Lo M

+00 otherwise,
so we computed the convex conjugate of E coordinate-wise; since the variables are
separated, we have that E* = E} + Ef.

Step 4. We will infer that the range condition (4.4) holds in the following way.
Consider the minimisation problem

ueU

(4.10) inf {E(Au) + G(u)}

with E and G defined as above. For ug = 0 we have E(Aug) = G(up) = 0 < o0 and
E is continuous at 0. Then, Theorem implies that the dual problem given by

sup { — E*(—v*) — G*(A*v*)}
vkeV ¥

admits at least one solution and there is no duality gap, i.e. the infimum in the
first problem is equal to the supremum in the second one. Since the value of E* is
either 0 or +o0, and the value G*(A*v*) is finite for any admissible v* in the dual
problem (which implies that A*v* € L?(2)), we conclude that any solution v* to
the dual problem satisfies

(4.11) vEg=0  HN!'—ae. on o
(4.12) [0* oo < 15
and

ﬁ*E.Xé(Q)

Step 5. Now, consider the functional G : L?(Q) — (—o0, +00] defined by

G(v) :== F(v) + G(v),
i.e. an extension of the functional Fo A+ G, well-defined for functions in W11 ()
L?(9), to the space BV(Q2) n L?(Q) (and a further extension by +o0 to the rest
of L?()). By the properties of F and G, we get that G is bounded from below,
convex and lower semicontinuous. It is also coercive, because whenever G(u) < M,
we have

1
ff u2dx+f(u)<M+f ug dz,
2 Jo Q

and by positivity of F and the Young inequality for ¢ < % we get

<1€>J u2dx<M+C(€)f g dz,
2 Q Q
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so the norm of u in L?() is bounded. Therefore, the minimisation of G(v) in L?(Q2)
admits a solution u and by the Meyers-Serrin theorem (Theorem [1.16)) we have

Uerg?mg(v) = 52{5 {E(Av) + G(’U)}.

However, the solution u does not necessarily lie in W11(Q), which is the domain
of the functional E o A + G. Therefore, we cannot use the extremality conditions
given in Theorem and we instead rely on the e—subdifferentiability property
of minimising sequences given in and . From this, we will deduce that
the vector field z = —7* € X5(Q), where v* is any solution to the dual problem,
satisfies the conditions (4.5))-(4.8) required for the range condition (4.4). Observe
that condition is automatically satisfied due to and the condition
holds by and the constraint v¥ = [-o*,1*}]; we proceed to prove the other
conditions.

Take a sequence u, € W11(Q)nL23(2) which approximates u as in the anisotropic
Meyers-Serrin theorem (Theorem ; in particular, it is a minimising sequence
in . By the second subdifferentiability property , for every w € L?(Q) we
have

G(w) — Gup) = {(w —uyp), A*0* )y yx — €n,
and since A*v* € L2(Q), by passing to the limit n — o0 we get
Gw) = G(u) = (w —u), A*v*)y s = (w —u), A*0*)2(q).
Therefore,
div(=7*) = A*v* € 012 G(u) = {u — g},
so the divergence constraint is satisfied once we choose z = —v*.
By the first subdifferentiability property , we have

Oéf |Vun\dx+J v(’)“und’HNflJrJ ¥ - Vu, dr < e,.
Q o0 Q

Since the boundary terms disappears, the first subdifferentiability property (4.1)
yields

(4.13) 0< | |Vuy|dz + J v* . Vu, dr < e,.
Q Q
Since uy, a0 = u|sq, by the Gauss-Green formula (Theorem we have

f v* . Vu, dr = —J wy, div(0*) dz + J Uy [0, I/Q] dHN !
Q Q o0

= ff udiv(@*)daﬂrf u [0, VY dHN !
Q o0

+ Jﬂ(u — uy,) div(v*) dz

_ L(@*, Du) + J (u— ) div(T*) da.

Q
Passing to the limit n — o0, we get

lim | 7% Vu,dz = J (v*, Du).
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We now pass to the limit n — o0 in the inequality (4.13) and obtain

JQ |Du| + fﬂ(@*,Du) =0.

Observe that the above expression is always nonnegative; since [7%[, < 1, by
Proposition [3.2] we have

f |Du|+f (@*, Du) > 0.
Q Q

Therefore, this inequality needs to be an equality, so property (4.6) holds for the
choice z = —v*. Therefore, we proved that all the conditions (4.5)-(4.8) needed for

the range condition (4.4) hold, so the operator A is maximal monotone. a

EXERCISE 4.18. Prove that for any proper, convex and lower semicontinuous
functional F : L?(2) — (—o0, +o0] we have D(0F) = D(F), and conclude that the
domain of A is dense in L?().

EXERCISE 4.19. Find the explicit form of the dual problem in Step 4.

Therefore, by Theorem and formula (4.3), we get the following character-
isation of the subdifferential of E.

COROLLARY 4.20. For v e L*(Q) and u € BV (Q) n L?(Q), the following con-
ditions are equivalent:

(1) vedE(u);
(2) There exists z € Xo(Q2) such that

|z]ee < 1;
(z, Du) = |Du| as measures;
v =—div(z) + AMu—f) in Q;
[z,7] =0 HNL —a.e. on 9.

In particular, taking v = 0 in the above result, we get the Euler-Lagrange
equation for minimisers of F.

COROLLARY 4.21. The following conditions are equivalent:

(1) ue L*() n BV () is a minimiser of E;
(2) There exists z € Xo(Q2) such that

|z]o < 1
(z, Du) = |Du| as measures;
div(z) = AMu — f) in Q;

[z,7] =0 HNL —a.e. on 0Q.
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The Rudin-Osher-Fatemi model can be understood as a semidiscretisation in
time of the total variation flow, which will be the main focus of the next lecture.
Take an interval [0,T] and consider the equation

ur(t,x) = Aqu in (0,7) x

t)=0 on (0,7T) x 09;

u(0,x) = up(x) in Q,

where ug € L?(Q2). Here, A; denotes the 1-Laplacian operator, i.e.

Du
A =div| — |.
)
Divide the interval [0, 7] into k parts of length A=1, so that &k = AT'. Let us iterate
the ROF functional in the following way: set A » 0 and denote u’ = wg. Then,
for each n € {0,..., AT — 1} we iteratively solve the ROF problem with f = u° and
denote its solution by u™*!.Then, in the limit A — oo with k = AT, we have

ou n utl — gy Dyt
el EUR N — A n+l _ . n d e
(%(’)\T) AT (W™ —ut)e lv(|Dun+1|>’

where u is a piecewise constant (in time) function with value 4™ on the interval

[{Z, 1], Passing to the limit, we formally arrive at the differential inclusion

AT AT
ou Du
— ediv — ).
at < 1V<Du>

The argument given here is of course purely heuristic, and the way to arrive to this
conclusion in a precise way is the Crandall-Liggett generation theorem [18] (a more
modern take can be found in [3]).

4.4. Regularity of solutions in one dimension

The question of regularity of minimisers to the Rudin-Osher-Fatemi functional,
or to be more exact, whether regularity of the initial datum is preserved, was an
object of intensive study in the last twenty years. It is still an active topic with
many open questions; the only fully solved cases are when u is Holder continuous,
when it is a characteristic function of a convex smooth set, and the one-dimensional
case. We present the argument in the last setting, mostly following [25], and only
briefly discuss the other two.

THEOREM 4.22. Suppose that f € BV ((a,b)) and let v € BV ((a,b)) be the
unique minimiser of the functional E. Then, |u'| < |f’| as measures, i.e.,

[u'|[(A) < |f'|(A)  for any Borel set A < (a,b).
PRrROOF. Consider a regularisation of E of the following type: for € > 0, set

b 9 ez 5
Bl = [ (Gl 1P+ VG 4 SR o

a

i.e., we separate the total variation term from zero and add a second-order term.
Then, for any f € L?((a,b)) this is a smooth and uniformly convex functional, which
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has a unique minimiser u. € W%2((a,b)), so in particular v € C*([a,b]), and the
minimiser satisfies the Euler-Lagrange equation

A(U — f) = ((U:;S_F&*Q) + 52’11//

with boundary data u. = 0 in the strong sense. Then, classical arguments (i.e.,
testing the equation with an appropriately chosen test function) yield that for any
open interval I and § > 0 we have

(1.14) | s pran< [ ippds o

I Is
for all p € (1,2] (for a precise argument see [25]). Here, Is is the interval which is
a d-neighbourhood of I.

We now want to pass to the limit p — 1. First, consider f € W2((a,b)). By
the boundary condition, the derivative |u'| is small close to a and b. Then, taking
small 6 > 0, I such that Is = (a,b) and p = 2 in estimate (4.14)), we get that

b b—s b
J lul|*dr < e + f (ul)? + %) dr < J |f'|?dz + O(e),

a+d

and consequently u. has a subsequence which converges weakly in W2((a,b)) and
uniformly in C([a, b]) to some u € W12((a,b)). Since it is clear that the functional
E. T-converges to E, wu is the unique minimiser of E (note that this argument
already implies that W12 regularity is preserved). Then, passing to the limit with

€ — 0 in estimate (4.14)), we get
J [u/|P dz < hmsupf (ul)? + )P dx < f |f'|P de.
e—0 Is

After passing to the limit p — 1 and § — 0, we get
(4.15) ‘f | dz < J~|f’\dx,
I I

since f’ lies in L?((a, b)) as as such it gives zero measure to points.

Our next goal is to prove an estimate analogous to for general f €

V((a,b)). Since f € L?*((a,b)), by the Meyers-Serrin approximation theorem

(Theorem we can find smooth functions f,, such that f, — f in L?((a,b))
and strictly in BV ((a,b)). Consider a second regularisation of E, i.e.,

A b b
_§Jm—ﬁﬁm+me

Let ug € BV ((a,b)) be the unique minimiser of E,,. Then, comparing the energy of
uy, with the zero function, we get

b b
[ il < Bt < £10) = [ 10, s

which is uniformly bounded. Thus, uy is uniformly bounded in BV ((a,b)), and
it converges (on a subsequence) in L%((a,b)) and weakly* in BV ((a,b)) to some
function u € BV ((a,b)). Clearly, E,, T-converges to E as f, — f in L?*((a,b)), so u
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is the unique minimiser of FE. Since f,, converges strictly to f, passing to the limit

in estimate (4.15)) yields
[t [ 171
I I
whenever |f'|(0I) = 0.

This concludes the proof up to standard measure-theoretic arguments: write
I = B(xz,r), and consider any open set V < (a,b). Then, by the Besikovitch
covering theorem (see [23]) one can write

0
V= UB(%‘,W) U N,
i=1
where the balls B(x;,r;) are pairwise disjoint, satisfy |f’|(0B(x;,7;)) = 0, and
|/|(N) = 0. Thus,

' |(V Z\ui (z4,74)) Z|f| (i,713)) < |F'|(V).

To pass to a general open set, by approximation properties of Borel measures, given
a Borel set A < (a,b) and § > 0 one can find an open set V < (a,b) with A c V
and |f'|(V\A) < 4. Therefore,

[w'[(A) < [W|(V) < [FI(V) < [f(A) + 6

which concludes the proof once we pass with § — 0. O

Since this result is local (i.e., it holds for any Borel set A), we immediately get
that many regularity properties of the initial data are inherited by the solution - let
us list here some most important consequences.

COROLLARY 4.23. In the notation of the previous Theorem, we have:

(a) feWbrP((a,b)) implies u € WP ((a,b));

(b) feSBV((a,b)) implies u e SBV((a,b));

(c) Jy, < Jy, i.e., no new discontinuities are formed;

(d) The size of the jumps of u is smaller than the size of jumps of f.

Due to the construction from the previous Section, this implies similar results
for the total variation flow (formally for now, we will discuss at length the total
variation flow in the final lecture).

COROLLARY 4.24. Suppose that u : Q x (0,T) — R is a solution of the total

variation flow
Du
le( )
| Dul

with Neumann boundary conditions and initial data ug € L*(Q). Then, for a.e.
€ (0,7):

(a) ug € WHP((a,b)) implies u(t) € WP ((a,b));
(b) up € SBV((a,b)) implies u(t) e SBV((a,b));
(c) Ju@)  Jug, i-e., no new discontinuities are formed;
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(d) The size of the jumps of u(t) is smaller than the size of jumps of u.

However, the one-dimensional proof presented above fails in higher dimensions,
essentially due to the fact that we do not have C! regularity for the approximating
sequence. However, the part of the result concerning the jump set of the solution
is valid in higher dimensions (at least for f € BV (Q) n LY (9)), using a level-set
argument similar to the one from the second lecture, see [13], 15].

THEOREM 4.25. Suppose that u € BV (Q) n L*(Q) is a minimiser of E for
feBV(Q) nLY(Q). Then, J, < J; and the size of the jumps of u is smaller than
the size of jumps of f.

Similarly, suppose that u : Qx(0,T) — R is a solution of the total variation flow

. Du
= dw(wm)

with Neumann boundary conditions and initial data ug € BV () n LN (Q). Then,
for a.e. t e (0,T) we have Jyu) < Ju, and the size of the jumps of u(t) is smaller
than the size of jumps of u.

Further reading

The subdifferential of the total variation, and consequently the subdifferential
of the ROF functional, was characterised for the first time in [2]; see also the mono-
graph [3]. The method presented here, quite simpler than the original approach,
is relatively new and first appeared in [29] in a more general context. The results
concerning the jump set of the ROF functional (and the total variation flow) first
appeared in [13] and [15]; we present the newer one-dimensional results from [25]
as a model case, because the methods used are far simpler.







CHAPTER 5

Total variation flow

Again, we assume that Q is a bounded Lipschitz domain in RY. Consider the
following Neumann problem
u(t, ) = Aqu in (0,7) x Q;
(5.1) L)=0 on (0,7) x 0%
u(0,x) = ug(x) in ©Q,

where ug € L?(Q). Here, A; denotes the 1-Laplacian operator, i.e.

As(u) = div(ﬁj).

As discussed in the last lecture, this equation arises as a continuum version of an
iteration scheme involving the Rudin-Osher-Fatemi functional. The goal of this lec-
ture is to introduce a notion of weak solutions and study some qualitative properties
of this equation.

5.1. Semigroup approach to evolution equations

We now present the basic results concerning the semigroup approach to gradient
flows of convex functionals in Hilbert spaces; the most classical reference is [10].
Let H be a separable Hilbert space. For 1 < p < o0, we denote

b
LP(a,b; H) := {u : [a,b] — H measurable such that J [u(t)|5, dt < oo}

and

WhP(a,b; H) := {U€Lp(a,b;H) and Jv e LP(a,b; H) :

t

u(t) —u(a) = J

v(s)ds Vte (a,b)}.
If ue WHP(a,b; H), it is differentiable in time for almost all t € (a, b) and

t

u(t) —u(a) = J. u'(s)ds Vte (a,b).

a

We also set Wl’p(O,T; H) to be the space of all functions u with the following

loc

property: for all 0 < a < b < T, we have that u € W1P(a,b; H).

67
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Consider the abstract Cauchy problem

w'(t) + 0F (u(t)) 20 te (0,7),
(5.2)
u(0) = ug, ug € H.

DEFINITION 5.1. We say that u € C([0,T]; H) is a strong solution of problem
(5.2)), if the following conditions hold: u € I/Vlf)’f(O,T; H); for almost all t € (0,T)
we have u(t) € D(0F); and it satisfies (5.2)).

THEOREM 5.2 (Brezis-Komura theorem). Let F : H — (—o0, 0] be a proper,
convex, and lower semi-continuous functional. Given ug € D(F), there exists a
unique strong solution of the abstract Cauchy problem . Moreover, we have
that v/t -u/(t) € L?(0,T; H), and uw € W*2(0,T; H) whenever ug € D(F).

We refer to [10] for a summary of main additional properties of solutions; let us
only briefly mention the semigroup property, the T-contraction property, and the
regularity of time derivative. If we denote by S(t)ug the unique strong solution wu(t)
of the abstract Cauchy problem for initial data wug, then S(¢) : D(F) — H is
a continuous semigroup satisfying the T-contraction property

1(S(B)uo — S(t)vo)lmr < uo — volm

for all ug,vo € D(F) and t > 0. Furthermore, we have that v’ € L2 (0,T;H),

loc
and the function ¢ — F(u(t)) is convex, decreasing, and locally Lipschitz with the

derivative (defined for a.e. t > 0)

d
SF(®) = -

2 2

u'(t)

)

H

- —‘é“]—'(u(t))

H

where 07 F(-) denotes the element of minimal norm in 0F(-). In fact,
u'(t) = 0~ F(u(t)).
Moreover, whenever ug € D(0F), we have that v’ € L*(0,T; H) and

u’(t)'H < |07 F(ug)

H
for all t € (0, 7).

5.2. The total variation flow

Consider the energy functional F : L?(2) — [0, +o0] associated with problem
(5.1) and defined by

f | Dul if ue BV () n L2();
F(u) := Q
+00 if ue L2(Q)\BV ().

The functional F is lower semicontinuous with respect to convergence in L?((2).
Clearly, F is convex; thus, by the Brezis-Komura theorem (Theorem [5.2)) there
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exists a unique strong solution of the abstract Cauchy problem
0eu/(t) + oF (u(t)) fortel0,T];
{ u(0) = up.
Recall that the subdifferential of F in L?(€2) can be characterised using the following
operator A (see Theorem [£.17).

DEFINITION 5.3. We say that (u,v) € A if and only if u,v € L*(Q), u € BV (Q2)
and there exists a vector field z € X5(Q2) such that the following conditions hold:

l2]o0 < 15
(z, Du) = |Du| as measures;
—div(z) = v in £
[z,] =0 HNL —ae. on Q.
Then, A = 0F. In light of this, we can give the following definition of solutions

to the Neumann problem (5.1J).

DEFINITION 5.4. Given uy € L?(Q), we say that u is a weak solution to
the Neumann problem (5.1)) in [0,77], if u € C([0,T]; L*(Q)) n VV&)’E(QT; L?()),
u(0, ) = ug, and for almost all ¢t € (0,7T)

0€w(t, ) + Ault,-).

In other words, for almost all ¢t € (0,T) we have u(t) € BV (Q) and there exist vector
fields z(t) € X3(€2) such that the following conditions hold:

J2(t)] < 1:
(z(t), Du(t)) = |Du(t)| as measures;
u(t) = div(z(t)) in D'(Q);
[z(t),v?] =0  HN"! —ae. on .
With this definition, since A coincides with 0F, by the Brezis-Komura theorem

(Theorem [5.2)) we get the following existence and uniqueness result.

THEOREM 5.5. For every ug € L*(Q) there exists a unique weak solution u €
C([0,T]; L2(2)) n W,22(0, T; L*()) to the Neumann problem (5.1) with initial da-
tum ug.

The next exercise concerns an equivalent characterisation of weak solutions in
terms of an integral equality satisfied on almost every time slice.

EXERCISE 5.6. Let ug € L?(Q) and assume that
we O([0,T]; L*(Q)) n W2 (0, T L3 ()

loc

satisfies u(0, -) = up. Show that u is a weak solution to the Neumann problem (5.1))
if and only if for almost all ¢ € (0,T") we have u(t) € BV () and there exists a vector
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field z € X5(Q) such that |z], < 1, u(t) = div(z(t)) in the sense of distributions
and

L \Du(t)] + f s () (u(t) — v) d L(z(t),Dv)

Q
for every v e BV(Q) n L*(Q).

‘MEMO 13. A multivalued operator A = L2 (Q) x L2(Q) is called completely accretive,
if and only if the following condition is satisfied (see [3, [T] ):

(5.3) f T — w?)(w! — v?)dz > 0

Q
for every (ul,vh), (u?,v?) € A and all functions T € C®(R) such that 0 < T’ < 1,
T’ has compact support, and x = 0 is not contained in the support of T.

If A additionally satisfies the range condition, we have the following contraction
and mazimum principle in any L9 space, where 1 < g < +0: for uy g, u2,0 € D(A)
and denoting by u; the unique solution of the problem

duélft) + Au;(t) 20, te (0,00)
uZ(O) = ul‘,o

fori=1,2, we have

(w1 (t) — u2(t) Loy < (w10 — u2,0)llpage) VO <t <T.

LEMMA 5.7. The operator A is completely accretive.

PROOF. We need to show that condition holds for all T € C*(R) satisfying
the above conditions, i.e. such that 0 < 7" < 1, T’ has compact support, and z = 0
is not contained in the support of T. For j = 1,2, let (u’,v’) € A and let z7 be the
associated vector fields. Observe that T'(u! — u?) € BV(Q2). Since |z!'[, < 1 and
|z%[ls < 1, by Proposition [3.2| for every Borel set B < Q we have

f (z' — 22, D(u' —u?))
B
= J. | Du!| —f (z', Du?) —s—f | Du?| —f (z%, Du') = 0.
B B B B
By definition of the Radon-Nikodym derivative §(z! — z?, D(u' — u?), x) we get
| 8~ 2 Dt~ ) wyaDa! — )] = | (@ -2 D!~ ) > 0
B B

for all Borel sets B < Q2. Therefore,
0(z' —2°, D(u' —u?),z) =0 |D(u' —u?)| — a.e. on Q

and since | DT (u! — u?)| is absolutely continuous with respect to |D(u' — u?)|, we
also have

0(z' — 2%, D(u' —u?),z) =0 |DT(u* — u?)| — a.e. on Q.
By Proposition [3.17] we get that
0(z' — 2%, DT (u* — u?),2) =0 |DT(u — u?)| — a.e. on Q,
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SO

(5.4) Lz(z1 — 2%, DT (u' — u?))
= J 0(z' — 2%, DT (u' — u?),2) d|DT (u* — u?)| = 0.
Q

To conclude that the operator A is completely accretive, we now apply the anisotropic
Gauss-Green formula (Theorem [3.9) and use the estimate (5.4]) to get

f T(u' —u?)(v' —v?)dx = —J T(u' — u?)(div(z') — div(z?)) dz
Q Q

= J (z' — 2 DT (u' —u?)) >0,
Q
so A satisfies the condition (5.3]) and thus is completely accretive. O

EXERCISE 5.8. Prove that for a smooth function 7" : R — R the measure
|DT (u)] is absolutely continuous with respect to |Dul.

As a consequence of the complete accretivity of the operator A, we get the
following comparison principle.

THEOREM 5.9. For all v € [1,0], if u1,us are weak solutions to (5.1) for the
initial data uy g, uz,0 € L?(2) n L™(Q) respectively, then

[ (ur () = u2(t) "l < I(ur,0 = u2,0)" -
A similar construction, using a mix of techniques from the proof above and the
Euler-Lagrange characterisation of solutions to the least gradient problem, leads to

a characterisation of solutions to the Dirichlet problem for the total variation flow,
ie.,

ug(t, ) = Aqu in (0,7) x Q;
(5.5) u(t) =h on (0,T) x 0Q;
u(0,2) = up(x) in Q,
where ug € L?(Q2). The corresponding energy functional is Fj, : L?(Q) — [0, +00]
defined by
f | Dul + J lu —hldHN  ifue BV(Q) n L2(Q);
T (u) = Q Elo)
+00 if ue L2(Q)\BV ().
We leave the proof in the form of the following series of exercises.

EXERCISE 5.10. We say that (u,v) € Ay, if and only if u,v € L?(Q), u € BV ()
and there exists a vector field z € X5(Q2) such that the following conditions hold:

Iz]o <1
(z, Du) = |Du| as measures;

—div(z) =v in
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2] e sign(h — u) HNT! —a.e. on 09,

where sign denotes the multivalued sign function. Show that A; < 0F, (so in
particular it is monotone).

[z,v

Then, we need to prove that Aj, = 0F in a similar way as in Theorem
Observe that the range condition for the operator Ay, boils down to proving existence
of ue BV (Q) and z € X5(Q2) such that the following conditions hold:

|z]on < 15
(z,Du) = |Du| as measures;
—div(z) =g —u in
[z, ] € sign(h — u) HNTT —ae. on Q.
EXERCISE 5.11. Consider the same spaces, operators, and functionals as in Step
2 of the proof of Theorem with the only difference in the definition of Ey; set
Eo(vy) — f (oo — B dHN 1,
o0
Then, show that

houg dHN 1 if JoFl<1 HN"!—ae on o
Q

Eg(v5) = f
+a00 otherwise,

and check that with this change Steps 2 and 3 of the proof are correct.

EXERCISE 5.12. Prove that in the setting analogous to Lemma we have
J —T(u! —u?)[z' — 2%, ] dHV "1 >0,
o0

from which follows the complete accretivity of Ay,.

EXERCISE 5.13. Show that in the case of the operator Ay, the first subdiffer-
entiability property (4.1) gives also an estimate for the boundary behaviour of w,
and we may conclude using a similar argument as in Steps 4 and 5 of the proof that

A, = 0F;,.

From this, using the Brezis-Komura theorem, we deduce existence of a unique
weak solution to the Dirichlet problem for the total variation flow (5.5) in the
following sense: given ug € L?(2), we say that u is a weak solution to the Dirichlet
problem (5.8)) in [0, T7], if u € C([0, T]; L2(Q)) n W22 (0, T; L*(Q)), u(0, ) = ug, and
for almost all t € (0,7T)

0 € u(t, ) + Apul(t,-).
In other words, for almost all ¢t € (0,T) we have u(t) € BV () and there exist vector
fields z(t) € X2(Q2) such that the following conditions hold:

l2(t) ] < 1;

(z(t), Du(t)) = |Du(t)| as measures;
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u(t) = div(z(t)) in D'(Q);

[2(t), ] € sign(h — u) HN! —ae. on Q.

By complete accretivity of the operator Ay, it also satisfies the comparison principle
similar to the one above, i.e., for all r € [1, 0], if uy, ug are weak solutions to (5.5))
for the initial data uj o, us0 € L*(Q) n L"(2) respectively, then

| (ur () = ua(8) F |l < [ (u1,0 = u2,0) ™ |

5.3. Asymptotic behaviour

Let us first see an explicit example of the evolution by the total variation flow.
For simplicity, we consider the Dirichlet problem with zero boundary data.

EXAMPLE 5.14. Let N > 2 and take Q < RY such that B(0,7) € Q and let
h = 0. Then, consider the initial data

Ug = k:XB(O,r)-
We will show that the unique solution to the Dirichlet problem ({5.5) is given by

N—-1 r +
u(zx,t) = sign(k) <k| — mt) XB(0,r)(T)-

In particular, Xp(o,) is a (nonlinear) eigenfunction of the total variation flow.
Equivalently, we have

. N [ |k|r -
(5.6) u(x,t) = sign(k)—| == —t ] Xpgo,m(z).
r\ N
Before we start proving that formula (5.6 holds, let us note the following obser-
vations: the initial condition is satisfied; it changes linearly in time; the solution
reaches zero in finite time; the shape of the solution does not change, i.e., the jump
set remains the same until the extinction time and the size of the jump decreases;
in particular, the total variation flow has no smoothing effect.

Without loss of generality, suppose that k& > 0. Let us look for solutions to
problem of the form u(z,t) = a(t)Xp( ) (x). Our (non-rigorous) motivation
is as follows: since the initial data are radial, we expect the solutions to be radial; the
right-hand side of the PDE (5.5) is, for characteristic functions, the mean curvature
of the set, so since the boundary of a ball has constant mean curvature we expect
that the whole ball will evolve in the same way; the exterior of the ball, which has a
constant value of ug, should evolve in the same way; and the zero Dirichlet datum
should entail that the value of u is zero near the boundary.

For such a function u the Dirichlet boundary condition [z, 2] € sign(h — u)
is automatically satisfied for any z € X2(Q2) with |z||, < 1; let us find such vector
field z which satisfies the other two conditions, i.e.,

(5.7) W (1) = div(a(t))

and

| @0 Due) = | 1wt




74 5.3. Asymptotic behaviour

From the second condition, we infer that z should be equal to —Z®") on dB(0, 7).
By the first condition, div(z(t)) should be the same for all points in B(0,r); thus,
a good candidate for z is

z(x,t) = _
T

For such z, integrating equation (5.7 over B(0,r) and applying the Gauss-Green
formula (Theorem gives

o (t) LN (B(0,7)) = J o )div(z(t)) dx

= f z(t) - vBO) Nt = —HNTL(0B(0,7)).
(o)

Therefore,
N-1 B N
iy - _HN@BO) N
LYN(B(0,7)) r
and consequently
N

Observe that this formula makes sense until the extinction time Ty, = % We also
need to construct the vector field z outside of B(0, r); to this end, observe that since
u' =0 on Q\B(0, ), considering radial vector fields z, i.e., z = p(|x|)|§—‘, we have

0 = div(a(t)) = Vp(le]) <|x|>dw( l) A1) + oz T2 =

Solving this equation on (r,00) with the initial condition p(r) = —1 gives the unique
solution
pls) = V1N,
S0
T
z(z,t) = —rV 71—
(z,1) L

Again, we use this formula on (0, Tex). Since u(z,t) = 0 for t = T, by takingz =0
we see that the conditions are satisfied. Therefore, by the above computations the
vector field

_— if x € B(0,7) and ¢t < Tey;
r
z(r,t) = —TN_lﬁ if ¢ B(0,7) and ¢t < Tey;
0 if t > T,

safisfies the desired conditions for u(z,t) given by equation (|5.6).

Observe that in the above example both pieces B(0,r) and B(0, R)\B(0,r)
move linearly in time, after some time 77 > 0 the values of u on both sets become
equal, and then the two sets move together until the extinction time, when the
solution becomes identically zero. This is qualitatively different than e.g. for the
heat flow, where the solution for positive initial data stays positive for all times.
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EXERCISE 5.15. Using a similar argument, show that a solution to the homo-
geneous Dirichlet problem for the total variation flow on 2 with initial data

up = kXpB(0,R)\B(0,r)
with r < R, k > 0, and B(0, R) € Q is equal to

HN-L(GB(0, R) U 2B(0, r
ulat) = <k £N( (B((O,R))\B(O,r()) ))t) XB0m5 0 2)
HN=L(oB(0,r
B0 e

for

< Ty i <HN—1(aB(o,R) U dB(0,7)) ’HN_l(aB(O,r))>1k
' LN(B(0, R)\B(0,7)) LN(B(0,7)) ’
and for ¢ > T; the solution evolves as in the previous Example. Hint: look for
solutions of the form u(x,t) = a(t)X (o, + B(t)XB(0,R)\B(0,r)-

EXERCISE 5.16. Using a similar argument, show that a solution to the Neumann
problem for the total variation flow on B(0, R) with initial data
ug = kXpo,r
with r < R and k£ > 0 is equal to
N NVt
u(w,t) = (k- *t XB(0,r) + WtXB(O,R)\B(O,r)
fort < Tyy := ( + N pr—w - )" Ik. For t > T.y, the solution is constant and equals

N
u(z,t) =k — TTeX'

Hint: again look for solutions of the form wu(xz,t) = a(t)Xp(o,ry + B(t)XB(0,R)\B(0,r)-

Observe that in the above example both pieces B(0,7) and B(0, R)\B(0,r)
move linearly in time, at the extinction time the values of u on the two sets become
equal (and the solution is equal to the mean value of the initial data), and then the
evolution stops.

We now give an explicit bound for the extinction time of the solutions. As a
first step, let us see that for the Neumann problem the mean value of the solution
is preserved.

LEMMA 5.17. Let u: Q2 x (0,T) be a weak solution to problem (5.1). Then, for

a.e. t€(0,T) we have
J u(t) dz = f ug dz.
Q Q

PROOF. By definition of the weak solution, for a.e. t € (0,T) there exists
z € X5(Q2) with the properties given in Definition Therefore,

JQ ug da = fﬂ div(z(t)) dz = J [2(t), V] dHN ! =0,

Q
and integrating this equation over time yields the claim. O
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We conclude this lecture with the following theorem describing the asymptotic
behaviour of solutions.

THEOREM 5.18. Suppose that u : Q x (0,T) is a weak solution to problem (|5.1)).
Then, if we denote

Text(ug) = inf {7’ >0: u(t) = (ug)q for allt> T},
we have that Tu(ug) < o0 and there exists a constant C = C(Q) such that

Text(uo) < C - |uo — (uo)a|r2(0)

Similarly, if u: Q x (0,T) is a weak solution to problem (5.5) for h = 0, and
we denote

Toxt(ug) = inf {7‘ >0: u(t)=0 forallt> T},

we have that Texs(ug) < o0 and there exists a constant C = C(2) such that
Text(U()) <C- HUOHL2(Q)

PROOF. We show the result for the Neumann problem (the other proof is very
similar). Let u be a weak solution to problem and consider the function
3§ lu—(ug)q|? dz, which is absolutely continuous in time on (0, T") by the regularity
of u. Then, we compute its time derivative, i.e.,

thf lu(t) — ()2 dm_L(u(t)—(uo)ﬂ)utdx=Lm(t)—(uo)g)div(z(t))dx.

But, the term with the constant is equal to zero by the Gauss-Green formula (The-
orem [3.9) and the Neumann boundary condition. Similarly,

fQ w(t) div(z(t)) dz — — fg(z Du(t f Du(?)

therefore, by the Poincaré inequality,

1/2
thf |u UO Q|2dx f |Du < <J |u UO QQdaj> .

Thus, the function |u(t) — (uo)allL2(q) satisfies a differential inequality

d
%Hu(t) - (uO)QH%Q(Q) < —Cu(t) — (vo)ell2 (o)

Therefore, when the right-hand side is nonzero, we get

d
aHu(t) — (uwo)all2 ) < —C,

and consequently,

[u(t) = (uo)al L2y < [uo — (wo)alr2() — Ct,

so the extinction time is at most equal to C(2)|uo — (uo)alr2(q)- O

EXERCISE 5.19. Modify the proof above to cover the case of the homogeneous
Dirichlet problem.
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On a final note, let us mention that this behaviour is a typical feature of convex
p-homogeneous functionals in Hilbert spaces with p < 2; it was shown in a recent
paper [11] with a method based on the above argument.

Further reading

A classical reference on the total variation flow is the monograph [3], where
existence of solutions is obtained by an approximation of p-Laplace type.
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