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Overview of the course

The goal of this course is to present the theory of functions of bounded varia-
tion (in short: BV functions) in the context of variational problems and associated
PDEs. The space of BV functions appears naturally when one considers varia-
tional problems with linear growth, i.e., where the minimised object depends on the
gradient via a term

ż

Ω

fpx,Duq

where f : Ω ˆ RN Ñ R is a Borel function which satisfies

c1|p| ´ c2 ď fpx, pq ď c3p1 ` |p|q

for positive constants c1, c2 and c3. Variational problems with linear growth are
currently the subject of intense mathematical research and commonly arise in image
processing and denoising, in materials science, and in phase transitions. Some
important examples of such minimisation problems include the minimal surface
equation, which corresponds to the minimisation of the area functional

ż

Ω

a

1 ` |Du|2

and the least gradient problem, which is the minimisation of the total variation
ż

Ω

|Du|,

the Rudin-Osher-Fatemi functional, used for image denoising,
ż

Ω

|Du| `
λ

2

ż

Ω

pu´ fq2 dx,

or the Mumford-Shah functional, used for image segmentation,
ż

ΩzK

|∇u|2 dx` α

ż

ΩzK

pu´ fq2 dx` HN´1pK X Ωq.

These problems are usually considered in the presence of some boundary conditions
or a penalisation term. Since the functionals of the above form are not lower
semicontinuous in the space W 1,1, due to the fact that a bounded sequence in W 1,1

does not necessarily have a limit in W 1,1 even in the weak* topology, we need to
consider a larger function space.

The goal of this course is to provide an introduction to the theory of functions
of bounded variation and present some functional analytical tools which enable the
mathematical treatment of linear-growth functionals, most notably the Anzellotti

vii
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pairing theory. Then, we will discuss some examples of minimisations and degener-
ate partial differential equations including the Rudin-Osher-Fatemi model of image
denoising, the least gradient problem, and the total variation flow.

The main references to this lecture are: for the theory of BV functions, Chapters
2-3 of the monograph by Ambrosio, Fusco and Pallara [1] and Chapter 5 of the book
by Evans and Gariepy [23]; most of the necessary measure-theoretic notions appear
in earlier chapters of these books. For the part concerning the area-minimising sets,
and a different view on the basic properties of BV functions, see the book of Giusti
[28]. The main reference concerning the Anzellotti pairings, the subdifferential
of the total variation, and the total variation flow is the monograph by Andreu,
Caselles and Mazón [3]; one can also find there the basic information concerning
subdifferentials and gradient flows of convex functionals.

W. Górny, Vienna, January 2024.



0. Overview of the course ix

Basic notation

In this Section, we briefly summarize the standard notations used throughout
the lectures. The underlying assumption in most of them is that Ω is a bounded
Lipschitz domain in RN , i.e. that Ω Ă RN is an open bounded set with Lipschitz
boundary. We typically denote (possibly with indices) by u, v, w functions defined
in Ω and by f, g, h functions defined on BΩ. Below, we briefly present the notation
for function spaces which we often use and some objects associated with them.

CpXq: space of continuous functions on a set X Ă RN ;

CcpXq: space of continuous functions with compact support in X Ă RN ;

C8
c pXq: space of smooth functions with compact support in X Ă RN ;

W k,ppΩq: Sobolev spaces on an open set Ω Ă RN ;

Weak derivative of a Sobolev function: ∇u;

BV pΩq: space of functions of bounded variation on an open set Ω Ă RN ;

Distributional derivative of a BV function: Du;

Total variation of a BV function: |Du|pΩq or
ş

Ω
|Du|;

Traces of Sobolev/BV functions on BΩ: Tu, u|BΩ, or u if clear from the context;

νΩ: the outer unit normal to a Lipschitz boundary BΩ;

Hk: Hausdorff measure of dimension k;

LppBΩq: the Lp space on BΩ (for Ω Ă RN open) with respect to HN´1;

LppΩ,RN q: space of integrable vector fields;

XppΩq: space of bounded vector fields with divergence in LppΩq;

MpXq: space of finite Radon measures on a set X Ă RN ;

M`pXq: space of positive finite Radon measures;

MpX,RN q: space of finite vector-valued Radon measures;

SN´1: the unit sphere in RN ;

ωN : the measure of the unit ball in RN ;

Furthermore, we will use the following two sign functions

sign0prq :“

$

’

&

’

%

1 if r ą 0;

0 if r “ 0;

´1 if r ă 0

signprq :“

$

’

&

’

%

1 if r ą 0;

r´1, 1s if r “ 0;

´1 if r ă 0.





CHAPTER 1

Functions of bounded variation

The space of functions of bounded variation shares many properties with the
Sobolev spaces W 1,p and, indeed, it is introduced by a generalisation of the distri-
butional definition of Sobolev spaces. As such, these spaces share many properties;
therefore, we start this lecture with a short recollection of definition and properties
of Sobolev functions. For this purpose, assume that Ω is a sufficiently regular open
subset of RN .

Definition 1.1. For p P r1,8s, the Sobolev spaceW 1,ppΩq consists of functions
u P LppΩq whose distributional derivative ∇u (also called the weak derivative) lies
in LppΩ;RN q. In other words, u P W 1,ppΩq if and only if u P LppΩq and

ż

Ω

udivpφq dx “ ´

ż

Ω

φ ¨ ∇u dx @φ P C8
c pΩ;RN q.

The space W 1,ppΩq, endowed with the norm

}u}W 1,ppΩq “ p}u}
p
LppΩq

` }∇u}
p
LppΩ;RN q

q1{p

is a Banach space.

Equivalently, u P W 1,ppΩq if and only if u P LppΩq and there exist functions
ux1 , ..., uxN

P LppΩq such that for all i “ 1, ..., N
ż

Ω

u
Bφ

Bxi
dx “ ´

ż

Ω

φuxi
dx @φ P C8

c pΩq.

Here, ∇u “ pux1
, ..., uxN

q.

Among the properties of Sobolev functions, let us list these which are the most
relevant to the present topic:

(a) Smooth functions with finite Sobolev norm form a dense subset ofW 1,ppΩq;
(b) We have W 1,ppΩq ãÑ LNp{pN´pqpΩq;

(c) For bounded Ω, W 1,ppΩq ãÑ LqpΩq for all q ă
Np
N´p and this embedding

is compact;
(d) For N ą 1, we have the Sobolev inequality

}u}LNp{pN´pqpRN q ď C

ˆ
ż

RN

|∇u|p dx

˙1{p

for all u P W 1,ppRN q;
(e) We have the Poincaré inequality

}u´ uΩ}LNp{pN´pqpΩq ď C

ˆ
ż

Ω

|∇u|p dx

˙1{p

1



2 1.1. Definition and basic properties

for some constant C depending only on the width of Ω. Here,

uΩ “
1

LN pΩq

ż

Ω

upxq dx

denotes the mean value of u in Ω;
(f) For bounded Ω, there is a bounded and linear trace operator T :W 1,ppΩq Ñ

LppBΩq with the following property:

ż

Ω

udivpφq dx`

ż

Ω

φ ¨ ∇u dx “

ż

BΩ

φ ¨ νΩ Tu dHN´1

for all u P W 1,ppΩq and φ P C1pRN ,RN q;

(g) The image of the trace operator is the space W 1´ 1
p ,ppBΩq (for p ą 1),

where

W 1´ 1
p ,ppBΩq “

"

f P LppBΩq :

ż

BΩ

ż

BΩ

|fpxq ´ fpyq|p

|x´ y|
pn´1q`pp1´ 1

p q
dSpx, yq ă 8

*

,

or L1pBΩq (for p “ 1). The extension operator in the reverse direction is
linear for p ą 1 and nonlinear for p “ 1;

(h) Once we fix a direction in RN , Sobolev functions are absolutely continuous
along almost every line in this direction.

We will see that the BV functions exhibit a lot of similar behaviour. The
main difference concerns the last point - the property of absolute continuity along
a.e. line implies that Sobolev functions cannot have jump-type discontinuities. On
the other hand, the space of bounded variation functions includes characteristic
functions of sufficiently regular sets, and allows for the study of functions which are
discontinuous along a sufficiently regular set.

1.1. Definition and basic properties

First, let us recall the definition of vector-valued measures.

Memo 1 (Vector-valued measures). Let pX,Fq be a measurable space. A set func-
tion µ : F Ñ RN is a vector-valued measure, if µpHq “ 0 and

µ

ˆ 8
ď

i“1

Ai

˙

“

8
ÿ

i“1

µpAiq

for any sequence Ai or pairwise disjoint elements of F . The variation |µ| of a
vector-valued measure is given by

|µ|pAq “ sup

" 8
ÿ

i“1

|µpAiq| : Ai P F ,
8
ď

i“1

Ai “ A, Ai are pairwise disjoint

*

for any A P F . This formula defines a positive measure on X. The space of
vector-valued measures with finite total variation |µ|pXq is denoted MpX;RN q,
and equipped with the norm µ ÞÑ |µ|pXq it is a Banach space.



1. BV functions 3

For N “ 1, one usually says that µ is a signed measure. Then, one can uniquely
decompose µ into a positive and negative part, i.e., µ “ µ` ´ µ´, where

µ` “
1

2
p|µ| ` µq and µ´ “

1

2
p|µ| ´ µq

are positive measures on X.

Definition 1.2. The space BV pΩq consists of functions u P L1pΩq distribu-
tional derivative Du lies in MpΩ;RN q, i.e., it is a vector-valued Radon measure
with finite total variation in Ω. In other words, u P L1pΩq is a function of bounded
variation (i.e., u P BV pΩq) if and only if u P L1pΩq and

ż

Ω

udivpφq dx “ ´

ż

Ω

φdrDus @φ P C8
c pΩ;RN q.

Endowed with the norm

}u}BV pΩq “ }u}L1pΩq ` |Du|pΩq

it is a Banach space.

Equivalently, u P BV pΩq if and only if u P L1pΩq and there exist Radon mea-
sures µ1, ..., µN with finite total mass in Ω such that for all i “ 1, ..., N

ż

Ω

u
Bφ

Bxi
dx “ ´

ż

Ω

φdµi @φ P C8
c pΩq.

Here, Du “ pµ1, ..., µN q.

Memo 2 (Riesz representation theorem). Let L : CcpRN ;RN q Ñ R be a linear
functional which satisfies

suptLpfq : f P CcpRN ;RN q, |f | ď 1, supppfq Ă Ku ă 8

for each compact set K Ă RN . Then, there exists a Radon measure µ on RN and
a µ-measurable function σ : RN Ñ RN such that

|σpxq| “ 1 for µ´ a.e. x P RN

and

Lpfq “

ż

RN

f ¨ σ dµ

for all f P CcpRN ;RN q. We call µ the variation measure associated with L, and
in each open set V Ă RN it holds that

µpV q “ suptLpfq : f P CcpRN ;RN q, |f | ď 1, supppfq Ă V u.

Theorem 1.3 (An equivalent definition). Suppose that u P L1pΩq. If

(1.1) sup

"
ż

Ω

udivpφq dx : φ P C8
c pΩ;RN q, |φpxq| ď 1 for x P Ω

*

ă 8,

then u P BV pΩq. In the other direction, if u P BV pΩq, then for any open set U Ă Ω

|Du|pUq “ sup

"
ż

U

udivpφq dx : φ P C8
c pU ;RN q, |φpxq| ď 1 for x P U

*

.



4 1.1. Definition and basic properties

In particular, the total variation of the measure Du is

|Du|pΩq “ sup

"
ż

Ω

udivpφq dx : φ P C8
c pΩ;RN q, |φpxq| ď 1 for x P Ω

*

.

Therefore, in the literature it is sometimes equivalently taken as a definition of BV
functions that u P BV pΩq if and only if u P L1pΩq and |Du|pΩq ă 8, where |Du|pΩq

is given by the formula above.

Proof. Suppose that u P L1pΩq satisfies condition (1.1). Define a linear func-
tional L : C8

c pΩ;RN q Ñ R by the formula

Lpφq :“ ´

ż

Ω

udivpφq dx

for any φ P C8
c pΩ;RN q. By condition (1.1), we have that

suptLpφq : φ P C8
c pΩ;RN q, }φ}8 ď 1u ă 8

and consequently for all φ P C8
c pΩq

(1.2) |Lpφq| ď C}φ}8,

where C is the left-hand side of (1.1).

We now extend the functional L to the space CcpΩ;RN q. For each φ P CcpΩ;RN q,
pick a sequence φn P C8

c pΩ;RN q which converges uniformly to φ. Define

Lpφq :“ lim
nÑ8

Lpφnq;

by estimate (1.2) this limit exists and does not depend on the choice of the ap-
proximating sequence. Therefore, L can be uniquely extended to a linear functional
L : CcpΩ;RN q Ñ R which satisfies

suptLpφq : φ P CcpΩ;RN q, }φ}8 ď 1u ă 8.

We conclude by the Riesz representation theorem: we get existence of a function σ
with norm one and a (positive) measure σ such that

´

ż

Ω

udivpφq dx “

ż

Ω

φ ¨ σ dµ

for all φ P CcpΩ;RN q. Therefore, once we denote |Du| “ µ and Du “ σ|Du|, we
have that Du is the distributional derivative of u; its total variation |Du|pΩq is finite
by virtue of condition (1.1) and the explicit formula for µ.

For the second part, assume that u P BV pΩq. Then, for any φ P C8
c pΩ;RN q

with }φ}8 ď 1 we have
ˇ

ˇ

ˇ

ˇ

ż

Ω

udivpφq dx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

´

ż

Ω

φdrDus

ˇ

ˇ

ˇ

ˇ

ď

ż

Ω

|Du|,

so condition (1.1) is satisfied. Thus, applying the Riesz representation theorem as
above, the claim follows from the explicit formula for µ. □

This proof, with minimal modifications, works also for functions which are
locally of bounded variation, i.e., the total variation of their distributional derivative
is finite on bounded subsets.
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Exercise 1.4. Show that this is a more general property, i.e., for any vector-
valued measure µ P MpΩ,RN q we have

|µ|pΩq “ sup

"

φdµ : φ P CcpΩ;RN q, |φpxq| ď 1 for x P Ω

*

.

It is clear from the definition that W 1,1pΩq Ă BV pΩq, since the distributional
derivative of Sobolev functions can be viewed as a Radon measure which is abso-
lutely continuous with respect to LN ; let us see that this inclusion is strict.

Definition 1.5. An LN measurable subset E of RN has finite perimeter in Ω
if χE P BV pΩq. The perimeter of E in Ω is P pE,Ωq “ |DχE |pΩq.

We denote P pE,RN q by PerpEq. The following example shows that sufficiently
regular subsets of RN are sets of finite perimeter; since a characteristic function
of a set with positive Lebesgue measure cannot lie in W 1,1pΩq (because it is not
absolutely continuous along a.e. line in a given direction), this implies that the
inclusion W 1,1pΩq Ă BV pΩq is strict.

Example 1.6. Assume that E is an open smooth subset of RN such that
HN´1pBE X Ωq ă 8. Then, by the classical Gauss-Green formula,

ż

E

divpφq dx “

ż

BE

φ ¨ ν dHN´1

for all φ P C8
c pΩ;RN q, where ν denotes the outer unit normal to BE. Thus, if we

consider φ P C8
c pΩ;RN q with }φ}8 ď 1,
ż

E

divpφq dx “

ż

BE

φ ¨ ν dHN´1 ď HN´1pBE X Ωq ă 8,

so E is a set of finite perimeter. Since E is smooth, we may find φ P C8
c pΩ;RN q

such that φ ¨ ν ” 1 on any compact subset of BE X Ω; by taking supremum over
such φ we get that

P pE,Ωq “ HN´1pBE X Ωq

and νE agrees with ν HN´1´a.e. on BE X Ω.

A well-known “defect” of the Sobolev space W 1,1 is that its unit ball is not
weakly closed. More explicitly, there exist bounded sequences in W 1,1pΩq which
converge in L1pΩq to a function which does not lie in W 1,1pΩq; see the following
example.

Example 1.7. Let Ω “ p´1, 1q and take the function u : Ω Ñ R given by

uεpxq “

$

&

%

´1 if x ă ´ε;
x
ε if ´ ε ď x ď ε;
1 if x ą ε.

Then, for all ε P p0, 1q we have that uε P W 1,1pp´1, 1qq and }uε}W 1,1pΩq ď 3. Clearly,

uε Ñ u in L1pp´1, 1qq, where

upxq “

"

´1 if x ă 0;
1 if x ą 0.

However, u R W 1,1pp´1, 1qq, as it is not absolutely continuous.
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The BV space does not have this defect, and the reason is that in the space
of vector-valued measures every bounded sequence has a convergent subsequence.
Looking at it from another perspective, the total variation is lower semicontinuous
with respect to convergence in L1pΩq. More concretely, we have the following result.

Theorem 1.8. Suppose that un P BV pΩq and un Ñ u in L1pΩq. Then,

(1.3) |Du|pΩq ď lim inf
iÑ8

|Dun|pΩq.

Proof. Let φ P C1
c pΩ;RN q. Assume that }φ}8 ď 1. Then,

ż

Ω

un divpφq dx “ ´

ż

Ω

φdrDuns ď

ż

Ω

|φ| |Dun| ď

ż

Ω

|Dun|,

hence after taking the limit as n Ñ 8 we get
ż

Ω

udivpφq dx “ lim
nÑ8

ż

Ω

un divpφq dx ď lim inf
nÑ8

|Dun|pΩq.

We conclude by taking a supremum of the left-hand side with respect to φ . □

Corollary 1.9. The same result holds if we replace the convergence in the L1

norm with weak convergence in LppΩq for any p P r1,8q.

It is easy to see that we may have a strict inequality in (1.3); consider the
following one-dimensional example.

Example 1.10. Let Ω “ p´1, 1q and take the function u : Ω Ñ R given by

uεpxq “

$

&

%

0 if x ă ´ε;
1 if ´ ε ď x ď ε;
0 if x ą ε.

Then, for all ε P p0, 1q we have that uε P BV pp´1, 1qq and Duε “ δ´ε ´ δε. Clearly,
uε Ñ u in L1pp´1, 1qq, where u ” 0. Hence,

|Duε|pp´1, 1qq “ 2 ą 0 “ |Du|pp´1, 1qq

for all ε ą 0, so the sequence uε is such that there is a strict inequality in (1.3).

For many applications, the requirement that a sequence converges in the BV
norm is too strong; for instance, it is clear from the definition that one cannot
approximate a general BV function by smooth functions in the norm topology; for
this purpose, we revisit the previous Example.

Memo 3. Given a measure space pX,Σq, i.e., a set and a collection of measurable
sets, and two measures µ, ν defined on pX,Σq, we say µ and ν are mutually singular
(denoted by µ K ν) if for every A P Σ there exist disjoint sets E,F P Σ such that

µpAq “ µpAX Eq and νpAq “ νpAX F q

for all A P Σ. For instance: measures with disjoint supports are mutually singular
(e.g. Dirac deltas at different points); the measures L1, δ0 and the derivative of
the Cantor function are mutually singular on R; and the Lebesgue measure LN is
mutually singular with any measure supported on an n´ 1-dimensional object.

Exercise 1.11. Show that for mutually singular measures µ and ν, we have
|µ` ν| “ |µ| ` |ν| as measures.
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Example 1.12. Let Ω “ p´1, 1q and take

upxq “

"

´1 if x ă 0;
1 if x ą 0.

Then, u P BV pp´1, 1qq and

Du “ 2δ0.

However, for any approximating sequence un Ñ u with un P W 1,1pp´1, 1qq, we have
that Dun “ ∇un dx, so Dun ! L1; since the measures L1 and δ0 are mutually
singular, we have that

|Dpu´ unq|pp´1, 1qq “ |Du|pp´1, 1qq ` |Dun|pp´1, 1qq ě 2,

so the sequence un does not converge in the BV norm to u.

Therefore, we will often rely on weaker modes of convergence, namely strict
convergence and weak* convergence.

Definition 1.13. Let un, u P BV pΩq. We say that un strictly converges to u
in BV pΩq if the following conditions hold:

(i) un Ñ u in L1pΩq;
(ii) |Dun|pΩq Ñ |Du|pΩq as n Ñ 8.

Definition 1.14. Let un, u P BV pΩq. We say that un weakly* converges to u
in BV pΩq if the following conditions hold:

(i) un Ñ u in L1pΩq;
(ii) Dun á Du weakly* as measures as n Ñ 8.

We have the following characterization of weak* convergence in BV (which,
essentially, comes from the fact that BV pΩq is the dual of a separable space; for
more information we refer to [1]).

Theorem 1.15. Let un, u P BV pΩq. Then, un weakly* converges to u in BV pΩq

if and only if un Ñ u in L1pΩq and tunu is a bounded sequence in BV pΩq.

Proof. One implication is very simple: if Dun is a weakly* convergent se-
quence of measures, it is bounded in MpΩ;RN q; thus, any weakly* convergent
sequence un in BV pΩq is bounded in BV pΩq. In the other direction, assume that
tunu is a bounded sequence in BV pΩq and un Ñ u in L1pΩq. Then, tDunu is a
bounded sequence in MpΩ;RN q, so it has a weakly* convergent subsequence. Thus,
we only need to show that any limit point of Dun in the weak* topology coincides
with Du. By definition of the weak derivative

ż

Ω

un
Bφ

Bxi
dx “ ´

ż

Ω

φdDipunq for all φ P C8
c pΩq

for all i “ 1, ..., N , where without restriction Dun is the convergent subsequence
and µ “ w˚-limkÑ8 Dun. Passing to the limit k Ñ 8 we get

ż

Ω

u
Bφ

Bxi
dx “ ´

ż

Ω

φdµi for all φ P C8
c pΩq.

Thus, µ satisfies the definition of the distributional gradient of u. □
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Therefore, it is clear that strict convergence implies weak* convergence; the
converse is not always true. Due to compactness properties of the BV space (see
later in Theorem 1.24) it is easy to obtain a weakly* converging subsequence of
a bounded family of functions; on the other hand, the strict topology appears
naturally when we try to approximate general BV functions by smooth functions.
Namely, we have the following result.

Theorem 1.16. Assume that u P BV pΩq. There exists a sequence of functions
un P C8pΩq XBV pΩq such that

(i) un Ñ u in L1pΩq;
(ii) |Dun|pΩq Ñ |Du|pΩq as n Ñ 8.

Moreover,

(iii) if u P BV pΩq X LqpΩq for some q ă 8, we can additionally require that
un P LqpΩq and un Ñ u in LqpΩq;

(iv) if u P BV pΩqXL8pΩq, we can additionally require that }un}8 ď }u}8 and
un á u weakly* in L8pΩq.

Moreover, if u P W 1,1pΩq, we also have that ∇un Ñ ∇u in L1pΩ;RN q.

Proof. We proceed similarly to the proof of the corresponding result for
Sobolev functions. Take a sequence of open sets Ωj with the following property:
Ωj Ť Ω and every point x P Ω lies in at most four sets Ωj . Take a partition of
unity φj relative to this covering, i.e. φj P C8

c pΩq, φj ě 0, supppφjq Ă Ωj and
ř8

j“1 φj ” 1 in Ω.

We give the proof for q ă 8. Let ρε be a family of standard mollifiers and
take δ P p0, 1q. We may require that Ω1 is large enough so that |Du|pΩzΩ1q ă δ.
Then, for every j P N there exists εj ą 0 such that supppρεj ˚ pφjuqq Ă Ωj and the
following conditions hold:

ż

Ω

|ρεj ˚ pφjuq ´ φju|q dx ă p2´jδqq

and
ż

Ω

|ρεj ˚ pu∇φjq ´ u∇φj | dx ă 2´jδ.

If u P W 1,1pΩq, then instead we have
ż

Ω

|ρεj ˚ ∇pφjuq ´ ∇pφjuq| dx ă 2´jδ.

Then, we set uδ “
ř8

j“1 ρεj ˚ puφjq. The function uδ is smooth because each of the
terms is smooth and the sum is locally finite. Our choice of the sequence εj yields
that

ˆ
ż

Ω

|uδ ´ u|q dx

˙1{q

ď

8
ÿ

j“1

ˆ
ż

Ω

|ρεj ˚ pφjuq ´ φju|q dx

˙1{q

ă δ;
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similarly,
ż

Ω

|Duδ| “

ż

Ω

|∇uδ| dx ă

8
ÿ

j“1

ż

Ω

φj |Du| ` δ “

ż

Ω

|Du| ` δ.

Since δ P p0, 1q was arbitrary, we conclude the proof of points (i)-(iii). Finally, the
claim for functions in W 1,1pΩq follows from

ż

Ω

|∇uδ ´ ∇u| dx ď

8
ÿ

j“1

ż

Ω

|ρεj ˚ ∇pφjuq ´ ∇pφjuq| dx ă δ.

and letting δ Ñ 0. □

Exercise 1.17. Prove point (iv).

Exercise 1.18. For un as in the statement of the Theorem, show that the
measures ∇un dx converge weakly to the measure Du.

One of the most important properties of functions of bounded variation is the
coarea formula, which related the total variation of a BV function with perimeters
of its superlevel sets.

Memo 4 (Co-area formula for Lipschitz functions). Suppose that Ω Ă RN is open
and u : Ω Ñ R is Lipschitz. Then, for any g P L1pΩq (or nonnegative), we have

ż

Ω

g |∇u| dx “

ż 8

´8

ˆ
ż

u´1ptq

g dHN´1

˙

dt.

In particular, taking g ” 1 we obtain
ż

Ω

|∇u| dx “

ż 8

´8

HN´1pu´1ptqq dt.

This second equality can be generalised to the following statement.

Theorem 1.19 (Coarea formula). For u P L1pΩq, denote Et :“ tx P Ω :
upxq ą tu. If u P BV pΩq, then Et has finite perimeter for L1-a.e. t P R and

|Du|pΩq “

ż 8

´8

P pEt,Ωq dt.

Conversely, if u P L1pΩq and

(1.4)

ż 8

´8

P pEt,Ωq dt ă 8,

then u P BV pΩq.

An even stronger claim is true: for every Borel set B Ă Ω, we have

|Du|pBq “

ż 8

´8

|DχEt |pBq dt and DupBq “

ż 8

´8

DχEtpBq dt.

Proof. Step 1. We start by proving the second part. Assume that u P L1pΩq

satisfies condition (1.4). First, we show that for all φ P C8
c pΩ;RN q with }φ}8 ď 1
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we have

(1.5)

ż

Ω

udivpφq dx “

ż 8

´8

ˆ
ż

Et

divpφq dx

˙

dt.

To see this, consider the following two cases. First, let u ě 0. Then, for LN -a.e.
x P Ω we have

upxq “

ż 8

0

χ
Et

pxq dt.

Therefore,
ż

Ω

udivpφq dx “

ż

Ω

ˆ
ż 8

0

χ
Et

pxq dt

˙

divpφqpxq dx

“

ż 8

0

ˆ
ż

Ω

χ
Etpxqdivpφqpxq dx

˙

dt “

ż 8

0

ˆ
ż

Et

divpφq dx

˙

dt.

Similarly, for u ď 0 observe that for LN -a.e. x P Ω we have

upxq “

ż 0

´8

pχEtpxq ´ 1q dt

and hence

ż

Ω

udivpφq dx “

ż

Ω

ˆ
ż 0

´8

pχEt
pxq ´ 1q dt

˙

divpφqpxq dx

“

ż 0

´8

ˆ
ż

Ω

pχEt
pxq ´ 1qdivpφqpxq dx

˙

dt “

ż 0

´8

ˆ
ż

Et

divpφq dx

˙

dt.

The general case follows by decomposing u into a positive and negative part, i.e.,
u “ u` ´ u´; thus, formula (1.5) is proved. Consequently,

ż

Ω

udivpφq dx “

ż 8

´8

ˆ
ż

Et

divpφq dx

˙

dt ď

ż 8

´8

|DχEt
|pΩq dt.

By taking supremum over φ, we get

|Du|pΩq ď

ż 8

´8

|DχEt
|pΩq dt,

which concludes the proof of the second part.

Memo 5 (Fatou lemma). Fix a measure space pX,µq. Let fn : X Ñ r0,`8s be a
sequence of µ-measurable functions (not necessarily integrable). Then

ż

X

ˆ

lim inf
nÑ8

fn

˙

dµ ď lim inf
nÑ8

ż

X

fn dµ.

Step 2. We now prove the first part. For smooth functions, by Sard’s theorem the
preimage of almost every level set is a smooth manifold, and therefore the perimeter
of Et coincides with the Hausdorff measure of BEt, so the claim follows from the
co-area formula for Lipschitz functions (Memo 4).
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We need to show that this implies the co-area formula for any BV function.
Take u P BV pΩq and let un P C8pΩq be the approximation sequence given by the
Meyers-Serrin theorem (Theorem 1.16). Then, un Ñ u in L1pΩq, and if we denote

Ent “ tx P Ω : unpxq ą tu

we get that
ż 8

´8

|χEn
t

pxq ´ χ
Etpxq| dt “

ż maxpupxq,unpxqq

minpupxq,unpxqq

dt “ |unpxq ´ upxq|,

and consequently
ż

Ω

|unpxq ´ upxq| dx “

ż 8

´8

ˆ
ż

Ω

|χEn
t

pxq ´ χ
Etpxq| dx

˙

dt.

Since un Ñ u in L1pΩq, by the above equation we may find a subsequence which
satisfies χEn

t
Ñ χ

Et in L
1pΩq for a.e. t P R. Then, lower semicontinuity of the total

variation implies

|DχEt
|pΩq ď lim inf

nÑ8
|DχEn

t
|pΩq.

Applying the Fatou lemma (Memo 5) gives
ż 8

´8

|DχEt
|pΩq dt ď lim inf

nÑ8

ż 8

´8

|DχEn
t

|pΩq “ lim inf
nÑ8

|Dun|pΩq “ |Du|pΩq,

since the co-area formula holds for smooth functions and un converges strictly to u.
□

1.2. Embedding theorems and compactness

The next several results concern bounds on the LN{pN´1q norm of a function of
bounded variation in terms of its total variation. We present results both of Sobolev
and Poincaré type.

Theorem 1.20 (Sobolev inequality). Let N ą 1. There exists a constant
C ą 0 depending only on the dimension such that

}u}LN{N´1pRN q ď C|Du|pRN q

for all u P BV pRN q.

Proof. The result follows by approximating with Sobolev functions and a
corresponding inequality for Sobolev functions. To be precise, let un P C8

c pRN q

be the sequence given by the Meyers-Serrin theorem (Theorem 1.16), i.e., un Ñ u
in L1pRN q and LN -a.e., and |Dun|pRN q Ñ |Du|pRN q. Then, by the Fatou lemma
(Memo 5),

}u}LN{pN´1qpRN q ď lim inf
nÑ8

}un}LN{pN´1qpRN q,

and since for the approximating sequence we have the Gagliardo-Sobolev-Nirenberg
inequality, i.e.,

}un}LN{pN´1qpRN q ď C}∇un}L1pRN q,
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we conclude that

}u}LN{pN´1qpRN q ď lim inf
nÑ8

C}∇un}L1pRN q “ lim
nÑ8

C}∇un}L1pRN q “ C|Du|pRN q

and in particular the left-hand side is finite. □

A second result of this type is the Poincaré inequality. The proof is very similar,
but we give it for completeness. In what follows, we consider Ω to be a bounded
Lipschitz domain. The main reason is that Lipschitz domains are extension domains
for the Sobolev space W 1,1, and so we will be able to deduce the LN{pN´1q bound
using approximations by Sobolev functions.

Theorem 1.21 (Poincaré inequality). Fix N ą 1 and let Ω be a bounded
Lipschitz domain in RN . If Ω is connected, then for all u P BV pΩq we have

}u´ uΩ}LN{pN´1qpΩq ď C|Du|pΩq

for some constant C depending only on the width of Ω. Here,

uΩ “
1

LN pΩq

ż

Ω

upxq dx

denotes the mean value of u in Ω.

Proof. Let un P C8
c pΩq be the sequence given by the Meyers-Serrin theorem

(Theorem 1.16), i.e., un Ñ u in L1pΩq and LN -a.e., and |Dun|pΩq Ñ |Du|pΩq.
Clearly, the condition that un Ñ u in L1pΩq implies that punqΩ Ñ uΩ. Thus, the
Fatou lemma (Memo 5) yields

}u´ uΩ}LN{pN´1qpΩq ď lim inf
nÑ8

}un ´ punqΩ}LN{pN´1qpΩq,

and since for the approximating sequence we have the Poincaré inequality, i.e.,

}un ´ punqΩ}LN{pN´1qpΩq ď C}∇un}L1pΩq,

we conclude that

}u´ uΩ}LN{pN´1qpΩq ď lim inf
nÑ8

C}∇un}L1pΩq “ lim
nÑ8

C}∇un}L1pΩq “ C|Du|pΩq

and in particular the left-hand side is finite. □

Let us turn to some interesting geometric implications of the two embedding
theorems above. First, as a consequence of the Sobolev inequality, we get a simple
proof of the isoperimetric inequality in a very general setting.

Theorem 1.22. Let N ą 1. For any set E of finite perimeter in RN we have

LN pEq ď CrPerpEqs
N

N´1

for some dimensional constant C.

Proof. Take u “ χ
E in the Sobolev inequality (Theorem 1.20). Then,

ˆ
ż

RN

pχEqN{pN´1q dx

˙pN´1q{N

ď C ¨ PerpEq.

Since χE takes only values zero and one, we have pχEqN{pN´1q “ χ
E , and taking

both sides to power N
N´1 yields the result. □
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Exercise 1.23. Use the Poincaré inequality (Theorem 1.21) in a similar fashion
to prove the following relative isoperimetric inequality: take any ball Bpx, rq Ă RN .
For any set E of finite perimeter in Bpx, rq, show that

min
␣

LN pBpx, rq X Eq,LN pBpx, rqzEq
(

ď CrP pE,Bpx, rqqs
N

N´1

for some dimensional constant C. Hint: take f “ χ
Bpx,rqXE .

Theorem 1.24 (Embedding Theorem). Let Ω be a bounded Lipschitz do-
main in RN . Then, the embedding BV pΩq ãÑ LN{pN´1qpΩq is continuous and the
embedding BV pΩq ãÑ LppΩq is compact for all 1 ď p ă N

N´1 .

Proof. Continuity of the embedding follows from the Poincaré inequality (The-
orem 1.21); observe that

}u}LN{pN´1qpΩq ď }uΩ}LN{pN´1qpΩq ` }u´ uΩ}LN{pN´1qpΩq

ď |uΩ| ¨ LN pΩqpN´1q{N ` C|Du|pΩq ď C}u}BV pΩq.

Consequently, we also get the embeddings for all p ă N
N´1 .

Concerning compactness of the embeddings for p ă N
N´1 : by the Meyers-Serrin

approximation theorem, for any sequence fn bounded in BV pΩq, one can find a
sequence gn bounded in W 1,1pΩq such that }fn ´ gn}LppΩq ă 1

n . By the Rellich-
Kondrachov theorem for Sobolev functions, the sequence gn (and therefore also fn)
converges to some f in LppΩq, which in this case does not need to lie in any Sobolev
space, but by the lower semicontinuity of the total variation lies in BV pΩq. □

The main application of the above result is that from a bounded family in
BV pΩq we can extract a subsequence which converges in L1pΩq.

Corollary 1.25. Let Ω be a bounded Lipschitz domain in RN . For every
sequence un P BV pΩq with }un}BV pΩq ď M , there exists a subsequence which con-

verges to some u P BV pΩq LN´a.e. and in LppΩq for all p P r1, N
N´1 q. In particular,

un á u weakly* in BV pΩq.

Finally, let us comment on the one-dimensional case. Then, the isoperimet-
ric inequality cannot be formulated in a similar manner, and it is clear that the
Lebesgue measure of a set cannot be estimated from above by its perimeter.

Example 1.26. Consider the sequence of sets En “ r´n, ns Ă R. Then, for all
n P N we have PerpEnq “ |DχEn

|pRq “ 2, but L1pEnq Ñ 8.

However, the Sobolev and Poincaré inequality themselves are valid for N “ 1 if
we understand the exponent N

N´1 as `8, but we need to proceed a bit differently;

we leave the proof as an exercise (a similar result holds on bounded domains).

Exercise 1.27. Show that for all u P C8
c pRq we have

|upbq ´ upaq| ď

ż b

a

|u1| dx,

and thus }u}8 ď C}u}W 1,1pRq. Conclude using the Meyers-Serrin approximation
theorem that for all u P BV pRq we have }u}8 ď C}u}BV pRq.
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1.3. Traces of BV functions

We now turn our attention to boundary values of functions of bounded variation.
Similarly to the case of Sobolev spaces, one can define a trace operator from BV pΩq

to L1pBΩ,HN´1q, which for continuous functions agrees with the restriction to BΩ.

Memo 6. Let A Ă RN and fix s P r0,8q. Then, for any δ ą 0, we define

Hs
δpAq “ inf

" 8
ÿ

j“1

αpsq

ˆ

diampCjq

2

˙s

: A Ă

8
ď

j“1

Cj , diampCjq ď δ

*

,

where αpsq “ πs{2

Γp s
2 `1q

. For s integer, it is the volume of the unit ball. We call

HspAq :“ lim
δÑ0

Hs
δpAq “ sup

δą0
Hs
δpAq

the s-dimensional Hausdorff measure on RN . It is a Borel regular measure.

Keeping in mind that for an open bounded set Ω with Lipschitz boundary the
outer unit normal νΩ exists HN´1-a.e. on BΩ (as a consequence of the Rademacher
theorem, which states that Lipschitz functions are differentiable almost everywhere),
we have the following result.

Theorem 1.28. Let Ω be a bounded Lipschitz domain in RN . There exists a
bounded linear mapping

T : BV pΩq Ñ L1pBΩ,HN´1q

such that
ż

Ω

udivpφq dx`

ż

Ω

φ ¨ drDus “

ż

BΩ

φ ¨ νΩ Tu dHN´1

for all u P BV pΩq and φ P C1pRN ,RN q. Furthermore, T is continuous between
BV pΩq endowed with the topology induced by strict convergence and L1pBΩ,HN´1q.

Proof (omitted). Adaptation of the analogous result for W 1,p functions,
with some minor complications due to using strict approximation in place of ap-
proximation in norm. See for instance [1, 23]. □

The function Tu is called the trace of u on BΩ. To simplify the notation, we
write LppBΩq in place of LppBΩ,HN´1q for all p P r1,8s. We will also use u|BΩ and
uΩ for Tu, and when it is clear from the context, we omit the letter T and simply
denote it by u. Similarly, one can consider traces of functions defined in RNzΩ in
place of functions in Ω. We still denote it by T when it is clear from the context,

and use uR
N

zΩ when necessary.

Corollary 1.29. For any u P BV pΩq and HN´1-a.e. x P BΩ we have

(1.6) lim
rÑ0`

´

ż

Bpx,rqXΩ

|upyq ´ Tupxq| dy “ 0.

In particular, the trace defined in the previous Theorem agrees with restriction to
the boundary for continuous functions, i.e., for any u P CpΩq XBV pΩq we have

Tu “ u|BΩ.
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Proof (omitted). Applying the Vitali covering theorem and the Lebesgue-
Besicovitch differentiation theorem (Memo 8 below) to some fine estimates from the
previous proof. See for instance [1, 23]. □

Also, let us notice that property (1.6) shows that the pointwise trace can be
defined only using information about the behaviour of u near BΩ, and is itself
suitable as a definition of the trace.

Exercise 1.30. Using a similar argument as in the proof above, prove that the
approximation given by the Meyers-Serrin theorem (Theorem 1.16) has the same
trace as the original function.

The trace operator is not continuous with respect to weak* convergence in
BV pΩq; in other words, if we only assume that a sequence un converges weakly* to
u in BV pΩq, it does not follow that the traces also converge. To this end, consider
the following example.

Example 1.31. Let Ω “ p´1, 1q and let un “ χ
r´1` 1

n ,1´ 1
n s. Clearly, un Ñ u

weakly* in BV pΩq, where u ” 1. However, unp´1q “ unp1q “ 0 for all n P N, but
up´1q “ up1q “ 1.

It was proved by Gagliardo in [24] that the trace operator is actually onto
L1pBΩq; given a boundary datum in L1pBΩq, one can find a function in W 1,1pΩq

with desired trace. Moreover, one can require some additional properties of the
extension; to be exact, we have the following result.

Lemma 1.32. Let Ω be a bounded Lipschitz domain in RN . Then, for any given
function f P L1pBΩq and ε ą 0 there exists a function u P W 1,1pΩq satisfying:

u|BΩ “ f ;
ż

Ω

|∇u| dx ď

ż

BΩ

|f | dHN´1 ` ε;

}u}L1pΩq ď ε.

In the case when the boundary datum is continuous, one can require that the
extension is also continuous.

Proof (simplified). Since BΩ is Lipschitz and we only need to extend the
boundary datum in a neighbourhood of BΩ, using an argument based on a partition
of unity and a straightening of the boundary we can reduce the proof to the case
when BΩ “ RN´1, f has compact support in RN´1, and u is a function defined in

RN` :“ tpy1, ..., yN q : y1 ą 0u.

We first pick a sequence of smooth functions fj P CcpRN´1q which converges to f
in L1pRN´1q as j Ñ 8. We can assume that f0 ” 0 and

8
ÿ

j“0

}fj ´ fj`1}L1pRN´1q ă 8.
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Since fj have compact support, for every j P N Y t0u we have that

(1.7) gj :“
N
ÿ

l“2

ż

RN
`

ˆ
ˇ

ˇ

ˇ

ˇ

B

Byl
fj

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

B

Byl
fj`1

ˇ

ˇ

ˇ

ˇ

˙

dx ă 8.

Take a decreasing sequence tj converging to zero; we will fix the exact values of tj
at the end of the proof. Denote the y1 variable by t and set

upt, y1q “

#

0 if t ą t0;
t´tj`1

tj´tj`1
fjpy

1q `
tj´t

tj´tj`1
fj`1py1q if t P rtj`1, tjs

for t ą 0 and y1 P RN´1. By the mean integral formula for the trace (Corollary 1.29)
the trace of u is correct; we only need to prove the desired bound.

To this end, observe that for t P rtj`1, tjs we have the following pointwise
bounds:

ˇ

ˇ

ˇ

ˇ

B

Bt
upt, y1q

ˇ

ˇ

ˇ

ˇ

ď |fjpy
1q ´ fj`1py1q|ptj ´ tj`1q´1;

and for all l “ 2, ..., N we have
ˇ

ˇ

ˇ

ˇ

B

Byl
upt, y1q

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

B

Byl
fjpy

1q

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

B

Byl
fj`1py1q

ˇ

ˇ

ˇ

ˇ

.

We will show that the desired estimates follow. Observe that

|∇u| ď

ˇ

ˇ

ˇ

ˇ

B

Bt
u

ˇ

ˇ

ˇ

ˇ

`

N
ÿ

l“2

ˇ

ˇ

ˇ

ˇ

B

Byl
u

ˇ

ˇ

ˇ

ˇ

ď |fj ´ fj`1|ptj ´ tj`1q´1

`

N
ÿ

l“2

ˆ
ˇ

ˇ

ˇ

ˇ

B

Byl
fj

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

B

Byl
fj`1

ˇ

ˇ

ˇ

ˇ

˙

,

and integrating this inequality over RN` we get

ż

RN
`

|∇u| dx ď

8
ÿ

j“0

}fj ´ fj`1}L1pRN´1q `

8
ÿ

j“0

ptj ´ tj`1q gj ,(1.8)

where gj is given by (1.7). Choosing the sequence tj in such a way that t0 ă ε and

tj ´ tj`1 ď
}f}L1pRN´1q

1 ` gj
2´j´2ε,

using (1.8) we obtain that the estimate involving the gradient. It is easy to see that
the bound on the support holds, which concludes the proof. □

Exercise 1.33. Make precise the first part of the argument involving the par-
tition of unity.

Exercise 1.34. Make precise the part of the argument showing that the trace
is correct.

The following result concerns the total variation of a function constructed from
a function in BV pΩq and a function in BV pRNzΩq. It turns out that it is given by
is the total variations of the original functions plus a boundary term.
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Theorem 1.35. Let u1 P BV pΩq and u2 P BV pRNzΩq. We define

vpxq “

$

&

%

u1pxq if x P Ω;

u2pxq if x P RNzΩ.

Then, v P BV pRN q and

|Dv|pRN q “ |Du1|pΩq ` |Du2|pRNzΩq `

ż

BΩ

|Tu1 ´ Tu2| dHN´1.

Proof. Take a test function φ P C8
c pRN ;RN q with |φ| ď 1. Then, applying

the trace theorem (technically, RNzΩ does not satisfy the assumptions as it is not
a bounded domain, but we may restrict to the case of a bounded domain as φ has
compact support), we see that

ż

RN

v divpφq dx “

ż

Ω

u1 divpφq dx`

ż

RN zΩ

u2 divpφq dx

(1.9)

“ ´

ż

Ω

φdrDu1s ´

ż

RN zΩ

φdrDu2s `

ż

BΩ

pTu1 ´ Tu2qφ ¨ νΩ dHN´1

ď

ż

Ω

|Du1| `

ż

RN zΩ

|Du2| `

ż

BΩ

|Tu1 ´ Tu2| dHN´1,

which proves the inequality in one direction, and in particular we conclude that
v P BV pRN q.

To obtain an equality, observe that by testing the definition of the distributional
derivative with functions whose support lies entirely in the open set Ω or RNzΩ,

(1.10) Dv “

"

Du1 in Ω;
Du2 in RNzΩ.

Then, applying the first part of (1.9), we have

´

ż

RN

φdrDvs “

ż

RN

v divpφq dx

“ ´

ż

Ω

φdrDu1s ´

ż

RN zΩ

φdrDu2s `

ż

BΩ

pTu1 ´ Tu2qφ ¨ νΩ dHN´1,

so equation (1.10) implies that

´

ż

BΩ

φdrDvs “

ż

BΩ

pTu1 ´ Tu2qφ ¨ νΩ dHN´1.

Thus, |Dv|pBΩq “
ş

BΩ
|Tu1 ´ Tu2| dHN´1, which concludes the proof. □

1.4. Fine properties of BV functions

Finally, we turn our attention to pointwise properties of functions of bounded
variation. We recall the notions of the reduced boundary and measure-theoretic
boundary of a set of finite perimeter and use them to describe pointwise behavior
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of BV functions at the discontinuity points. As a preparation, let us recall the
Radon-Nikodym theorem.

Memo 7. Let µ and ν be two Radon measures on RN and assume that ν ! µ, i.e.,
for every Borel set A Ă RN the condition µpAq “ 0 implies νpAq “ 0. For every
x P RN , denote

dν

dµ
pxq :“

$

&

%

lim
rÑ0

νpBpx, rqq

µpBpx, rqq
if µpBpx, rqq ą 0 for all r ą 0;

`8 if µpBpx, rqq “ 0 for some r ą 0.

Then, dν
dµ pxq is well-defined µ-a.e., and for any Borel set A Ă RN

νpAq “

ż

A

dν

dµ
dµ,

i.e., dν
dµ is the density of ν with respect to µ. In particular, every Radon measure

µ is absolutely continuous with respect to its total variation |µ|, so the Radon-

Nikodym derivative dµ
d|µ|

is well-defined |µ|-a.e.

With this definition in mind, from now on we will denote by Du
|Du|

the Radon-

Nikodym derivative of the distributional gradient Du with respect to its total vari-
ation |Du|; and by νE we denote the measure-theoretical outer normal to a set E
of finite perimeter, i.e., νE “ ´ Du

|Du|
.

Definition 1.36. Let E be a set of finite perimeter in RN . We say that
x P B˚E, the reduced boundary of E, if the following conditions hold:

(i) |DχE |pBpx, rqq ą 0 for all r ą 0;
(ii)

lim
rÑ0`

´

ż

Bpx,rq

νE d|DχE | “ νEpxq;

(iii) |νEpxq| “ 1.

By definition, the reduced boundary of a set of finite perimeter is where the
perimeter measure |DχE | is concentrated; by the Lebesgue-Besikovitch differentia-
tion theorem (Memo 8 below), we have

|DχE |pRNzB˚Eq “ 0.

Memo 8 (Lebesgue-Besikovitch differentiation theorem). Let µ be a Radon mea-
sure on RN and let f P L1

locpRN , µq. Then,

lim
rÑ0`

´

ż

Bpx,rq

f dµ “ fpxq

for µ-a.e. x P RN .

An important related notion is that of the measure-theoretic boundary of E,
which has a bit weaker properties, but is easier to deal with in specific applications.

Definition 1.37. Given a measurable set E Ă RN , we denote

Ep1q :“

"

x P RN : lim
rÑ0

LN pBpx, rq X Eq

LN pBpx, rqq
“ 1

*
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to be the set of points of density one. Similarly,

Ep0q :“

"

x P RN : lim
rÑ0

LN pBpx, rq X Eq

LN pBpx, rqq
“ 0

*

is the set of points of density zero. Finally, we call

BmE “ RNzpEp0q Y Ep1qq

the measure-theoretic boundary of E.

Exercise 1.38. Let E “ r0, 1s2 Ă R2. Find the sets B˚E and BmE.

Theorem 1.39. Suppose that E is a set of finite perimeter. Then, we have the
inclusions

B˚E Ă BmE Ă BE.

Proof. The inclusion BmE Ă BE is obvious; let us focus on the inclusion
B˚E Ă BmE. First, observe that replacing E with Ep1q does not change B˚E or
BmE, as these objects remain the same after modifications of E on a set of measure
zero; for the rest of the proof, we will work with E “ Ep1q.

Fix x P B˚E. By the trace theorem (Theorem 1.28) applied to the case Ω “

Bpx, rq and u “ χEXBpx,rq, for all φ P C1
c pRN ;RN q we have

(1.11)

ż

EXBpx,rq

divpφq dy “

ż

Bpx,rq

φ ¨ νE d|DχE | `

ż

EXBBpx,rq

φ ¨ νΩdHN´1

for L1-a.e. r ą 0, i.e., those for which |DχE |pBpx, rqq “ 0. The minus sign in the
second term disappears because νE is the outer normal. Thus, considering |φ| ď 1
and using the representation of the total variation as a supremum, we get

(1.12) |DχEXBpx,rq|pRN q ď }DχE |pBpx, rqq ` HN´1pE X BBpx, rqq.

Choose a test function φ P C8
c pRN ;RN q such that φ ” νEpxq on Bpx, rq; this is

clearly possible since νEpxq is a constant. Then, equation (1.11) becomes

0 “

ż

Bpx,rq

νEpxq ¨ νE d|DχE | `

ż

EXBBpx,rq

νEpxq ¨ νΩdHN´1

We rewrite this as
ż

Bpx,rq

νEpxq ¨ νE d|DχE | “ ´

ż

EXBBpx,rq

νEpxq ¨ νΩdHN´1,

and observe that the left hand side is arbitrarily close to |DχE |pBpx, rqq as r Ñ 0 by
the definition of reduced boundary; on the other hand, the right-hand side can be
estimated from above by the N ´1-dimensional Hausdorff measure of EX BBpx, rq.
Thus, for sufficiently small r ą 0 we have

1

2
|DχE |pBpx, rqq ď HN´1pE X BBpx, rqq.

The above and estimate (1.12) give that

(1.13) |DχEXBpx,rq|pRN q ď 3HN´1pE X BBpx, rqq.

for sufficiently small r ą 0.
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Now, denote gprq “ LN pBpx, rq X Eq. By the Fubini theorem in spherical
coordinates, we have that

gprq “

ż r

0

HN´1pBBpx, sq X Eq ds

and consequently g1prq “ HN´1pBBpx, rq XEq for a.e. r ą 0. Thus, by the isoperi-
metric inequality (Theorem 1.22) and estimate (1.13) we obtain

gprq1´ 1
N “ pLN pBpx, rq X Eqq1´ 1

N ď C|DχBpx,rqXEq|pRN q

ď CHN´1pBBpx, rq X Eq “ Cg1prq.

This differential inequality for g implies that

1

C
ď g1prqgprq

1
N ´1 “ npg

1
N prqq1,

so g
1
N prq ě r

C¨N and consequently gprq ě crN for some c ą 0 and sufficiently small
r ą 0. Thus,

lim inf
rÑ0

LN pBpx, rq X Eq

rN
ą c ą 0.

An analogous argument applied to RNzΩ yields

lim inf
rÑ0

LN pBpx, rqzEq

rN
ą c ą 0,

and consequently x P BmE. The constant c depends only on N . □

The main feature of the reduced boundary of a set of finite perimeter is a
well-defined approximate tangent hyperplane. For each x P B˚E, we define the
hyperplane

Hpxq :“ ty P RN : νEpxq ¨ py ´ xq “ 0u

and the half-spaces

H`pxq :“ ty P RN : νEpxq ¨ py ´ xq ě 0u

and

H´pxq :“ ty P RN : νEpxq ¨ py ´ xq ď 0u.

The following result describes the local behaviour of E around a point in B˚E.

Theorem 1.40. Assume x P B˚E. Then,

lim
rÑ0`

LN pBpx, rq X E XH`pxqq

rN
“ 0,

similarly

lim
rÑ0`

LN ppBpx, rqzEq XH´pxqq

rN
“ 0,

and

lim
rÑ0`

|DχE |pBpx, rqq

ωN´1rN´1
“ 1.
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In fact, even a stronger claim is true, called the blow-up of the reduced boundary:
for each x P B˚E, we have

χ
tyPRN :x`rpy´xqPEu Ñ χ

H´pxq in L1
locpRN q

as r Ñ 0.

To conclude the discussion on the set B˚E, we recall (without proof) the main
result underlining the importance of B˚E, which in particular shows that this set is
nonempty for any set of finite perimeter.

Theorem 1.41 (Structure theorem for sets of finite perimeter). Let E be a set
of finite perimeter. Then, we have

|DχE | “ HN´1|B˚E .

Furthermore,

B˚E “

8
ď

k“1

Kk YN,

where |DχE |pNq “ 0, Kk is a compact subset of a C1 hypersurface Sk, and νE |Sk

is normal to Sk.

As an immediate consequence of this result, we have that

HN´1pB˚Eq “ P pE,RN q.

Moreover, for any x P BmE there exists a subsequence rn Ñ 0 such that LN
pBpx,rqXEq

rN

converges to α P p0, 1q; applying the relative isoperimetric inequality to this subse-
quence, we get

0 ă lim sup
rÑ0

minpα, 1 ´ αq rN

rN
ď C ¨ lim sup

rÑ0

|DχE |pBpx, rqq

rN´1
,

and since |DχE |pRNzB˚Eq “ 0, using a standard covering argument we get that
HN´1pBmEzB˚Eq “ 0. As a consequence, BmE has finite HN´1 measure and

HN´1pBmEq “ HN´1pB˚Eq “ P pE,RN q.

The sets B˚E and BmE are used to describe a regular part of the boundary of a set
of finite perimeter; the topological boundary, on the other hand, can in general be
quite irregular.

Example 1.42. Let Ω Ă R2 be a bounded Lipschitz domain and consider the
following sequence of open balls Bpxk, rkq. Enumerate the points of pQ ˆ Qq X Ω
as txku. Fix ε ą 0, take r1 ď ε

2 small enough so that Bpx1, r1q Ă Ω, and denote
F1 “ B1px1, r1q. Then, for any k ě 2, we denote by xnpkq the first point among xk
for which xnpkq R Fk´1, fix rk ď ε

2k
small enough so that Bpxnpkq, rkq Ă ΩzFk´1,

and set

Fk :“
k
ď

i“1

Bpxnpiq, riq.

Then, Fk is an open set of finite perimeter, which satisfies

|Fk| “

k
ÿ

i“1

πr2k ď

k
ÿ

i“1

πε22´2i ď πε2
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and

P pFk,Ωq “

k
ÿ

i“1

2πrk ď

k
ÿ

i“1

2πε2´i ď 2πε.

Thus, if we denote

F8 :“
8
ď

i“1

Bpxnpiq, riq,

we see that by χFk
Ñ χ

F8
in L1pΩq and the above bounds we have χF8

P BV pΩq.
Yet, F8 is dense in Ω, so F8 “ Ω, and consequently BF8 has positive Lebesgue
measure (almost equal to the measure of Ω).

Exercise 1.43. Identify B˚F and BmF in the above example.

We turn our attention to a more precise description of the discontinuity set
of functions of bounded variation. We first recall the notion of the approximate
discontinuity set of a locally integrable function.

Definition 1.44. For a function u P L1
locpΩq, we denote by u^pxq and u_pxq

respectively its lower and upper approximate limits, i.e.:

u^pxq “ sup

"

t P R : lim
rÑ0`

LN ptu ě tu XBpx, rqq

LN pBpx, rqq
“ 1

*

,

u_pxq “ inf

"

t P R : lim
rÑ0`

LN ptu ď tu XBpx, rqq

LN pBpx, rqq
“ 1

*

.

We say that x P Su, the approximate discontinuity set of u, if u^pxq and u_pxq

do not coincide. For any x P ΩzSu, the real number u^pxq “ u_pxq, is called the
approximate limit of u at x and is denoted by ũpxq. Note that for x P ΩzSu, ũpxq is
the unique real number satisfying

lim
rÑ0`

´

ż

Bpx.rq

|upyq ´ ũpxq| dy “ 0.

Now, we recall the definition of the jump set Ju of a BV function.

Definition 1.45. Let u P BV pΩq. We say that x P Ju, the jump set of u, if
there exists a unit vector ν (called the normal vector) and real numbers a ‰ b such
that

lim
rÑ0`

´

ż

Bpx,rqXtxy´x,νyą0u

|upyq ´ a| dy “ 0,

lim
rÑ0`

´

ż

Bpx,rqXtxy´x,νyă0u

|upyq ´ b| dy “ 0.

The triple pa, b, νq is uniquely determined up to permutation of a, b and the sign of
ν and is denoted by pu`pxq, u´pxq, νupxqq.

Clearly, for a set E of finite perimeter, the approximate discontinuity set Sχ
E

agrees with BmE, and by the structure theorem for sets of finite perimeter the jump
set Jχ

E
agrees with the reduced boundary B˚E up to a set of zero HN´1´measure

zero. In general, the relationship between the two sets is a bit more complicated; we
give without proof the following result (which essentially follows from the structure
theorem for sets of finite perimeter).
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Theorem 1.46 (Federer-Vol’pert theorem). Let u P BV pΩq. Then, Su is count-
ably HN´1-rectifiable, i.e., it is contained in a countable union of Lipschitz (even C1)
hypersurfaces up to a set of zero HN´1-measure; Ju is a Borel subset of Su; and

HN´1pSuzJuq “ 0.

On a final note, let us discuss how we can use the definition of the jump set to
analyse in more detail the properties of the distributional derivative Du. To this
end, we first recall the Lebesgue decomposition theorem.

Memo 9 (Lebesgue decomposition theorem). Let µ and ν be Radon measures on
RN . Then, one can uniquely decompose

ν “ νac ` νs,

where νac, νs are Radon measures on RN which satisfy νac ! µ and νs K µ.

Definition 1.47. For u P BV pΩq, we call

Dau “ ∇uLN

where ∇u is the Radon-Nikodym derivative of Du with respect to the Lebesgue
measure LN , the absolutely continuous part of the derivative; we call the measure

Dju :“ Dsu|Ju

the jump part of derivative; and we call

Dcu :“ Dsu|ΩzSu

the Cantor part of derivative.

Observe that the definition of the jump set implies that

Dju “ pu` ´ u´q νuHN´1|Ju

as measures. Applying twice the Lebesgue decomposition theorem, we see that the
following decomposition of Du holds:

Du “ Dau`Dju`Dcu.

We stress that this decomposition of the measure Du does not necessarily hold at
the level of function; the following example appears in [1].

Example 1.48. Let Ω “ Bp0, 1q Ă R2 and take S “ p´1, 0s ˆ 0. Define the
function u : Ω Ñ R using polar coordinates by the formula upr, θq “

?
r sinp θ2 q.

Then, it is clear that u P BV pΩq with Ju “ Su “ Szt0, 0u, and that the Cantor
part of the derivative is equal to zero. Then, if one could decompose u as u “ ua`uj ,
where u P W 1,1pΩq and uj has only jump-type derivative, we would have

∇pu´ uaq “ ∇uj “ 0,

so by the Poincaré inequality u ´ ua is a constant, since u ´ ua P W 1,1pΩzSq and
ΩzS is connected. But then u “ ua ` pu´ uaq P W 1,1pΩq, a contradiction.

Definition 1.49. We say that u P BV pΩq is a special function of bounded
variation, and we write u P SBV pΩq, if the Cantor part of its derivative Dcu is
zero. In other words, for all u P SBV pΩq we have

Du “ Dau`Dju “ ∇uLN ` pu` ´ u´q νuHN´1 Ju.

The space SBV pΩq is a closed subspace of BV pΩq.
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Further reading

For more information, we refer to [1], [23], [28], and [43].



CHAPTER 2

First look at variational problems

In this lecture, we present some basic features a variational problems involving
functionals of linear growth. It turns out that many techniques known from the
p-growth case, when the problems are formulated in the Sobolev space W 1,p with
p ą 1, fail in this case. As a model problem, consider the Dirichlet problem for the
p-Laplacian in a smooth domain Ω Ă RN , i.e.,

$

&

%

´div

ˆ

|∇u|p´2∇u
˙

“ 0 in Ω;

u “ f on BΩ,

where f P W 1´ 1
p ,ppBΩq (the trace space of Sobolev functions), which is the Euler-

Lagrange equation of the minimisation problem

(2.1) min

"

1

p

ż

|∇u|p : u P W 1,ppΩq, u|BΩ “ f

*

.

Using the direct method of calculus of variations, it is easy to prove existence of
minimisers to this problem. Clearly, the functional on W 1,ppΩq given by

F puq “

$

&

%

1

p

ż

|∇u|p if u|BΩ “ f

`8 otherwise

is bounded from below and proper (i.e., not identically equal to `8). Thus, we can
find a minimising sequence un for the minimisation problem (2.1). Now, observe
that the functional F is finite and coercive on

W 1,p
f pΩq :“

"

u P W 1,ppΩq : u|BΩ “ f

*

,

i.e., boundedness of F punq implies boundedness of }un}W 1,ppΩq: indeed, if v P

W 1,ppΩq denotes any extension of f , then by the Poincaré inequality for any u P

W 1,p
f pΩq we have

}u}LppΩq ď }u´ v}LppΩq ` }v}LppΩq ď }∇pu´ vq}LppΩq ` }v}LppΩq

ď }∇u}LppΩq ` }∇v}LppΩq ` }v}LppΩq

“ ppF puqq1{p ` }∇v}LppΩq ` }v}LppΩq,

which yields the claim since v is a fixed function. Therefore, the minimising sequence
un is bounded in W 1,ppΩq and as such has a weakly convergent subsequence. Since

W 1,p
f pΩq is weakly closed, we obtain that the limit function u lies in W 1,p

f pΩq, and
hence the functional F is sequentially weakly lower semicontinuous. Therefore,

F puq ď lim inf
nÑ8

F punq Ñ inf F,

25
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so u is a solution to problem (2.1). It is unique since F is a strictly convex functional.

If we now consider the least gradient problem, i.e., set p “ 1 in the above
calculation, the argument falls apart. The corresponding functional is bounded
from below and proper, and it is finite and coercive on

BVf pΩq :“

"

u P BV pΩq : u|BΩ “ f

*

,

so the minimising sequence un exists and is bounded in BV pΩq, but this is not
enough to conclude the proof. Indeed, the subsequence we would obtain is only
weakly* convergent, and the space BVf pΩq is not closed with respect to weak* con-
vergence (as we saw in Example 1.31). Thus, the functional F is not sequentially
weakly* lower semicontinuous, and we cannot conclude that a minimiser exists; in-
deed, at the end of the lecture we will give an example of nonexistence of minimisers
for this problem. Furthermore, we will also see that uniqueness of solutions may
also fail.

In general, we are interested in minimisation problems which involve functionals
of linear growth, i.e., ones for which the term involving the gradient is of the form
ş

Ω
fpDuq with

m|p| ´ c ď fppq ď Mp1 ` |p|q

for all p P RN . The particular cases we consider in these lectures are the ROF func-
tional, the associated gradient flow, and the least gradient problem. For simplicity,
from now on in the whole lecture series we assume that Ω Ă RN is an open bounded
set with Lipschitz boundary.

2.1. First example: ROF functional

The Rudin-Osher-Fatemi functional E : L2pΩq Ñ r0,`8s, which is the basis of
total variation denoising, is defined by the formula

Epuq “

$

&

%

ż

Ω

|Du| `
λ

2

ż

Ω

pu´ fq2 dx if u P BV pΩq X L2pΩq;

`8 if u P L2pΩqzBV pΩq,

where λ ą 0 is a bias parameter which measures how close the denoised image u
is to the original image f . This model first appeared in [40] and was designed to
sharpen existing edges in a given picture; we will say more about motivations and
relationship to other problems in the next lectures, and for now we focus only on
its analytical properties.

Proposition 2.1. The functional E is lower semicontinuous with respect to
convergence in L2pΩq.

Proof. Suppose that un Ñ u in L2pΩq. Without loss of generality, we may
assume that

lim inf
nÑ8

Epunq ď M ă 8,

which implies

lim inf
nÑ8

ż

Ω

|Dun| ď M ă 8,
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and consequently by the lower semicontinuity of the total variation u P BV pΩq

(since un also converges to u in L1pΩq). Thus,

lim inf
nÑ8

ˆ
ż

Ω

|Dun| `
λ

2

ż

Ω

pun ´ fq2 dx

˙

“ lim inf
nÑ8

ż

Ω

|Dun| ` lim
nÑ8

λ

2

ż

Ω

pun ´ fq2 dx ě

ż

Ω

|Du| `
λ

2

ż

Ω

pu´ fq2 dx,

which concludes the proof. □

Recall that for any given normed space X if a convex function E : X Ñ

p´8,`8s is lower semicontinuous with respect to norm convergence, then it is
lower semicontinuous with respect to weak convergence; thus, E is also lower semi-
continuous with respect to weak convergence in L2pΩq.

Theorem 2.2. The functional E has a unique minimiser in L2pΩq.

Proof. We use the direct method of calculus of variations. Obviously, the
functional E is bounded from below and proper. Thus, there exists a minimising
sequence un for the minimisation of E; since a minimising sequence satisfies

lim inf
nÑ8

Epunq ď M ă 8,

we also have

lim inf
nÑ8

ż

Ω

|un ´ f |2 ď M ă 8,

and therefore un is bounded in L2pΩq (up to taking a subsequence), so un converges
on a subsequence in the weak topology of L2pΩq to some u P L2pΩq. Then, since E
is lower semicontinuous with respect to weak convergence in L2pΩq, we have

inf E “ lim
nÑ8

Epunq ě Epuq,

hence u is a minimiser of E. Since E is strictly convex, the minimiser is unique. □

Exercise 2.3. Verify whether the ROF functional with L1 fidelity term also
has similar properties, i.e., if EL1 : L1pΩq Ñ r0,`8s given by

EL1puq “

$

&

%

ż

Ω

|Du| `
λ

2

ż

Ω

|u´ f | dx if u P BV pΩq;

`8 if u P L1pΩqzBV pΩq

is lower semicontinuous with respect to L1-convergence and has a unique minimiser.

2.2. Relaxation of the functional for the least gradient problem

The next part of this lecture is dedicated to an example of a functional which
is not lower semicontinuous. The lack of lower semicontinuity here is related to
the Dirichlet boundary data; we briefly mention other types of failure of lower
semicontinuity in Theorem 2.9.
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The least gradient problem concerns the minimisation of total variation of a
function for given Dirichlet boundary data f P L1pBΩq, i.e.,

(2.2) min

"
ż

Ω

|Du| : u P BV pΩq, u|BΩ “ f

*

.

Let us consider the energy functional J : L1pΩq Ñ r0,8s associated to the least
gradient problem (2.2), i.e., defined by the formula

Jpuq “

$

&

%

ż

Ω

|Du|, if u P BV pΩq and u “ f on BΩ;

`8 otherwise.

Following the classical reasoning appearing for instance in [2] or [26], we will see
that the functional J : L1pΩq Ñ p´8,`8s defined by

J puq “

$

&

%

ż

Ω

|Du| `

ż

BΩ

|u´ f | dHN´1 if u P BV pΩq;

`8 if u P L1pΩqzBV pΩq,

is the relaxation of the functional J .

Memo 10 (Relaxation). Given a functional F : L1pΩq Ñ R Y t`8u, we call its
sequentially lower semicontinuous envelope F : L1pΩq Ñ R Y t`8u, i.e.,

Fpuq “ inf
!

lim inf
nÑ8

F punq : un Ñ u in L1pΩq

)

the relaxation of F .

This definition is strongly related to the notion of Γ-convergence: relaxation of
a functional arises once one considers a Γ-limit of a constant sequence.

Memo 11 (Γ-convergence). Assume that X is a topological space such that each
point has a countable local basis of neighbourhoods (e.g., X is metric). Then, we
say that a sequence of functionals Fn : X Ñ RY t`8u Γ-converges to a functional
F : X Ñ R Y t`8u, if the following two conditions are satisfied:

1. For any sequence xn P X such that xn Ñ x, we have

F pxq ď lim inf
nÑ8

Fnpxnq;

2. For any x P X there exists a sequence xn Ñ x such that

F pxq ě lim sup
nÑ8

Fnpxnq.

The main property of Γ-convergence related to calculus of variations is that if xn
are minimisers of Fn, then every cluster point of the sequence txnu is a minimiser
of F . Furthermore, Γ-limits are automatically lower semicontinuous, and the Γ-
limit of a constant sequence Fn :“ F is its relaxation F .

To compute the relaxation of J , we first prove the following result.

Proposition 2.4. The functional J is lower semicontinuous on L1pΩq.
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Proof. Let ψ P W 1,1pRNzΩq be a function with compact support and trace f
on BΩ. Denote by uψ P BV pRN q the function defined by

uψpxq “

"

upxq if x P Ω
ψpxq if x P RNzΩ.

By Theorem 1.35,
ż

RN

|Duψ| “

ż

Ω

|Du| `

ż

BΩ

|u´ f | dHN´1 `

ż

RN zΩ

|∇ψpxq| dx.

We rewrite the above as follows:

J puq “

ż

Ω

|Du| `

ż

BΩ

|u´ f | dHN´1 “

ż

RN

|Duψ| ´

ż

RN zΩ

|∇ψpxq| dx.

Now, suppose that un Ñ u in L1pΩq. In particular, also punqψ Ñ uψ in L1pRN q.
Then, by the lower semicontinuity of the total variation,

lim inf
nÑ8

J punq “ lim inf
nÑ8

ż

RN

|Dpunqψ| ´

ż

RN zΩ

|∇ψpxq| dx

ě

ż

RN

|Duψ| ´

ż

RN zΩ

|∇ψpxq| dx “ J puq,

so the functional J is lower semicontinuous on L1pΩq. □

Proposition 2.5. Given u P BV pΩq, there exists a sequence un P W 1,1pΩq

such that un Ñ u in L1pΩq, un “ f on BΩ and

J puq “ lim
nÑ8

Jpunq.

Proof. We set g “ f ´u on BΩ. Let wn be the sequence given by the Meyers-
Serrin theorem (Theorem 1.16), applied for u, and let vn be the sequence given by
the Gagliardo extension theorem (Lemma 1.32), applied for g. We have wn Ñ u in
L1pΩq, vn Ñ 0 in L1pΩq and vn “ g on BΩ. Moreover, we rewrite the estimate in
Lemma 1.32 as

ż

Ω

|Dvn| ď

ż

BΩ

|u´ f | dHN´1 `
1

n
.

Set un “ vn ` wn. Then, un P W 1,1pΩq, un Ñ u in L1pΩq and un “ f on BΩ. We
estimate

J punq “

ż

Ω

|Dun| ď

ż

Ω

|Dvn| `

ż

Ω

|Dwn| ď

ż

BΩ

|u´ f | dHN´1 `
1

n
`

ż

Ω

|Dwn|.

Now, we take the upper limit in the above series of inequalities. By the lower
semicontinuity of J given in Proposition 2.4, we get

J puq ď lim inf
nÑ8

J punq ď lim sup
nÑ8

J punq ď lim sup
nÑ8

ż

Ω

|Dwn| `

ż

BΩ

|u´ f | dHN´1

“ lim
nÑ8

ż

Ω

|Dwn| `

ż

BΩ

|u´ f | dHN´1 “ J puq.

Hence, all the inequalities above are in fact equalities and un satisfies all the desired
properties. □
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Finally, notice that Propositions 2.4 and 2.5 immediately imply the following
Theorem.

Theorem 2.6. Then, the relaxation of the functional J is the functional J ,
i.e.,

J puq “ inf
!

lim inf
nÑ8

Jpunq : un Ñ u in L1pΩq, un “ f on BΩ
)

.

Therefore, the functional J is the ’correct’ functional when we want to study
the least gradient problem. We will come back to this in the last lecture. Once
we identified the relaxed functional, we can apply the direct method of calculus of
variations to conclude that the functional J has a minimiser.

Proposition 2.7. The functional J has a minimiser for any f P L1pΩq.

Proof. Clearly, the functional J is bounded from below and proper (i.e., not
identically equal to `8) on BV pΩq. Moreover, J is coercive, i.e., boundedness of
a family J punq implies boundedness of }un}BV pΩq: indeed, if we extend u by zero

to a function in BV pRN q, then by the Sobolev inequality (Theorem 1.20; see that
the support of u is bounded) and Theorem 1.35 we have

}u}L1pΩq “ }u}L1pRN q ď C

ż

RN

|Du| “ C

ż

Ω

|Du| ` C

ż

BΩ

|u| dHN´1

ď C

ż

Ω

|Du| ` C

ż

BΩ

|u´ f | dHN´1 ` C

ż

BΩ

|f | dHN´1

ď CJ puq ` C

ż

BΩ

|f | dHN´1.

Thus, there is a minimising sequence un for the least gradient problem and it is
bounded in BV pΩq. By Theorem 1.24 it admits a convergent subsequence in L1pΩq.
Since J is lower semicontinuous in L1pΩq by virtue of Proposition 2.4,

J puq ď lim inf
nÑ8

J punq Ñ inf J ,

so u is a minimiser of J . □

However, in this case the minimiser may fail to be unique as J is only convex
and not strictly convex; consider the following simple example.

Exercise 2.8. Let Ω “ p0, 1q and take boundary data given by fp0q “ 0
and fp1q “ 1. Then, show that any nondecreasing function u P BV pp0, 1qq with
up0q, up1q P r0, 1s is a minimiser of J .

For general functionals of linear growth, identification of the relaxed functional
is one of the main priorities in their study. The results are much more difficult
to show and we restrict ourselves to the following statement (without proof; the
assumptions are not optimal, see [4] or [1]).

Theorem 2.9. Suppose that f : ΩˆRN Ñ R is smooth and that for all p P RN
the following limit exists:

f8px, pq :“ lim
tÑ8

fpx, tpq

t
.
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Assume additionally that there exists positive constants such that the following con-
ditions are satisfied:

(a) f is nonnegative and convex in the second variable;
(b) f has linear growth, i.e.,

c1|p| ´ c2 ď fpx, pq ď c3p1 ` |p|q;

(c) f is locally uniformly continuous with respect to x, or more precisely

|x´ x0| ă δ ñ |fpx, pq ´ fpx0, pq| ď εc4p1 ` |p|q;

(d) The rate of convergence f to f8 along each ray is of order Opt´mq, i.e.,

For all t ą 1 we have |fpx, tpq{t´ f8px, pq| ď c5t
´m.

Then, if we define a functional E : L1pΩq Ñ r0,`8s by the formula

Epuq “

$

&

%

ż

Ω

fpx,∇upxqq dx if u P W 1,1pΩq;

`8 otherwise,

its relaxation is the functional E : L1pΩq Ñ r0,`8s given by

Epuq “

$

&

%

ż

Ω

fpx,∇upxqq dx`

ż

Ω

f8

ˆ

x,
dDsu

d|Dsu|

˙

d|Dsu| if u P BV pΩq;

`8 otherwise,

where Dsu is the singular part of Du with respect to the Lebesgue measure (i.e.,

Dsu “ Dju`Dcu) and dDsu
d|Dsu|

is the Radon-Nikodym derivative.

Example 2.10. Using this theorem, we immediately see that the relaxation of

E1puq “

$

&

%

ż

Ω

|∇upxq| dx if u P W 1,1pΩq;

`8 otherwise

is the total variation, i.e.,

E1puq “

$

&

%

ż

Ω

|∇u| dx`

ż

Ω

|Dsu| if u P BV pΩq;

`8 otherwise,

and the relaxation of the area functional

E2puq “

$

&

%

ż

Ω

a

1 ` |∇upxq|2 dx if u P W 1,1pΩq;

`8 otherwise

is the functional

E2puq “

$

&

%

ż

Ω

a

1 ` |∇upxq|2 dx`

ż

Ω

|Dsu| if u P BV pΩq;

`8 otherwise.
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2.3. Why we need to consider relaxations

The variational problem of minimising the integral of the gradient of a function
was first considered by Miranda in [36] in connection to the study of area-minimising
sets. Because this functional has linear growth, the natural energy space for mini-
mizers is the space of functions of bounded variation. The first rigorous definition
of solutions was proposed by Miranda in [36].

Definition 2.11. Let Ω Ă RN be an open bounded set. Given u P BV pΩq, we
say that u is a function of least gradient in Ω, if for all g P BV pΩq with compact
support K Ă Ω we have

ż

K

|Du| ď

ż

K

|Dpu` gq|.

Equivalently, one may assume that g is a BV function with zero trace on BΩ.

This definition is a local version of the minimisation of J ; the relationship is
described in the following result.

Proposition 2.12. For v P BV pΩq satisfying v|BΩ “ f P L1pBΩq, the following
conditions are equivalent:

(i) J pvq ď J puq for all u P BV pΩq.
(ii) v is a function of least gradient.

Proof. (i) implies (ii): If we consider competitors which satisfy u|BΩ “ f , we get
ż

Ω

|Dv| “ J pvq ď J puq “

ż

Ω

|Du|,

which proves the first implication.

(ii) implies (i): Given u P BV pΩq, we have to see that J pvq ď J puq. Fix ε ą 0
and apply the Gagliardo extension theorem (Lemma 1.32). We find w P W 1,1pΩq

satisfying

w|BΩ “ u|BΩ ´ f ;(2.3)
ż

Ω

|Dw| ď

ż

BΩ

|u´ f | dHN´1 ` ε;(2.4)

and

wpxq “ 0 if distpx, BΩq ą ε.

Now, consider the function u ´ w. By (2.3), its trace on BΩ is f . So we may use
(iii) to deduce that

ż

Ω

|Dv| ď

ż

Ω

|Dpu´ wq| ď

ż

Ω

|Du| `

ż

Ω

|Dw|

ď

ż

Ω

|Du| `

ż

BΩ

|u´ f | dHN´1 ` ε

due to (2.4). Thus,

J pvq “

ż

Ω

|Dv| ď J puq ` ε.

Since ε was arbitrary, it follows that J pvq ď J puq holds. □
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Now, we prove Miranda’s theorem on stability of functions of least gradient
functions (see [36]). It was first used to study the local properties of regular points
of area-minimising sets.

Theorem 2.13. Let Ω Ă RN be an open set. Suppose that un P BV pΩq is a
sequence of functions of least gradient in Ω, uniformly bounded in L8pΩq, and let
un Ñ u in L1pΩq. Then, u P BV pΩq and it is a function of least gradient in Ω.

In place of the assumption that un is uniformly bounded in L8pΩq, we may
just assume that the limit function lies in BV pΩq; this assumption is only used to
show that the sequence un is bounded in BV pΩq.

Proof. By the lower semicontinuity of the total variation, it is enough to show
the following estimate

(2.5) sup
nPN

ż

Ω

|Dun| ă 8.

To see this, denote

Ωt “ tx P Ω : distpx, BΩq ą tu

and recall that for sufficiently small t ą 0 the set Ωt has Lipschitz boundary. Clearly,
Ωt is relatively compact in Ω. Then, for almost all t ą 0 we can pick t in such a
way that for all n P N

(2.6)

ż

BΩt

|Dun| “ 0.

Now, for any n P N, we let

gnpxq :“

$

&

%

0 if x P Ωt;

un if x P ΩzΩt.

Since BΩt is Lipschitz, by Theorem 1.35 and equation (2.6) we have
ż

Ωt

|Dgn| “

ż

BΩt

|un| dHN´1 @n P N.

Since un is a function of least gradient in Ω, we get
ż

Ωt

|Dun| “

ż

Ωt

|Dun| ď

ż

Ωt

|Dgn| “

ż

BΩt

|un| dHN´1.

By the assumption that un is uniformly bounded in L8pΩq, the right hand side
is uniformly bounded for all n P N and t ą 0, so (2.5) holds and by the lower
semicontinuity of the total variation we have u P BV pΩq.

Finally, let us see that u is a function of least gradient in Ω. Suppose that
g P BV pΩq has compact support K Ă Ω. We need to show that

(2.7)

ż

K

|Du| ď

ż

K

|Dpu` gq|.

Let A be an open set with Lipschitz boundary, relatively compact in Ω. Assume
additionally that K Ă A, it satisfies (2.6),

ż

BA

|Du| “ 0
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and

lim
nÑ8

ż

BA

|u´ un| dHN´1 “ 0

(we can find such a set thanks to the co-area formula for Lipschitz functions applied
to u “ distpx, BΩq, see Memo 4). For n P N, let

fn :“

$

&

%

u` g in A;

un in ΩzA.

Then, by (2.6) and (2.7), applying Theorem 1.35 and the fact that g “ 0 in ΩzK,
we have

ż

A

|Dfn| “

ż

A

|Dpu` gq| `

ż

BA

|u´ un| dHN´1 @n P N.

Hence, since un is a function of least gradient in Ω, we have
ż

A

|Dun| ď

ż

A

|Dpu` gq| `

ż

BA

|u´ un| dHN´1 @n P N,

so
ż

A

|Dun| ď

ż

A

|Dpu` gq| `

ż

BA

|u´ un| dHN´1 @n P N.

Thus, by the lower semicontinuity of the total variation with respect to the conver-
gence in L1, we obtain that

(2.8)

ż

A

|Du| ď

ż

A

|Dpu` gq|.

Finally, (2.7) is consequence of the inclusion K Ă A, property (2.8) and the fact
that g “ 0 in ΩzK. □

Exercise 2.14. Let Ω “ p0, 1q. Show that if u P L1pp0, 1qq is an unbounded
increasing function, then the truncations un “ Tnpuq are functions of least gradient
which converge to u in L1pΩq, but the limit does not lie in BV pΩq.

The main motivation behind the above result (as suggested by the title of
Miranda’s paper [36]) is that if we consider a set which is a limit of a sequence of
area-minimising sets, then it is itself area-minimising. We start with the following
classical definition.

Definition 2.15. Suppose that E Ă RN is a set of finite perimeter in an open
set Ω. We say that E is area-minimising in Ω, whenever

P pE,Ωq “ inftP pF,Ωq : E∆F Ť Ωu.

Clearly, whenever E is a set of finite perimeter in an open set Ω and χE is a
function of least gradient in Ω, then E is area-minimising in Ω.

Exercise 2.16. Use the co-area formula to prove that the converse also holds,
i.e., E is area-minimising in Ω if and only if χE is a function of least gradient in Ω.

The most important property of functions of least gradient is their connection to
area-minimising sets. The result in the general setting was proved in [8] and states
that boundaries of superlevel sets of a function of least gradient are area-minimising.
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Theorem 2.17. Suppose that u P BV pΩq is a function of least gradient in Ω.
Then, for all t P R, the functions χtuątu and χ

tuětu are also functions of least
gradient in Ω.

Proof. By the coarea formula (Theorem 1.19), for almost all t P R we have
χ

tuątu P BV pΩq and

(2.9)

ż

Ω

|Du| “

ż `8

´8

ˆ
ż

Ω

|Dχtuątu|

˙

dt.

For t P R, let
u1 :“ maxtu´ t, 0u, u2 :“ mintu, tu.

Clearly, we have u1, u2 P BV pΩq. Moreover, u “ u1 ` u2 and by equation (2.9)
ż

Ω

|Du| “

ż

Ω

|Du1| `

ż

Ω

|Du2|.

Then, given any g P BV pΩq, we have
ż

Ω

|Du1| `

ż

Ω

|Du2| “

ż

Ω

|Du| ď

ż

Ω

|Dpu` gq| ď

ż

Ω

|Dpu1 ` gq| `

ż

Ω

|Du2|

and
ż

Ω

|Du1| `

ż

Ω

|Du2| “

ż

Ω

|Du| ď

ż

Ω

|Dpu` gq| ď

ż

Ω

|Dpu2 ` gq| `

ż

Ω

|Du1|,

which shows that u1 and u2 are functions of least gradient in Ω. Therefore, the
functions

uε,t :“
1

ε
mintε, pu´ tq`u

are functions of least gradient in Ω for every ε ą 0 and t P R. Now, since

lim
εÑ0`

ż

Ω

|uε,t ´ χ
tuątu| dx “ 0,

by Theorem 2.13 it follows that χtuątu P BV pΩq and that χtuątu is a function of

least gradient in Ω. If additionally LN ptx P Ω : upxq “ tuq “ 0, then the two
functions coincide and the proof for χtuětu is also concluded.

Now, consider the case when LN ptx P Ω : upxq “ tuq ą 0. Then, there exists
a sequence tn Õ t such that LN ptx P Ω : upxq “ tnuq “ 0 and

lim
nÑ8

ż

Ω

|χtuětnu ´ χ
tuětu| dx “ 0,

whence by the previous result and Theorem 2.13 we have that χtuětu P BV pΩq and
that χtuětu is a function of least gradient in Ω. □

In other words, whenever u P BV pΩq is a function of least gradient, then the
sets tu ą tu and tu ě tu are area-minimising in Ω, and by the regularity theory
for area-minimising sets to conclude that the singular set of their boundaries is of
dimension N ´ 8 (and in dimensions up to seven it is empty).
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Memo 12. For a set E Ă RN , we say that x P BE is a regular point of BE, if there
exists r ą 0 such that BE XBpx, rq is a C2 hypersurface. We denote the set of all
regular points of BE by regpBEq. We also say that x P BE is a singular point of
BE, if x R regpBEq, and denote the set of all singular points of BE by singpBEq.

The size of the singular set for area-minimising hypersurfaces is a classical problem
in geometric measure theory. We have the following result, fully presented in [28]:
suppose that E is area-minimising in an open set Ω Ă RN and E “ Ep1q. Then:

(a) If N ď 7, we have singpBEq X Ω “ H;
(b) If N “ 8, the set singpBEq X Ω consists only of isolated points;
(c) If N ą 8, we have dimHpsingpBEq X Ωq ď N ´ 8.

The estimate in point (a) follows from the fact that for N ď 7 there are no minimal
cones in RN other than halfspaces. As a particular case, in two dimensions BE
consists of a locally finite union of pairwise disjoint line segments. This result is
optimal in the sense that in dimension eight the Simons cone

S “ tx P R8 : x21 ` x22 ` x23 ` x24 ą x25 ` x26 ` x27 ` x28u

is minimal in R8. The analysis in points (b) and (c) follows from the estimates on
the Hausdorff dimension of the singular set of the minimal cones.

This result implies that if u is a function of least gradient in two dimensions,
then (up to a choice of representative) for all t P R each connected component of
Btu ą tu is a line segment. To be more precise, we may write

Btu ą tu “

8
ď

i“1

ℓt,i

where each ℓt,i is a line segment or the empty set. This union is locally finite and
the sets ℓt,i are pairwise disjoint in Ω. If Ω is convex, they are pairwise disjoint

in Ω. As a consequence of this and the pointwise formula for the trace (Corollary
1.29), whenever one of the line segments ℓt,i intersects Ω, it does so either at a
discontinuity point of the boundary datum f or at a point in f´1ptq.

We will use these facts to give explicit solutions to the least gradient problem
in order to highlight some possible irregular behaviour of solutions. The first two
examples concern an explicit construction of solutions (which is a general technique
for strictly convex domains and continuous boundary data, see [42] for the least
gradient problem or [33] for the area functional).

Example 2.18. Let Ω “ Bp0, 1q Ă R2 and consider the boundary datum
fpx, yq “ x. Then, the unique solution to the least gradient problem upx, yq “ x.

Example 2.19. Let Ω “ Bp0, 1q Ă R2 and consider the boundary datum fpθq “

cosp2θq. Then, the unique solution to the least gradient problem is given by

upx, yq “

$

’

’

’

&

’

’

’

%

2x2 ´ 1 if |x| ą
?
2
2 , |y| ă

?
2
2 ;

0 if |x| ă
?
2
2 , |y| ă

?
2
2 ;

1 ´ 2y2 if |x| ă
?
2
2 , |y| ą

?
2
2 .

The second example shows that in general solutions may be nonunique.



2. Variational problems 37

Example 2.20. Let Ω “ Bp0, 1q Ă R2 and consider the boundary datum f :
BΩ Ñ R given by the formula

fpx, yq “

#

1 if |x| ą 1?
2
;

´1 if |y| ą 1?
2
.

Then, the functions uλ given by

uλpx, yq “

$

’

’

’

&

’

’

’

%

1 if |x| ą
?
2
2 , |y| ă

?
2
2 ;

λ if |x| ă
?
2
2 , |y| ă

?
2
2 ;

´1 if |x| ă
?
2
2 , |y| ą

?
2
2

with λ P r´1, 1s are functions of least gradient.

The final example shows that when the domain fails to be strictly convex (or, in
higher dimensions, when the mean curvature of the boundary is not positive), then
the boundary condition may fail to be satisfied in the trace sense even for smooth
boundary data. Therefore, in general we are forced to consider relaxations.

Example 2.21. Let Ω “ r0, 1s2 Ă R2 and consider a boundary datum f P

C8pBΩq such that f “ 0 on three sides of the square t0u ˆ r0, 1s, t1u ˆ r0, 1s and
r0, 1s ˆ t0u. On the remaining side r0, 1s ˆ t0u, we allow for any f P C8

c pp0, 1qq.
Then, there is no solution to the least gradient problem in the trace sense (clearly,
the solution to the relaxed problem exists and it is everywhere equal to zero).

Further reading

The Rudin-Osher-Fatemi model first appeared in [40]; a mathematical overview
of the problem can be found in [3]. Relaxation theorems for general linear growth
functionals first appeared in [4]; the current statement was taken from [1]. Finally,
the Miranda theorem first appeared in [36] and the Bombieri-de Giorgi-Giusti the-
orem in [8]; in both cases, the proof is a bit different as the original formulations
were for functions which only locally have the least gradient property. An up-to-date
overview of topics concerning the least gradient problem can be found in [31].





CHAPTER 3

Anzellotti pairing theory

In this lecture we give a brief description of the pairing between measures and
bounded variation functions given by Anzellotti in [4] and its main properties. Let
1 ď p ď N ; following Anzellotti, for an open bounded set with Lipschitz boundary
Ω Ă RN we denote

XppΩq :“ tz P L8pΩ,RN q : divpzq P LppΩqu.

Our goal is to define a weak normal trace of a vector field in XppΩq and a pairing
between such a vector field and a function in BV pΩqXLqpΩq, where 1

p` 1
q “ 1, which

will act as a replacement of the pointwise product z ¨∇u and enable a generalisation
of the Gauss-Green formula. We assume that N ě 2; the case N “ 1 is considered
separately due to the fact that the divergence is just the derivative and vector fields
with integrable divergence are Sobolev functions. Throughout the whole lecture,
we assume that Ω is an open bounded set in RN with Lipschitz boundary, and we
denote by q P r N

N´1 ,8s the conjugate exponent of p P r1, N s, i.e., 1
p ` 1

q “ 1.

3.1. The generalised pairing pz, Duq

Our main assumption for this lecture is the following joint condition on the
function u and vector field z. Let 1 ď p ď N ; from now on, we assume that

(3.1) u P BV pΩq X LqpΩq and z P XppΩq.

The main settings to which we apply this construction is when p “ N and q “ N
N´1 ,

i.e., the exponent given by the Sobolev embedding, and p “ q “ 2, which we will
use for the study of the total variation flow in the last lecture.

Definition 3.1. For every test function φ P C8
c pΩq, we set

xpz, Duq, φy :“ ´

ż

Ω

udivpφzq dx “ ´

ż

Ω

uφdivpzq dx´

ż

Ω

u z ¨ ∇φdx.

We call pz, Duq the Anzellotti pairing.

Note that under condition (3.1) all the integrals are well-defined and finite. The
newly defined object pz, Duq a priori is a distribution; in the next Proposition, we
prove that it is actually a Radon measure.

Proposition 3.2. Assume that u P BV pΩq XLqpΩq and z P XppΩq. Then, the
distribution pz, Duq is a Radon measure in Ω. Moreover,

ˇ

ˇ

ˇ

ˇ

ż

B

pz, Duq

ˇ

ˇ

ˇ

ˇ

ď }z}8

ż

B

|Du|

39
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for any Borel set B Ď Ω, i.e., it is absolutely continuous with respect to |Du| with
density bounded in L8pΩq by }z}8.

Proof. For now, assume additionally that u P C8pΩq. We note that φz P

XppΩq for all φ P C8
c pΩq. Therefore, using the distributional definition of the

divergence we get

|xpz, Duq, φy| “

ˇ

ˇ

ˇ

ˇ

´

ż

Ω

udivpφzq dx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

Ω

∇u ¨ pφzq dx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

Ω

φpz ¨ ∇uq dx

ˇ

ˇ

ˇ

ˇ

ď }φ}8

ˇ

ˇ

ˇ

ˇ

ż

Ω

z ¨ ∇u dx
ˇ

ˇ

ˇ

ˇ

ď }φ}8}z}8

ż

Ω

|∇u| dx.

In the general case, assuming that u P BV pΩq satisfies the assumption (3.1), take
the sequence uj P W 1,1pΩq XC8pΩq given by the Meyers-Serrin theorem (Theorem
1.16). Then, for any φ P C8

c pΩq we get
(3.2)

lim
jÑ8

xpz, Dujq, φy “ lim
jÑ8

´

ż

Ω

uj divpφzq dx “ ´

ż

Ω

udivpφzq dx “ xpz, Duq, φy.

As a consequence,

|xpz, Duq, φy| “ lim
jÑ8

|xpz, Dujq, φy| ď lim
jÑ8

}φ}8}z}8

ż

Ω

|∇uj | dx

“ }φ}8}z}8

ż

Ω

|Du|.

Thus, pz, Duq is a continuous functional on the space of smooth functions (equipped
with the supremum norm). Since smooth functions are dense in continuous functions
in the supremum norm, pz, Duq defines a continuous functional on the space CpΩq.
By the Riesz representation theorem (Memo 2), we get that pz, Duq is a Radon
measure and

ˇ

ˇ

ˇ

ˇ

ż

B

pz, Duq

ˇ

ˇ

ˇ

ˇ

ď }z}8

ż

B

|Du|,

which concludes the proof. □

As a consequence of the above result, by the Radon-Nikodym theorem (Memo 7)
there exists a |Du|-measurable function

θpz, Du, ¨q : Ω Ñ R

such that
ż

B

pz, Duq “

ż

B

θpz, Du, xq |Du| for all Borel sets B Ă Ω

and

}θpz, Du, ¨q}L8pΩ,|Du|q ď }z}8.

Exercise 3.3. Show that for u P W 1,1pΩq, we have

pz, Duq “ z ¨ ∇u dx

as measures in Ω.
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3.2. Weak integration by parts formula

Our main goal in this lecture is to prove a weak integration by parts formula,
i.e., the weak Gauss-Green formula given in Theorem 3.9. We first prove existence
of the weak normal trace of a vector field with integrable divergence in Theorem
3.5, from which follows the Gauss-Green formula for Sobolev functions, and then
use an approximation as in the Meyers-Serrin theorem (Theorem 1.16) to conclude
the proof in the general case. The heart of the proof lies in Proposition 3.4 and
Theorem 3.5.

We now prove that there exists a function rz, νΩs which has an interpretation of
a weak normal trace of the vector field z P X1pΩq on BΩ. To simplify the notation,
we denote

BV8pΩq “ BV pΩq X L8pΩq.

The proof follows in two steps: in Proposition 3.4 we introduce an auxiliary pairing

xz, uyBΩ : X1pΩq ˆBV8pΩq Ñ R

and then in Theorem 3.5 we provide its integral representation, from which we
deduce existence of a function in L8pBΩq which has an interpretation of a weak
normal trace of the vector field z.

Proposition 3.4. There exists a bilinear map xz, uyBΩ : X1pΩqˆBV8pΩq Ñ R
such that

xz, uyBΩ “

ż

BΩ

u z ¨ νΩ dHN´1 if z P C1pΩ;RN q,

where νΩ denotes the outer unit normal to Ω, and

|xz, uyBΩ| ď }z}8 ¨ }u}L1pBΩq.

Proof. For all z P X1pΩq and u P BV8pΩq XW 1,1pΩq we set

(3.3) xz, uyBΩ “

ż

Ω

udivpzq dx`

ż

Ω

z ¨ ∇u dx.

Clearly, this map is bilinear.

In the general case, due to the fact that Du may be only a measure, the formula
above is not well-defined; we will extend it by approximating general u P BV8pΩq

using smooth functions. To this end, we notice that if u, v P BV8pΩq X W 1,1pΩq

have the same trace, then

(3.4) xz, uyBΩ “ xz, vyBΩ.

To prove this, consider an approximation gj of the function u´v by smooth functions
given by the Meyers-Serrin theorem (Theorem 1.16). Since u´v has trace zero, with
a minor modification of the proof we can require that u ´ v has compact support
in Ω. Then,

xz, u´ vyBΩ “

ż

Ω

pu´ vqdivpzq dx`

ż

Ω

z ¨ ∇pu´ vq dx

“ lim
jÑ8

ˆ
ż

Ω

gj divpzq dx`

ż

Ω

z ¨ ∇gj dx
˙

“ 0,
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where the last equality follows from the distributional definition of the divergence;
this concludes the proof of property (3.4). Since by the Gagliardo extension theorem
(Lemma 1.32) for every u P BV pΩq there exists a function inW 1,1pΩq with the same
trace, for arbitrary u P BV8pΩq we define xz, uyBΩ by

xz, uyBΩ “ xz, vyBΩ,

where v is any function in BV8pΩq XW 1,1pΩq with the same trace as u. In view of
equation (3.4), this uniquely defines xz, uyBΩ for any u P BV8pΩq.

Now, we have to prove the second property. Let us take a sequence uj P

BV8pΩq XC8pΩq which converges to u as in the Meyers-Serrin theorem (Theorem
1.16). Then, we get that

|xz, uyBΩ| “ |xz, ujyBΩ| “

ˇ

ˇ

ˇ

ˇ

ż

Ω

uj divpzq dx`

ż

Ω

z ¨ ∇uj dx
ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż

Ω

uj divpzq dx

ˇ

ˇ

ˇ

ˇ

` }z}8

ż

Ω

|∇uj | dx.

We pass to the limit with j Ñ 8 and obtain

(3.5) |xz, uyBΩ| ď

ˇ

ˇ

ˇ

ˇ

ż

Ω

udivpzq dx

ˇ

ˇ

ˇ

ˇ

` }z}8

ż

Ω

|Du|.

Fix ε ą 0. Observe that by property (3.4), we may take u to be the function
given by the variant of the Gagliardo extension theorem proved in Proposition 1.32;
therefore,

ż

Ω

|∇u| dx ď p1 ` εq}u}L1pBΩq,

and u is supported in ΩzΩε, where

Ωε “ tx P Ω : distpx, BΩq ą εu.

We insert it in the estimate (3.5) and obtain

|xz, uyBΩ| ď }u}8

ˇ

ˇ

ˇ

ˇ

ż

ΩzΩε

divpzq dx

ˇ

ˇ

ˇ

ˇ

` p1 ` εq}z}8}u}L1pBΩq

Since ε was arbitrary, we pass to the limit ε Ñ 0 and obtain

|xz, uyBΩ| ď }z}8}u}L1pBΩq,

which concludes the proof. □

Now, we provide an integral representation of the bilinear map xz, uyBΩ, from
which follows that for every vector field z P X1pΩq there exists a function in L8pBΩq

which has an interpretation of its normal trace.

Theorem 3.5. There exists a linear operator γ : X1pΩq Ñ L8pBΩq such that

}γpzq}L8pBΩq ď }z}8,

and we have the following integral representation: for all u P BV8pΩq

(3.6) xz, uyBΩ “

ż

BΩ

u γpzq dHN´1,

and
γpzqpxq “ z ¨ νΩ if z P C1pΩ;RN q.
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The function γpzq is a weakly defined normal trace of z on BΩ; for this reason, we
will denote it by rz, νΩs.

Proof. Given z P X1pΩq, consider the linear functional G : L8pBΩq Ñ R
defined by the formula

Gpfq “ xz, uyBΩ,

where u P BV8pΩq is such that u “ f on BΩ. By Proposition 3.4, we have

|Gpfq| “ |xz, uyBΩ| ď }z1}8}f}L1pBΩq.

Since G is a continuous functional on (a dense subset of) L1pBΩq, there exists a
function γpzq P L8pBΩq with norm at most equal to }z}8 such that

Gpfq “

ż

BΩ

f γpzq dHN´1,

which concludes the proof. □

Remark 3.6. In [5], Anzellotti proved the following pointwise characterization
of the weak normal trace. Given r, ρ ą 0, denote

Cr,ρpx, αq :“ tξ P RN : |pξ ´ xq ¨ α| ă r, |pξ ´ xq ´ rpξ ´ xq ¨ αsα| ă ρu

for x P BΩ and α P SN´1. Assume that z P X1pΩq. Then,

rz, νΩspxq “ lim
ρÑ0`

lim
rÑ0`

1

2rωN´1ρN´1

ż

Cr,ρpx,νΩpxqq

zpyq ¨ νΩpxq dy

for HN´1-a.e. x P BΩ.

Corollary 3.7. For all z P XppΩq and u P W 1,1pΩq X LqpΩq we have
ż

Ω

udivpzq dx`

ż

Ω

z ¨ ∇u dx “

ż

BΩ

u rz, νΩs dHN´1.

Proof. Since z P XppΩq, we also have that z P X1pΩq and in particular the
weak normal trace rz, νΩs is well-defined. Take a sequence uj which approximates
u as in the Meyers-Serrin theorem (Theorem 1.16). By considering truncations, we
can assume that un is bounded; then, the functions may be no longer smooth or
satisfy the trace constraint, but we have uj P W 1,1pΩq X L8pΩq and the sequence
still satisfies

uj Ñ u in LqpΩq

and

∇uj Ñ ∇u in L1pΩ;RN q,

which follows from the assumption that u P W 1,1pΩq. Then, by the definition of the
bilinear form xz, uyBΩ given in equation (3.3) and the integral representation (3.6),
we have that

ż

Ω

uj divpzq dx`

ż

Ω

z ¨ ∇uj dx “

ż

BΩ

uj rz, νΩs dHN´1.

Passing to the limit j Ñ 8, we obtain the desired result: convergence on the left-
hand side follows from our assumption on the sequence uj and on the right-hand
side from the fact that the trace operator is continuous with respect to convergence
in W 1,1pΩq. □
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Before we prove the Gauss-Green formula, we need one additional technical
result concerning the pairing pz, Duq.

Lemma 3.8. Assume that u P BV pΩqXLqpΩq and z P XppΩq. Let uj P C8pΩqX

BV pΩq converge to u P BV pΩq as in the Meyers-Serrin theorem (Theorem 1.16).
Then, we have

ż

Ω

pz, Dujq Ñ

ż

Ω

pz, Duq.

Proof. Fix ε ą 0 and choose an open set A Ť Ω such that
ż

ΩzA

|Du| ă ε.

Let g P C8
c pΩq be such that 0 ď g ď 1 in Ω and g ” 1 in A. We write 1 “ g`p1´gq

and estimate
ˇ

ˇ

ˇ

ˇ

ż

Ω

pz, Dujq ´

ż

Ω

pz, Duq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

xpz, Dujq, gy ´ xpz, Duq, gy

ˇ

ˇ

ˇ

ˇ

(3.7)

`

ż

Ω

|pz, Dujq|p1 ´ gq `

ż

Ω

|pz, Duq|p1 ´ gq.

We already proved in equation (3.2) that for any g P C8
c pΩq we have xpz, Dujq, gy Ñ

xpz, Duq, gy. Moreover, we have
ż

Ω

p1 ´ gq|pz, Duq| ď

ż

ΩzA

|pz, Duq| ď }z}8

ż

ΩzA

|Du| ă ε}z}8

and similarly

lim sup
jÑ8

ż

Ω

p1 ´ gq|pz, Dujq| ď lim sup
jÑ8

}z}8

ż

ΩzA

|Duj | ď ε}z}8,

so the right-hand side of (3.7) goes to zero as j Ñ 8. □

We conclude by proving the Gauss-Green formula, which relates the measure
pz, Duq with the weak normal trace rz, νΩs.

Theorem 3.9 (Gauss-Green formula). For all functions u P BV pΩq X LqpΩq

and vector fields z P XppΩq we have
ż

Ω

udivpzq dx`

ż

Ω

pz, Duq “

ż

BΩ

u rz, νΩs dHN´1.

Proof. Take an approximation uj P C8pΩq X W 1,1pΩq of u given by the
Meyers-Serrin theorem (Theorem 1.16). Then, by Corollary 3.7 we have

ż

Ω

uj divpzq dx`

ż

Ω

z ¨ ∇uj dx “

ż

BΩ

uj rz, νΩs dHN´1.

We now pass to the limit separately in each term. Since uj Ñ u in LqpΩq and
divpzq P LppΩq, we have

lim
jÑ8

ż

Ω

uj divpzq dx “

ż

Ω

udivpzq dx.
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By Lemma 3.8, we have

lim
jÑ8

ż

Ω

z ¨ ∇uj dx “

ż

Ω

pz, Duq.

Finally, since uj |BΩ “ u|BΩ, we have

lim
jÑ8

ż

BΩ

rz, νΩsuj dHN´1 “

ż

BΩ

rz, νΩsu dHN´1,

which concludes the proof. □

Exercise 3.10. One can prove most of the results in this Section under a
slightly weaker assumption on the vector fields and a slightly stronger assumption
on the functions, namely in place of condition (3.1) assume that

u P BV pΩq X CbpΩq and z P XµpΩq,

where

XµpΩq :“

"

z P L8pΩ;RN q : divpzq P MpΩq

*

.

This corresponds to assumption (c) from the classical paper [4] due to Anzellotti.
Then, we can define pz, Duq as in Definition 3.1, and all the subsequent results
remain true with only minor modifications of the proofs. Work out the necessary
details.

Exercise 3.11. Make a similar construction for N “ 1, when the divergence is
just the derivative and vector fields with integrable divergence are Sobolev functions.

Exercise 3.12. Make a similar construction for Ω “ RN , leading to a Gauss-
Green formula in the following form: for all functions u P BV pΩq and vector fields
z P XppΩq satisfying a suitable compatibility condition, we have

ż

Ω

udivpzq dx`

ż

Ω

pz, Duq “ 0.

3.3. Co-area formula for the pairing

We now move to the last topic concerning Anzellotti pairings, which is a gen-
eralisation of the co-area formula. For u P BV pΩq, we denote by Du

|Du|
the Radon-

Nikodym derivative of Du with respect to |Du|. Denote Et “ tu ą tu. As a
consequence of the co-area formula (Theorem 1.19), for almost all t P R

DχEt

|DχEt
|

“
Du

|Du|
|DχEt

| ´ a.e. in Ω.

A natural question is whether the Anzellotti pairing defined above satisfies an ana-
logue of the co-area formula, and how to formulate it. Our main goal in this section
is to first prove that

xpz, Duq, φy “

ż 8

´8

xpz, DχEt
q, φy dt

holds for all functions φ P C8
c pΩq, and from this deduce the co-area formula for the

measure pz, Duq itself.
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Exercise 3.13. Prove that for almost all t P R
DχEt

|DχEt |
“

Du

|Du|
|DχEt | ´ a.e. in Ω.

First, let us state some technical results. By Proposition 3.2, the measure
pz, Duq is absolutely continuous with respect to the measure |Du|. By the Radon-
Nikodym theorem, there exists a measurable function θpz, Du, xq which is the den-
sity of the measure pz, Duq with respect to |Du|, i.e. for all Borel sets B Ă Ω we
have

ż

B

pz, Duq “

ż

B

θpz, Du, xq d|Du|.

Moreover, by the estimate in Proposition 3.2, we have that

|θpz, Du, xq| ď }z}8 |Du| ´ a.e. in Ω.

Taking a sequence of mollifications of a vector field z P XppΩq, we can easily
prove the following result.

Lemma 3.14. For every z P XppΩq, there exists a sequence zn P C8pΩ;RN q X

XppΩq with the following properties:

(a) }zn}8 ď }z}8;
(b) zn á z weakly* in L8pΩ;RN q and zn Ñ z in LrlocpΩ;RN q for all r P r1,8q;
(c) znpxq Ñ zpxq at every Lebesgue point x of z and uniformly in sets of

uniform continuity of z;
(d) divpznq Ñ divpzq in LplocpΩq.

As a consequence, we get the following pointwise representation result for the
density function θpz, Du, xq.

Proposition 3.15. Assume that u P BV pΩq X LqpΩq and suppose that z P

XppΩq X CpΩ;RN q. Then, we have

(3.8) θpz, Du, xq “ zpxq ¨
Du

|Du|
pxq |Du| ´ a.e. in Ω.

Proof. By the definition of the Radon-Nikodym derivative Du
|Du|

, condition

(3.8) is equivalent to

(3.9) xpz, Duq, φy “

ż

Ω

φ z drDus for all φ P C8
c pΩq.

We first prove the claim for z P C1pΩ;RN q. Take a sequence uj Ñ u as given by
the Meyers-Serrin theorem (Theorem 1.16). By the distributional definition of the
divergence, for all φ P C8

c pΩq we have

xpz, Dujq, φy “ ´

ż

Ω

uj divpφzq dx “

ż

Ω

∇uj ¨ pφzq dx “

ż

Ω

φpz ¨ ∇ujq dx.

By the continuity of z, passing to the limit j Ñ 8 we get that equation (3.9) holds.
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We now allow for general z P CpΩ;RN q. Take a sequence of approximations zn
given by Lemma 3.14 and for any φ P C8

c pΩq calculate

(3.10) xpz, Duq, φy “ lim
nÑ8

xpzn, Duq, φy “ lim
nÑ8

ż

Ω

φ zn drDus “

ż

Ω

φ z drDus,

where the first equality is a consequence of Lemma 3.14 applied directly to the
definition of the pairing, and the last equality follows from continuity of z and
uniform convergence of zn to z on the support of φ. □

Finally, we have the following coarea formula for the Anzellotti pairing.

Theorem 3.16. Assume that u P BV pΩq X LqpΩq and z P XppΩq. Then:

(i) For all φ P CcpΩq, the function t ÞÑ xpz, DχEt
q, φy is L1-measurable and

xpz, Duq, φy “

ż `8

´8

xpz, DχEt
q, φy dt.

(ii) θpz, Du, xq “ θpz, DχEt
, xq |DχEt

|-a.e. in Ω for L1-almost all t P R.
(iii) For all Borel sets B Ă Ω, the function t ÞÑ

ş

B
pz, DχEtq is L1-measurable

and
ż

B

pz, Duq “

ż `8

´8

ˆ
ż

B

pz, DχEt
q

˙

dt.

Proof. (i) Take an approximating sequence zn P C8pΩ;RN qXXppΩq as given
in Lemma 3.14. Then, using Proposition 3.15 and the co-area formula (Theorem
1.19), we get

xpzn, Duq, φy “

ż

Ω

znpxq ¨
Du

|Du|
pxqφpxq d|Du|(3.11)

“

ż 8

´8

ˆ
ż

Ω

znpxq ¨
DχEt

|DχEt |
pxqφpxq d|DχEt |

˙

dt

“

ż 8

´8

xpzn, DχEt
q, φy dt.

Since

|xpzn, DχEt
q, φy| ď }z}8}φ}8

ż

Ω

|DχEt
|

and by the co-area formula the map t ÞÑ
ş

Ω
|DχEt

| is an integrable function in t,
we may apply the dominated convergence theorem to pass to the limit in (3.11).
Using an argument as in (3.10) we conclude the proof of point (i).

(ii) For a, b P R with a ă b, denote by Ta,bpuq the truncation of u at levels a, b, i.e.

Ta,bpuq “

$

&

%

b upxq ě b;
upxq upxq P pa, bq;
a upxq ď a.

Then, by Theorem 1.19 we have DTa,bpuq P BV pΩq and
ş

Ω
|DTa,bpuq| ď

ş

Ω
|Du|.

We first prove that for all a, b P R we have

(3.12) θpz, Du, xq “ θpz, DTa,bpuq, xq |DTa,bpuq| ´ a.e. in Ω.
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Suppose otherwise; then, there exists a Borel set B Ă Ω with positive |DTa,bpuq|-
measure such that a ď upxq ď b almost everywhere on B and

θpz, Du, xq ą θpz, DTa,bpuq, xq |DTa,bpuq| ´ a.e. on B;

the case when the opposite inequality holds is handled similarly. Hence,
ż

B

pz, Duq “

ż

B

θpz, Du, xq|Du| “

ż

B

θpz, Du, xq|DTa,bpuq|(3.13)

ą

ż

B

θpz, DTa,bpuq, xq|DTa,bpuq| “

ż

B

pz, DTa,bpuqq.

Now, notice that
ˇ

ˇ

ˇ

ˇ

ż

B

pz, Duq´

ż

B

pz, DTa,bpuqq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

B

pz, Dpu´ Ta,bpuqqq

ˇ

ˇ

ˇ

ˇ

ď }z}8

ż

B

|Dpu´ Ta,bpuqq| “ }z}8

ż 8

´8

ż

B

|Dχtu´Ta,bpuqětu| dt

“ }z}8

ż a

´8

ż

B

|DχEt | dt` }z}8

ż 8

b

ż

B

|DχEt | dt “ 0,

since a ď u ď b a.e. on B. This gives a contradiction with (3.13), so (3.12) holds.

Now, we use point (i) for the function Ta,bpuq: for any φ P C8
c pΩq

(3.14) xpz, DTa,bpuqq, φy “

ż b

a

xpz, DχEt
q, φy dt,

where expanding the right-hand side yields

xpz, DTa,bpuqq, φy “

ż b

a

ˆ
ż

Ω

θpz, DχEt
, xqφpxq d|DχEt

|

˙

dt.

Since by equation (3.12) and the co-area formula (Theorem 1.19) we can write the
left-hand side of (3.14) in the following way

xpz,DTa,bpuqq, φy “

ż

Ω

φdpz, DTa,bpuqq “

ż

Ω

θpz, DTa,bpuq, xqφpxq d|DTa,bpuq|

“

ż

Ω

θpz, Du, xqφpxq d|DTa,bpuq| “

ż b

a

ˆ
ż

Ω

θpz, Du, xqφpxq d|DχEt
|

˙

dt,

we get that

ż b

a

ˆ
ż

Ω

θpz, Du, xqφpxq d|DχEt |

˙

dt “

ż b

a

ˆ
ż

Ω

θpz, DχEt , xqφpxq d|DχEt |

˙

dt.

Since a and b were arbitrary, we get that for almost all t P R we have
ż

Ω

θpz, Du, xqφpxq d|DχEt
| “

ż

Ω

θpz, DχEt
, xqφpxq d|DχEt

|,

and since φ was arbitrary, by a density argument we finish the proof of point (ii).
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(iii) This point is an immediate consequence of (ii), since
ż

B

pz, Duq “

ż

B

θpz, Du, xq|Du| “

ż 8

´8

ˆ
ż

B

θpz, Du, xq|DχEt
|

˙

dt

“

ż 8

´8

ˆ
ż

B

θpz, DχEt
, xq|DχEt

|

˙

dt “

ż 8

´8

ˆ
ż

B

pz, DχEt
q

˙

dt.

□

We now show that the Radon-Nikodym derivative θ is invariant under monotone
Lipschitz transformations of the real line.

Proposition 3.17. Assume that u P BV pΩq X LqpΩq and z P XppΩq. If T :
R Ñ R is a Lipschitz continuous increasing function, then

θpz, DpT ˝ uq, xq “ θpz, Du, xq |Du| ´ a.e. in Ω.

Proof. Denote by Fs the superlevel sets of T ˝ u, i.e., Fs “ tpT ˝ uq ą su.
Then, observe that

Et “ tx P Ω : upxq ą tu “ tx P Ω : pT ˝ uqpxq ą T ptqu “ FT ptq,

so for almost all t P R we have

DχEt “ DχFT ptq

as measures. Hence, by Theorem 3.16(ii), for L1-almost all t P R
θpz, Du, xq “ θpz, DχEt , xq “ θpz, DχFT ptq

, xq “ θpz, DpT ˝ uq, xq

|DχEt |-a.e. in Ω. By the co-area formula (Theorem 1.19), this equality also holds
|Du|-a.e., which concludes the proof. □

Exercise 3.18. Show that whenever the function u satisfies the chain rule
Dpf ˝ uq “ f 1puqDu for all Lipschitz functions f : R Ñ R, the result above extends
to all nondecreasing Lipschitz functions T : R Ñ R (with the desired property valid
|DpT ˝ uq|-a.e. in Ω).

Further reading

The original construction of the pairing pz, Duq and the weak normal trace
rz, νΩs is due to Anzellotti [4]. At the same time, a similar pairing has been intro-
duced by Kohn and Temam in [32]. For further properties of Anzellotti pairings,
see for instance [14, 17]. An overview of Anzellotti pairings, including their appli-
cations to PDEs, can be found in [3].





CHAPTER 4

Rudin-Osher-Fatemi model of image denoising

This lecture is devoted to the study of the Euler-Lagrange equation for the
minimisation of the Rudin-Osher-Fatemi functional [40], introduced already in the
second lecture, which is the basis of total variation denoising. We set E : L2pΩq Ñ

r0,`8s by the formula

Epuq “

$

&

%

ż

Ω

|Du| `
λ

2

ż

Ω

pu´ fq2 dx if u P BV pΩq X L2pΩq;

`8 if u P L2pΩqzBV pΩq,

where λ ą 0 is a bias parameter. This is a classical problem in image restoration:
given a corrupted image f P L2pΩq, the goal is to remove the “noise” and recover
the uncorrupted image u P L2pΩq. In other words, we aim to decompose f as

f “ u` n,

where n is the additive noise with small L2 norm. The function n includes both the
“white noise” and the textured part, i.e., periodic structures with small amplitude.

The ROF model is closely related to another model from image processing,
called the Chan-Vese model [16]. Let Ω Ă R2 be sufficiently regular bounded
domain and µ ą 0 be a fidelity parameter. Given an initial image f : Ω Ñ r0, 1s,
we aim to find a set of finite perimeter Λ Ă Ω and two constants m0 and m1, which
represent the light intensity in the foreground and background regions of an image,
which minimise

P pΛ,Ωq ` µ

ˆ
ż

Λ

pm1 ´ fpxqq2 dx`

ż

ΩzΛ

pm0 ´ fpxqq2 dx

˙

among all sets of finite perimeter and constants between 0 and 1. This corresponds
to the segmentation of the image Ω into a light and dark area. It can be looked
at as a simple case of the Mumford-Shah functional [39], in which one considers
only piecewise constant functions with two values. It is difficult to study the CV
functional directly, due to the lack of convexity, and instead one can do this through
the ROF model; for a suitable choice of λ depending on m0,m1 and µ, level sets
of the unique minimiser of the ROF functional are solutions to the constrained CV
model with the parameters m0,m1 fixed [12].

Since the functional E is not regular enough, as it involves the total variation
measure, we cannot assign to it an Euler-Lagrange in the classical sense (i.e., by
considering variations of E in different directions). We will do so in a generalised
sense using the notions of convex analysis we introduce below.
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4.1. Subdifferentials of convex functions

Let pE, } ¨ }q be a real Banach space. In this Section, by an operator in E we
will understand a multivalued operator, i.e., a mapping

A : E Ñ 2E ,

where 2E denotes the collection of all subsets of E. Equivalently, we can think of a
multivalued operator as a subset of E ˆ E: if we denote by

GpAq :“ tpx, yq P E ˆ E : y P Axu

the graph of an operator A, then the set GpAq determines uniquely the operator A
since

Ax “ ty P E : px, yq P GpAqu.

Furthermore, let us denote by

DpAq :“ tx P E : Ax ‰ Hu

the effective domain of A and by

RpAq :“
ď

xPE

tAx : x P DpAqu

its range. Clearly, to every multivalued operator we can assign its (also multivalued)
inverse, i.e. the operator

A´1x :“ ty P E : x P Ayu.

The most important example of a multivalued operator is the subdifferential of a
convex function.

Definition 4.1. Let F : E Ñ p´8,`8s be proper (i.e. F ı `8) and convex,
i.e.

Fptx` p1 ´ tqyq ď tFpxq ` p1 ´ tqFpyq @x, y P E and t P p0, 1q.

The subdifferential (or subgradient) BF of the functional F is defined as

BFpxq “

"

x˚ P E˚ : Fpyq ´ Fpxq ě xx˚, y ´ xy @ y P E

*

,

where E˚ denotes the dual of E. Equivalently, if we identify a multivalued operator
with its graph, it is a subset of E ˆ E˚ defined by

BF “

"

px, x˚q P E ˆ E˚ : Fpyq ´ Fpxq ě xx˚, y ´ xy @ y P E

*

.

The geometric idea behind the subdifferential is that it describes the set of
supporting hyperplanes which lie below the graph of a convex function. Let us
first see several examples of subdifferentials; then, we will discuss how they arise in
calculus of variations and in the study of evolution equations.

Example 4.2. Suppose that E “ RN and f : RN Ñ R is differentiable. Then,
Bfpxq “ t∇fpxqu.
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Example 4.3. Let E “ RN and take f : RN Ñ R given by fpxq “ |x|. It is not
differentiable at the origin, but we still can explicitly compute the subdifferential:

Bfpxq “

# x

|x|
if x ‰ 0;

Bp0, 1q if x “ 0.

Example 4.4. Let Ω be an open bounded subset of RN with smooth boundary.
Let F : L2pΩq Ñ r0,`8s be given by

Fpuq “

$

&

%

ż

Ω

|∇u|2 dx if u P W 1,2
0 pΩq;

`8 if u P L2pΩqzW 1,2
0 pΩq.

Then, BFpuq “ ´∆u and DpBFq “ W 2,2pΩq XW 1,2
0 pΩq.

The subdifferentials of convex functions in Banach spaces are important in the
optimization theory due to the following fact: observe that

0 P BFpxq ðñ Fpyq ě Fpxq @ y P E.

Therefore, we have that 0 P BFpxq is the Euler-Lagrange equation of the variational
problem

Fpxq “ min
yPE

Fpyq.

Example 4.5. In the notation of the previous example, we have that

Fpuq “ min
wPL2pΩq

Fpwq ðñ 0 “ ´∆u on Ω and u “ 0 on BΩ.

Note that in the case when E is a Hilbert space H, by the Riesz theorem we
have that for a proper convex functional F : H Ñ p´8,`8s the subdifferential BF
is the operator in H defined as

z P BFpxq ðñ Fpyq ´ Fpxq ě pz, y ´ xq @ y P H.

Proposition 4.6. Let F1,F2 : H Ñ p´8,8s be two proper, convex, and lower
semicontinuous functionals. If there exists u0 P DpF1q X DpF2q such that F1 is
continuous at u0, then

BpF1 ` F2qpuq “ BF1puq ` BF2puq for all u P H.

Definition 4.7. In the case E is a Hilbert space H equipped with a scalar
product p¨, ¨q and a norm

}x}H :“
a

px, xq,

we will say that an operator A in H is monotone if

px´ x̂, y ´ ŷq ě 0 for all px, yq, px̂, ŷq P A.

We have the following result due to Minty [37].

Theorem 4.8 (Minty theorem). Let H be a Hilbert space. An operator A in H
is maximal monotone if and only if it is monotone and satisfies the range condition,
i.e., RpI `Aq “ H.
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It is easy to see that BF is a monotone operator in H. Moreover, if F is lower
semicontinuous, then BF is maximal monotone (see [10]); this property is crucial
when it comes to the study of evolution equations.

Exercise 4.9. For a non-empty set K Ă H, its indicator function is defined as

IKpxq :“

#

0 if x P K;

`8 if x R K.

Show that: IK is convex if and only if K is convex; IK is lower semicontinuous
if and only if K is closed; and

z P BIKpxq ðñ x P K and py, zq ď px, zq @ y P K.

4.2. Fenchel-Rockafellar duality theorem

In this Section, we briefly present some of the convex duality methods for cal-
culus of variations, in particular the Fenchel-Rockafellar duality theorem. Our pre-
sentation follows the one in [22] (in particular Chapters III and V).

Definition 4.10. Given a Banach space V and a convex function F : V Ñ

R Y t`8u, we define its Legendre-Fenchel transform F˚ : V ˚ Ñ R Y t`8u by the
formula

F˚pv˚q “ sup
vPV

"

xv, v˚y ´ F pvq

*

.

Exercise 4.11. For a non-empty set K Ă V , if IK is indicator function of K,
show that

I˚
Kpx˚q “ suptxx, x˚y : x P Ku “: pKpx˚q.

The function pK is called the support function of K. Also, prove that if K is the
unit ball of V , we have that

I˚
Kpx˚q “ }x˚} for all x˚ P V ˚.

We now state the Fenchel-Rockafellar duality theorem in the form suitable for
calculus of variations and presented in [22]. Let X,Y be two Banach spaces and
let A : X Ñ Y be a continuous linear operator. Denote by A˚ : Y ˚ Ñ X˚ its dual.
Then, if the primal minimization problem is of the form

(P) inf
uPX

"

EpAuq `Gpuq

*

,

then the dual problem is defined as the maximization problem

(P*) sup
p˚PY ˚

"

´ E˚p´p˚q ´G˚pA˚p˚q

*

,

where E˚ and G˚ are the Legendre–Fenchel transformations (conjugate functions)
of E and G respectively. Furthermore, the following result holds.

Theorem 4.12 (Fenchel-Rockafellar duality theorem). Assume that E and G
are proper, convex and lower semicontinuous. If there exists u0 P X such that
EpAu0q ă 8, Gpu0q ă 8 and E is continuous at Au0, then

inf (P) “ sup (P*)
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and the dual problem (P*) admits at least one solution. Moreover, the optimality
condition of these two problems is given by

A˚p˚ P BGpuq, ´p˚ P BEpAuqq,

where u is solution of (P) and p˚ is solution of (P*). Equivalently, we have

EpAuq ` E˚p´p˚q “ x´p˚, Auy

and

Gpuq `G˚pA˚p˚q “ xu,A˚p˚y.

In the case when there is no solution to the primal problem, we have a similar re-
sult, but instead of optimality conditions we have the following ε´subdifferentiability
property of minimizing sequences.

Proposition 4.13. Assume that E and G are proper, convex and lower semi-
continuous. If there exists u0 P X such that EpAu0q ă 8, Gpu0q ă 8 and E is
continuous at Au0, then

inf (P) “ sup (P*)

and the dual problem (P*) admits at least one solution. Moreover, for any mini-
mizing sequence un for (P) and a maximizer p˚ of (P*), we have

(4.1) 0 ď EpAunq ` E˚p´p˚q ´ x´p˚, Auny ď εn

and

(4.2) 0 ď Gpunq `G˚pA˚p˚q ´ xun, A
˚p˚y ď εn

with εn Ñ 0.

4.3. Euler-Lagrange equation for the ROF functional

This section is devoted to finding the Euler-Lagrange equation corresponding
to the minimisation of E, i.e., giving a precise meaning to the equation

0 P BEpuq

and characterising the minimisers in this way. To this end, we use Proposition 4.6;
we may decompose E as the sum of two functionals, i.e.,

E “ F ` G,

where F : L2pΩq Ñ r0,`8s is defined by

Fpuq :“

$

’

’

&

’

’

%

ż

Ω

|Du| if u P BV pΩq X L2pΩq;

`8 if u P L2pΩqzBV pΩq.

and G : L2pΩq Ñ r0,`8s is defined by

Gpuq :“
λ

2

ż

Ω

|u´ f |2 dx.

Clearly, the functional F is proper, convex and lower semicontinuous with respect
to convergence in L2pΩq. Moreover, the functional G is finite everywhere on L2pΩq,
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convex and continuous with respect to the norm in L2pΩq; thus, applying Proposi-
tion 4.6, we get that for all u P L2pΩq

BEpuq “ BFpuq ` BGpuq,

or equivalently, since G is Fréchet differentiable,

(4.3) BEpuq “ BFpuq ` λpu´ fq.

Therefore, the problem of finding the subdifferential of E is reduced to studying
the subdifferential of the total variation. To characterise the subdifferential of F
in L2pΩq, we will use convex duality in the setting presented in Memo 4.12; to this
end, define the following multivalued operator.

Definition 4.14. We say that pu, vq P A if and only if u, v P L2pΩq, u P BV pΩq

and there exists a vector field z P X2pΩq such that the following conditions hold:

}z}8 ď 1;

pz, Duq “ |Du| as measures;

´divpzq “ v in Ω;

rz, νΩs “ 0 HN´1 ´ a.e. on BΩ.

Lemma 4.15. We have A Ă BF . In particular, A is a monotone operator.

Proof. Let pu, vq P A and z P X2pΩq satisfy the conditions in Definition 4.14.
Given w P L2pΩq XBV pΩq, by the Gauss-Green formula (Theorem 3.9)

ż

Ω

pw ´ uq v dx “ ´

ż

Ω

divpzqpw ´ uq dx “

ż

Ω

pz, Dwq ´

ż

Ω

pz, Duq

ď

ż

Ω

|Dw| ´

ż

Ω

|Du| “ Fpwq ´ Fpuq,

which concludes the proof. □

We now prove the anticipated result that we can characterise the subdifferential
of F using the auxiliary operator A.

Theorem 4.16. We have A “ BF .

Proof. Step 1. By Lemma 4.15, the operator A is monotone and contained
in BF . The operator BF is maximal monotone; hence, once we prove that A satisfies
the range condition, i.e.

(4.4) @ g P L2pΩq Du P DpAq such that g P u` Apuq,

or equivalently that pu, g ´ uq P A, the Minty theorem implies that the operator A
is maximal monotone and consequently that A “ BF . Therefore, we need to prove
existence of u P BV pΩq and z P X2pΩq such that the following conditions hold:

(4.5) }z}8 ď 1;

(4.6) pz, Duq “ |Du| as measures;

(4.7) ´divpzq “ g ´ u in Ω;
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(4.8) rz, νΩs “ 0 HN´1 ´ a.e. on BΩ.

We will prove that the range condition (4.4) holds using the Fenchel-Rockafellar
duality theorem; we need to present it in the framework described before Theorem
4.12.

Step 2. We first restrict our attention to W 1,1pΩq and set

U “ W 1,1pΩq X L2pΩq

and
V “ L1pBΩq ˆ L1pΩ;RN q.

We denote the points v P V in the following way: v “ pv0, vq, where v0 P L1pBΩq

and v P L1pΩ;RN q. We will also need the explicit expression of the dual space to
V , which is

V ˚ “ L8pBΩq ˆ L8pΩ;RN q,

and we use a similar notation for points v˚ P V ˚. The operator A : U Ñ V is
defined by the formula

Au “ pu|BΩ,∇uq.

Clearly, A is a linear and continuous operator.

Then, we set E : V Ñ R by the formula

Epv0, vq “ E0pv0q ` E1pvq,

where

E0pv0q “ 0

and

E1pvq “

ż

Ω

|v| dx.

Clearly, E is a proper, convex, and lower semicontinuous functional. We also set
G :W 1,1pΩq X L2pΩq Ñ R by

Gpuq :“
1

2

ż

Ω

u2 dx´

ż

Ω

ug dx

and see that it a proper, convex, and continuous functional. Observe that by the
Young inequality

Gpuq ě
1

2

ż

Ω

u2 dx´ ε

ż

Ω

u2 dx´ Cpεq

ż

Ω

g2 dx,

so if we choose ε ă 1
2 , we get that G is bounded from below.

Step 3. We now compute the convex conjugates of E and G. The dual functional
of G, i.e. G˚ : pW 1,1pΩq X L2pΩqq˚ Ñ r0,`8s is given by

G˚pu˚q “
1

2

ż

Ω

pu˚ ` gq2 dx.

Now, observe that we evaluate G˚ at A˚v˚; we need to compute this value. By
definition of the dual operator, we get

ż

Ω

u pA˚v˚q dx “ xu,A˚v˚y “ xv˚, Auy “

ż

BΩ

v˚
0 u dHN´1 `

ż

Ω

v˚ ¨ ∇u dx.
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If we now consider only functions u P W 1,1
0 pΩq X L2pΩq, which are dense in L2pΩq,

we see that the boundary term disappears and get

(4.9) A˚v˚ “ ´divpv˚q.

In particular, the divergence of v˚ is square-integrable, so v˚ P X2pΩq. Therefore,
for any u P W 1,1pΩqXL2pΩq we may apply the Gauss-Green formula (Theorem 3.9)
and get

ż

Ω

u pA˚v˚q dx “ xu,A˚v˚y “ xv˚, Auy “

ż

BΩ

v˚
0 u dHN´1 `

ż

Ω

v˚ ¨ ∇u dx

“

ż

BΩ

v˚
0 u dHN´1 ´

ż

Ω

udivpv˚q dx`

ż

BΩ

u rv˚, νΩs dHN´1

“ ´

ż

Ω

udivpv˚q dx`

ż

BΩ

u pv˚
0 ` rv˚, νΩsq dHN´1.

By (4.9), the integrals over Ω cancel out, so
ż

BΩ

u pv˚
0 ` rv˚, νΩsq dHN´1 “ 0

for all u P W 1,1pΩq X L2pΩq. By a density argument, we conclude that

v˚
0 “ ´rv˚, νΩs HN´1 ´ a.e. on BΩ.

Therefore,

G˚pA˚v˚q “
1

2

ż

Ω

p´divpv˚q ` gq2 dx ă 8.

We now turn to computing the convex conjugates of the functionals Ei (for i “ 0, 1).
It is clear that the functional E˚

0 : L8pBΩq Ñ r0,8s is

E˚
0 pv˚

0 q “

"

0 if v˚
0 “ 0;

`8 if v˚
0 ‰ 0.

Furthermore, the functional E˚
1 : L8pΩ;RN q Ñ r0,8s is given by the formula

E˚
1 pv˚q “

"

0 if }v˚}8 ď 1;
`8 otherwise,

so we computed the convex conjugate of E coordinate-wise.

Step 4. We will infer that the range condition (4.4) holds in the following way.
Consider the minimisation problem

(4.10) inf
uPU

"

EpAuq `Gpuq

*

with E and G defined as above. For u0 ” 0 we have EpAu0q “ Gpu0q “ 0 ă 8 and
E is continuous at 0. Then, Theorem 4.12 implies that the dual problem given by

sup
v˚PV ˚

"

´ E˚p´v˚q ´G˚pA˚v˚q

*

admits at least one solution and there is no duality gap, i.e. the infimum in the
first problem is equal to the supremum in the second one. Since the value of E˚
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is either 0 or `8, and the value of G˚ is finite exactly on the domain of A˚, we
conclude that any solution v˚ to the dual problem satisfies

(4.11) v˚
0 “ 0 HN´1 ´ a.e. on BΩ;

(4.12) }v˚}8 ď 1;

and

v˚ P X2pΩq.

Step 5. Now, consider the functional G : L2pΩq Ñ p´8,`8s defined by

Gpvq :“ Fpvq `Gpvq,

i.e. an extension of the functional E ˝A`G, well-defined for functions inW 1,1pΩqX

L2pΩq, to the space BV pΩq X L2pΩq (and a further extension by `8 to the rest
of L2pΩq). By the properties of F and G, we get that G is bounded from below,
convex and lower semicontinuous. It is also coercive, because whenever Gpuq ď M ,
we have

1

2

ż

Ω

u2 dx` Fpuq ď M `

ż

Ω

ug dx,

and by positivity of F and the Young inequality for ε ă 1
2 we get

ˆ

1

2
´ ε

˙
ż

Ω

u2 dx ď M ` Cpεq

ż

Ω

g2 dx,

so the norm of u in L2pΩq is bounded. Therefore, the minimisation of Gpvq in L2pΩq

admits a solution u and by the Meyers-Serrin theorem (Theorem 1.16) we have

min
vPL2pΩq

Gpvq “ inf
vPU

"

EpAvq `Gpvq

*

.

However, the solution u does not necessarily lie in W 1,1pΩq, which is the domain
of the functional E ˝ A ` G. Therefore, we cannot use the extremality conditions
given in Theorem 4.12, and we instead rely on the ε´subdifferentiability property
of minimising sequences given in (4.1) and (4.2). From this, we will deduce that
the vector field z “ ´v˚ P X2pΩq satisfies the conditions (4.5)-(4.8) required for the
range condition (4.4). Observe that condition (4.5) is automatically satisfied due
to (4.12) and the condition (4.8) holds by (4.11) and the constraint v˚

0 “ r´v˚, νΩs;
we proceed to prove the other conditions.

Take a sequence un P W 1,1pΩqXL2pΩq which approximates u as in the anisotropic
Meyers-Serrin theorem (Theorem 1.16); in particular, it is a minimising sequence
in (4.10). By the second subdifferentiability property (4.2), for every w P L2pΩq we
have

Gpwq ´Gpunq ě xpw ´ unq, A˚v˚y ´ εn,

and by passing to the limit n Ñ 8 we get

Gpwq ´Gpuq ě xpw ´ uq, A˚v˚y.

Therefore,

divp´v˚q “ A˚v˚ P BGpuq “ tu´ gu,

so the divergence constraint (4.7) is satisfied once we choose z “ ´v˚.
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By the first subdifferentiability property (4.1), we have

0 ď

ż

Ω

|∇un| dx`

ż

BΩ

v˚
0 un dHN´1 `

ż

Ω

v˚ ¨ ∇un dx ď εn.

Since the boundary terms disappears, the first subdifferentiability property (4.1)
yields

0 ď

ż

Ω

|∇un| dx`

ż

Ω

v˚ ¨ ∇un dx ď εn.(4.13)

Since un|BΩ “ u|BΩ, by the Gauss-Green formula (Theorem 3.9) we have
ż

Ω

v˚ ¨ ∇un dx “ ´

ż

Ω

un divpv˚q dx`

ż

BΩ

un rv˚, νΩs dHN´1

“ ´

ż

Ω

udivpv˚q dx`

ż

BΩ

u rv˚, νΩs dHN´1

`

ż

Ω

pu´ unqdivpv˚q dx

“

ż

Ω

pv˚, Duq `

ż

Ω

pu´ unqdivpv˚q dx.

Passing to the limit n Ñ 8, we get

lim
nÑ8

ż

Ω

v˚ ¨ ∇un dx “

ż

Ω

pv˚, Duq.

We now pass to the limit n Ñ 8 in the inequality (4.13) and obtain
ż

Ω

|Du| `

ż

Ω

pv˚, Duq “ 0.

Observe that the above expression is always nonnegative; since }v˚}8 ď 1, by
Proposition 3.2 we have

ż

Ω

|Du| `

ż

Ω

pv˚, Duq ě 0.

Therefore, this inequality needs to be an equality, so property (4.6) holds for the
choice z “ ´v˚. Therefore, we proved that all the conditions (4.5)-(4.8) needed for
the range condition (4.4) hold, so the operator A is maximal monotone. □

Exercise 4.17. Prove that for any proper, convex and lower semicontinuous
functional F : L2pΩq Ñ p´8,`8s we have DpBFq “ DpFq, and conclude that the
domain of A is dense in L2pΩq.

Exercise 4.18. Find the explicit form of the dual problem in Step 4.

Therefore, by Theorem 4.16 and formula (4.3), we get the following character-
isation of the subdifferential of E.

Corollary 4.19. For v P L2pΩq and u P BV pΩq X L2pΩq, the following con-
ditions are equivalent:

(1) v P BEpuq;
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(2) There exists z P X2pΩq such that

}z}8 ď 1;

pz, Duq “ |Du| as measures;

v “ ´divpzq ` λpu´ fq in Ω;

rz, νΩs “ 0 HN´1 ´ a.e. on BΩ.

In particular, taking v “ 0 in the above result, we get the Euler-Lagrange
equation for minimisers of E.

Corollary 4.20. The following conditions are equivalent:

(1) u P L2pΩq XBV pΩq is a minimiser of E;
(2) There exists z P X2pΩq such that

}z}8 ď 1;

pz, Duq “ |Du| as measures;

divpzq “ λpu´ fq in Ω;

rz, νΩs “ 0 HN´1 ´ a.e. on BΩ.

The Rudin-Osher-Fatemi model can be understood as a semidiscretisation in
time of the total variation flow, which will be the main focus of the next lecture.
Take an interval r0, T s and consider the equation

$

’

&

’

%

utpt, xq “ ∆1u in p0, T q ˆ Ω;

Bu
Bν ptq “ 0 on p0, T q ˆ BΩ;

up0, xq “ u0pxq in Ω,

where u0 P L2pΩq. Here, ∆1 denotes the 1-Laplacian operator, i.e.

∆1puq “ div

ˆ

Du

|Du|

˙

.

Divide the interval r0, T s into k parts of length λ´1, so that k “ λT . Let us iterate
the ROF functional in the following way: set λ " 0 and denote u0 “ u0. Then,
for each n P t0, ..., λT ´ 1u we iteratively solve the ROF problem with f “ u0 and
denote its solution by un`1.Then, in the limit λ Ñ 8 with k “ λT , we have

Bu

Bt

ˆ

¨,
n

λT

˙

«
un`1 ´ un

λ´1
“ λpun`1 ´ unq P div

ˆ

Dun`1

|Dun`1|

˙

,

where u is a piecewise constant (in time) function with value un on the interval
r n
λT ,

n`1
λT s. Passing to the limit, we formally arrive at the differential inclusion

Bu

Bt
P div

ˆ

Du

|Du|

˙

.

The argument given here is of course purely heuristic, and the way to arrive to this
conclusion in a precise way is the Crandall-Liggett generation theorem [18] (a more
modern take can be found in [3]).



62 4.4. Regularity of solutions in one dimension

4.4. Regularity of solutions in one dimension

The question of regularity of minimisers to the Rudin-Osher-Fatemi functional,
or to be more exact, whether regularity of the initial datum is preserved, was an
object of intensive study in the last twenty years. It is still an active topic with
many open questions; the only fully solved cases are when u is Hölder continuous,
when it is a characteristic function of a convex smooth set, and the one-dimensional
case. We present the argument in the last setting, mostly following [25], and only
briefly discuss the other two.

Theorem 4.21. Suppose that f P BV ppa, bqq and let u P BV ppa, bqq be the
unique minimiser of the functional E. Then, |u1| ď |f 1| as measures, i.e.,

|u1|pAq ď |f 1|pAq for any Borel set A Ď pa, bq.

Proof. Consider a regularisation of E of the following type: for ε ą 0, set

Eεpuq “

ż b

a

ˆ

λ

2
|u´ f |2 `

a

pu1q2 ` ε2 `
ε2

2
|u1|2

˙

dx,

i.e., we separate the total variation term from zero and add a second-order term.
Then, for any f P L2ppa, bqq this is a smooth and uniformly convex functional, which
has a unique minimiser uε P W 2,2ppa, bqq, so in particular u P C1pra, bsq, and the
minimiser satisfies the Euler-Lagrange equation

λpu´ fq “

ˆ

u1
ε

a

pu1q2 ` ε2

˙1

` ε2u2
ε

with boundary data u1
ε “ 0 in the strong sense. Then, classical arguments (i.e.,

testing the equation with an appropriately chosen test function) yield that for any
open interval I and δ ą 0 we have

(4.14)

ż

I

ppu1
εq

2 ` ε2qp{2 dx ď

ż

Iδ

|f 1|p dx`Opεp´1q

for all p P p1, 2s (for a precise argument see [25]). Here, Iδ is the interval which is
a δ-neighbourhood of I.

We now want to pass to the limit p Ñ 1. First, consider f P W 1,2ppa, bqq. By
the boundary condition, the derivative |u1| is small close to a and b. Then, taking
small δ ą 0, I such that Iδ “ pa, bq and p “ 2 in estimate (4.14), we get that

ż b

a

|u1
ε|

2 dx ď ε`

ż b´δ

a`δ

ppu1
εq

2 ` ε2q dx ď

ż b

a

|f 1|2 dx`Opεq,

and consequently uε has a subsequence which converges weakly in W 1,2ppa, bqq and
uniformly in Cpra, bsq to some u P W 1,2ppa, bqq. Since it is clear that the functional
Eε Γ-converges to E, u is the unique minimiser of E (note that this argument
already implies that W 1,2 regularity is preserved). Then, passing to the limit with
ε Ñ 0 in estimate (4.14), we get

ż

I

|u1|p dx ď lim sup
εÑ0

ż

I

ppu1
εq

2 ` ε2qp{2 dx ď

ż

Iδ

|f 1|p dx.



4. ROF model 63

After passing to the limit p Ñ 1 and δ Ñ 0, we get

(4.15)

ż

I

|u1| dx ď

ż

I

|f 1| dx,

since f 1 lies in L2ppa, bqq as as such it gives zero measure to points.

Our next goal is to prove an estimate analogous to (4.15) for general f P

BV ppa, bqq. Since f P L2ppa, bqq, by the Meyers-Serrin approximation theorem
(Theorem 1.16) we can find smooth functions fn such that fn Ñ f in L2ppa, bqq

and strictly in BV ppa, bqq. Consider a second regularisation of E, i.e.,

Enpuq “
λ

2

ż b

a

|u´ fn|2 dx`

ż b

a

|u1|.

Let uk P BV ppa, bqq be the unique minimiser of En. Then, comparing the energy of
uk with the zero function, we get

ż b

a

|u1
k| ď Enpukq ď Enp0q “

ż b

a

|fn|2 dx,

which is uniformly bounded. Thus, uk is uniformly bounded in BV ppa, bqq, and
it converges (on a subsequence) in L2ppa, bqq and weakly* in BV ppa, bqq to some
function u P BV ppa, bqq. Clearly, En Γ-converges to E as fn Ñ f in L2ppa, bqq, so u
is the unique minimiser of E. Since fn converges strictly to f , passing to the limit
in estimate (4.15) yields

ż

I

|u1| ď

ż

I

|f 1|

whenever |f 1|pBIq “ 0.

This concludes the proof up to standard measure-theoretic arguments: write
I “ Bpx, rq, and consider any open set V Ă pa, bq. Then, by the Besikovitch
covering theorem (see [23]) one can write

V “

8
ď

i“1

Bpxi, riq YN,

where the balls Bpxi, riq are pairwise disjoint, satisfy |f 1|pBBpxi, riqq “ 0, and
|u1|pNq “ 0. Thus,

|u1|pV q “

8
ÿ

i“1

|u1|pBpxi, riqq ď

8
ÿ

i“1

|f 1|pBpxi, riqq ď |f 1|pV q.

To pass to a general open set, by approximation properties of Borel measures, given
a Borel set A Ă pa, bq and δ ą 0 one can find an open set V Ă pa, bq with A Ă V
and |f 1|pV zAq ď δ. Therefore,

|u1|pAq ď |u1|pV q ď |f 1|pV q ď |f 1|pAq ` δ,

which concludes the proof once we pass with δ Ñ 0. □

Since this result is local (i.e., it holds for any Borel set A), we immediately get
that many regularity properties of the initial data are inherited by the solution - let
us list here some most important consequences.

Corollary 4.22. In the notation of the previous Theorem, we have:
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(a) f P W 1,pppa, bqq implies u P W 1,pppa, bqq;
(b) f P SBV ppa, bqq implies u P SBV ppa, bqq;
(c) Ju Ă Jf , i.e., no new discontinuities are formed;
(d) The size of the jumps of u is smaller than the size of jumps of f .

Due to the construction from the previous Section, this implies similar results
for the total variation flow (formally for now, we will discuss at length the total
variation flow in the final lecture).

Corollary 4.23. Suppose that u : Ω ˆ p0, T q Ñ R is a solution of the total
variation flow

ut “ div

ˆ

Du

|Du|

˙

with Neumann boundary conditions and initial data u0 P L2pΩq. Then, for a.e.
t P p0, T q:

(a) u0 P W 1,pppa, bqq implies uptq P W 1,pppa, bqq;
(b) u0 P SBV ppa, bqq implies uptq P SBV ppa, bqq;
(c) Juptq Ă Ju0

, i.e., no new discontinuities are formed;
(d) The size of the jumps of uptq is smaller than the size of jumps of u.

However, the one-dimensional proof presented above fails in higher dimensions,
essentially due to the fact that we do not have C1 regularity for the approximating
sequence. However, the part of the result concerning the jump set of the solution
is valid in higher dimensions (at least for f P BV pΩq X LN pΩq), using a level-set
argument similar to the one from the second lecture, see [13, 15].

Theorem 4.24. Suppose that u P BV pΩq X L2pΩq is a minimiser of E for
f P BV pΩq XLN pΩq. Then, Ju Ă Jf and the size of the jumps of u is smaller than
the size of jumps of f .

Similarly, suppose that u : Ωˆp0, T q Ñ R is a solution of the total variation flow

ut “ div

ˆ

Du

|Du|

˙

with Neumann boundary conditions and initial data u0 P BV pΩq X LN pΩq. Then,
for a.e. t P p0, T q we have Juptq Ă Ju0

and the size of the jumps of uptq is smaller
than the size of jumps of u.

Further reading

The subdifferential of the total variation, and consequently the subdifferential
of the ROF functional, was characterised for the first time in [2]; see also the mono-
graph [3]. The method presented here, quite simpler than the original approach,
is relatively new and first appeared in [30] in a more general context. The results
concerning the jump set of the ROF functional (and the total variation flow) first
appeared in [13] and [15]; we present the newer one-dimensional results from [25]
as a model case, because the methods used are far simpler.



CHAPTER 5

Total variation flow

Again, we assume that Ω is a bounded Lipschitz domain in RN . Consider the
following Neumann problem

(5.1)

$

’

&

’

%

utpt, xq “ ∆1u in p0, T q ˆ Ω;

Bu
Bν ptq “ 0 on p0, T q ˆ BΩ;

up0, xq “ u0pxq in Ω,

where u0 P L2pΩq. Here, ∆1 denotes the 1-Laplacian operator, i.e.

∆1puq “ div

ˆ

Du

|Du|

˙

.

As discussed in the last lecture, this equation arises as a continuum version of an
iteration scheme involving the Rudin-Osher-Fatemi functional. The goal of this lec-
ture is to introduce a notion of weak solutions and study some qualitative properties
of this equation.

5.1. Semigroup approach to evolution equations

We now present the basic results concerning the semigroup approach to gradient
flows of convex functionals in Hilbert spaces; the most classical reference is [10].
Let H be a separable Hilbert space. For 1 ď p ă 8, we denote

Lppa, b;Hq :“

#

u : ra, bs Ñ H measurable such that

ż b

a

}uptq}
p
H dt ă 8

+

and

W 1,ppa, b;Hq :“

"

u P Lppa, b;Hq and D v P Lppa, b;Hq :

uptq ´ upaq “

ż t

a

vpsq ds @ t P pa, bq

*

.

If u P W 1,ppa, b;Hq, it is differentiable in time for almost all t P pa, bq and

uptq ´ upaq “

ż t

a

u1psq ds @ t P pa, bq.

We also set W 1,p
loc p0, T ;Hq to be the space of all functions u with the following

property: for all 0 ă a ă b ă T , we have that u P W 1,ppa, b;Hq.

65
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Consider the abstract Cauchy problem

(5.2)

$

&

%

u1ptq ` BFpuptqq Q 0 t P p0, T q,

up0q “ u0, u0 P H.

Definition 5.1. We say that u P Cpr0, T s;Hq is a strong solution of problem

(5.2), if the following conditions hold: u P W 1,2
loc p0, T ;Hq; for almost all t P p0, T q

we have uptq P DpBFq; and it satisfies (5.2).

Theorem 5.2 (Brezis-Komura theorem). Let F : H Ñ p´8,8s be a proper,

convex, and lower semi-continuous functional. Given u0 P DpFq, there exists a
unique strong solution of the abstract Cauchy problem (5.2). Moreover, we have
that

?
t ¨ u1ptq P L2p0, T ;Hq, and u P W 1,2p0, T ;Hq whenever u0 P DpFq.

We refer to [10] for a summary of main additional properties of solutions; let us
only briefly mention the semigroup property, the T -contraction property, and the
regularity of time derivative. If we denote by Sptqu0 the unique strong solution uptq

of the abstract Cauchy problem (5.2) for initial data u0, then Sptq : DpFq Ñ H is
a continuous semigroup satisfying the T -contraction property

}pSptqu0 ´ Sptqv0q}H ď }u0 ´ v0}H

for all u0, v0 P DpFq and t ą 0. Furthermore, we have that u1 P L2
locp0, T ;Hq,

and the function t ÞÑ Fpuptqq is convex, decreasing, and locally Lipschitz with the
derivative (defined for a.e. t ą 0)

d

dt
Fpuptqq “ ´

›

›

›

›

u1ptq

›

›

›

›

2

H

“ ´

›

›

›

›

B´Fpuptqq

›

›

›

›

2

H

,

where B´Fp¨q denotes the element of minimal norm in BFp¨q. In fact,

u1ptq “ B´Fpuptqq.

Moreover, whenever u0 P DpBFq, we have that u1 P L8p0, T ;Hq and
›

›

›

›

u1ptq

›

›

›

›

H

ď

›

›

›

›

B´Fpu0q

›

›

›

›

H

for all t P p0, T q.

5.2. The total variation flow

Consider the energy functional F : L2pΩq Ñ r0,`8s associated with problem
(5.1) and defined by

Fpuq :“

$

’

’

&

’

’

%

ż

Ω

|Du| if u P BV pΩq X L2pΩq;

`8 if u P L2pΩqzBV pΩq.

The functional F is lower semicontinuous with respect to convergence in L2pΩq.
Clearly, F is convex; thus, by the Brezis-Komura theorem (Theorem 5.2) there
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exists a unique strong solution of the abstract Cauchy problem
#

0 P u1ptq ` BFpuptqq for t P r0, T s;

up0q “ u0.

Recall that the subdifferential of F in L2pΩq can be characterised using the following
operator A (see Theorem 4.16).

Definition 5.3. We say that pu, vq P A if and only if u, v P L2pΩq, u P BV pΩq

and there exists a vector field z P X2pΩq such that the following conditions hold:

}z}8 ď 1;

pz, Duq “ |Du| as measures;

´divpzq “ v in Ω;

rz, νΩs “ 0 HN´1 ´ a.e. on BΩ.

Then, A “ BF . In light of this, we can give the following definition of solutions
to the Neumann problem (5.1).

Definition 5.4. Given u0 P L2pΩq, we say that u is a weak solution to

the Neumann problem (5.1) in r0, T s, if u P Cpr0, T s;L2pΩqq X W 1,2
loc p0, T ;L2pΩqq,

up0, ¨q “ u0, and for almost all t P p0, T q

0 P utpt, ¨q ` Aupt, ¨q.

In other words, for almost all t P p0, T q we have uptq P BV pΩq and there exist vector
fields zptq P X2pΩq such that the following conditions hold:

}zptq}8 ď 1;

pzptq, Duptqq “ |Duptq| as measures;

utptq “ divpzptqq in D1pΩq;

rzptq, νΩs “ 0 HN´1 ´ a.e. on BΩ.

With this definition, since A coincides with BF , by the Brezis-Komura theorem
(Theorem 5.2) we get the following existence and uniqueness result.

Theorem 5.5. For every u0 P L2pΩq there exists a unique weak solution u P

Cpr0, T s;L2pΩqq XW 1,2
loc p0, T ;L2pΩqq to the Neumann problem (5.1) with initial da-

tum u0.

The next exercise concerns an equivalent characterisation of weak solutions in
terms of an integral equality satisfied on almost every time slice.

Exercise 5.6. Let u0 P L2pΩq and assume that

u P Cpr0, T s;L2pΩqq XW 1,2
loc p0, T ;L2pΩqq

satisfies up0, ¨q “ u0. Show that u is a weak solution to the Neumann problem (5.1)
if and only if for almost all t P p0, T q we have uptq P BV pΩq and there exists a vector



68 5.2. The total variation flow

field z P X2pΩq such that }z}8 ď 1, utptq “ divpzptqq in the sense of distributions
and

ż

Ω

|Duptq| `

ż

Ω

utptqpuptq ´ vq dx “

ż

Ω

pzptq, Dvq

for every v P BV pΩq X L2pΩq.

Memo 13. A multivalued operator A Ă L2pΩqˆL2pΩq is called completely accretive
if and only if the following condition is satisfied (see [3, 7]):

(5.3)

ż

Ω

T pu1 ´ u2qpv1 ´ v2q dx ě 0

for every pu1, v1q, pu2, v2q P A and all functions T P C8pRq such that 0 ď T 1 ď 1,
T 1 has compact support, and x “ 0 is not contained in the support of T .

If A additionally satisfies the range condition, we have the following contraction
and maximum principle in any Lq space, where 1 ď q ď `8: for u1,0, u2,0 P DpAq

and denoting by ui the unique solution of the problem
$

&

%

duiptq

dt
` Auiptq Q 0, t P p0,8q

uip0q “ ui,0

for i “ 1, 2, we have

}pu1ptq ´ u2ptqq`}LqpΩq ď }pu1,0 ´ u2,0q`}LqpΩq @ 0 ă t ă T.

Lemma 5.7. The operator A is completely accretive.

Proof. We need to show that condition (5.3) holds for all T P C8pRq satisfying
the above conditions, i.e. such that 0 ď T 1 ď 1, T 1 has compact support, and x “ 0
is not contained in the support of T . For j “ 1, 2, let puj , vjq P A and let zj be the
associated vector fields. Observe that T pu1 ´ u2q P BV pΩq. Since }z1}8 ď 1 and
}z2}8 ď 1, by Proposition 3.2 for every Borel set B Ă Ω we have

ż

B

pz1 ´ z2,Dpu1 ´ u2qq

“

ż

B

|Du1| ´

ż

B

pz1, Du2q `

ż

B

|Du2| ´

ż

B

pz2, Du1q ě 0.

By definition of the Radon-Nikodym derivative θpz1 ´ z2, Dpu1 ´ u2q, xq we get
ż

B

θpz1 ´ z2, Dpu1 ´ u2q, xq d|Dpu1 ´ u2q| “

ż

B

pz1 ´ z2, Dpu1 ´ u2qq ě 0

for all Borel sets B Ă Ω. Therefore,

θpz1 ´ z2, Dpu1 ´ u2q, xq ě 0 |Dpu1 ´ u2q| ´ a.e. on Ω

and since |DT pu1 ´ u2q| is absolutely continuous with respect to |Dpu1 ´ u2q|, we
also have

θpz1 ´ z2, Dpu1 ´ u2q, xq ě 0 |DT pu1 ´ u2q| ´ a.e. on Ω.

By Proposition 3.17, we get that

θpz1 ´ z2, DT pu1 ´ u2q, xq ě 0 |DT pu1 ´ u2q| ´ a.e. on Ω,
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so
ż

Ω

pz1 ´ z2, DT pu1 ´ u2qq(5.4)

“

ż

Ω

θpz1 ´ z2, DT pu1 ´ u2q, xq d|DT pu1 ´ u2q| ě 0.

To conclude that the operatorA is completely accretive, we now apply the anisotropic
Gauss-Green formula (Theorem 3.9) and use the estimate (5.4) to get

ż

Ω

T pu1 ´ u2qpv1 ´ v2q dx “ ´

ż

Ω

T pu1 ´ u2qpdivpz1q ´ divpz2qq dx

“

ż

Ω

pz1 ´ z2, DT pu1 ´ u2qq ě 0,

so A satisfies the condition (5.3) and thus is completely accretive. □

Exercise 5.8. Prove that for a smooth function T : R Ñ R the measure
|DT puq| is absolutely continuous with respect to |Du|.

As a consequence of the complete accretivity of the operator A, we get the
following comparison principle.

Theorem 5.9. For all r P r1,8s, if u1, u2 are weak solutions to (5.1) for the
initial data u1,0, u2,0 P L2pΩq X LrpΩq respectively, then

}pu1ptq ´ u2ptqq`}r ď }pu1,0 ´ u2,0q`}r.

A similar construction, using a mix of techniques from the proof above and the
Euler-Lagrange characterisation of solutions to the least gradient problem, leads to
a characterisation of solutions to the Dirichlet problem for the total variation flow,
i.e.,

(5.5)

$

’

&

’

%

utpt, xq “ ∆1u in p0, T q ˆ Ω;

uptq “ h on p0, T q ˆ BΩ;

up0, xq “ u0pxq in Ω,

where u0 P L2pΩq. The corresponding energy functional is Fh : L2pΩq Ñ r0,`8s

defined by

Fhpuq :“

$

’

’

&

’

’

%

ż

Ω

|Du| `

ż

BΩ

|u´ h| dHN´1 if u P BV pΩq X L2pΩq;

`8 if u P L2pΩqzBV pΩq.

We leave the proof in the form of the following series of exercises.

Exercise 5.10. We say that pu, vq P Ah if and only if u, v P L2pΩq, u P BV pΩq

and there exists a vector field z P X2pΩq such that the following conditions hold:

}z}8 ď 1;

pz, Duq “ |Du| as measures;

´divpzq “ v in Ω;
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rz, νΩs P signph´ uq HN´1 ´ a.e. on BΩ,

where sign denotes the multivalued sign function. Show that Ah Ă BFh (so in
particular it is monotone).

Then, we need to prove that Ah “ BFh in a similar way as in Theorem 4.16.
Observe that the range condition for the operatorAh boils down to proving existence
of u P BV pΩq and z P X2pΩq such that the following conditions hold:

}z}8 ď 1;

pz, Duq “ |Du| as measures;

´divpzq “ g ´ u in Ω;

rz, νΩs P signph´ uq HN´1 ´ a.e. on BΩ.

Exercise 5.11. Consider the same spaces, operators, and functionals as in Step
2 of the proof of Theorem 4.16, with the only difference in the definition of E0; set

E0pv0q “

ż

BΩ

|v0 ´ h| dHN´1.

Then, show that

E˚
0 pv˚

0 q “

$

&

%

ż

BΩ

h v˚
0 dHN´1 if |v˚

0 | ď 1 HN´1 ´ a.e. on BΩ;

`8 otherwise,

and check that with this change Steps 2 and 3 of the proof are correct.

Exercise 5.12. Prove that in the setting analogous to Lemma 5.7, we have
ż

BΩ

´T pu1 ´ u2qrz1 ´ z2, νΩs dHN´1 ě 0,

from which follows the complete accretivity of Ah.

Exercise 5.13. Show that in the case of the operator Ah, the first subdiffer-
entiability property (4.1) gives also an estimate for the boundary behaviour of u,
and we may conclude using a similar argument as in Steps 4 and 5 of the proof that
Ah “ BFh.

From this, using the Brezis-Komura theorem, we deduce existence of a unique
weak solution to the Dirichlet problem for the total variation flow (5.5) in the
following sense: given u0 P L2pΩq, we say that u is a weak solution to the Dirichlet

problem (5.5) in r0, T s, if u P Cpr0, T s;L2pΩqqXW 1,2
loc p0, T ;L2pΩqq, up0, ¨q “ u0, and

for almost all t P p0, T q

0 P utpt, ¨q ` Ahupt, ¨q.

In other words, for almost all t P p0, T q we have uptq P BV pΩq and there exist vector
fields zptq P X2pΩq such that the following conditions hold:

}zptq}8 ď 1;

pzptq, Duptqq “ |Duptq| as measures;
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utptq “ divpzptqq in D1pΩq;

rzptq, νΩs P signph´ uq HN´1 ´ a.e. on BΩ.

By complete accretivity of the operator Ah, it also satisfies the comparison principle
similar to the one above, i.e., for all r P r1,8s, if u1, u2 are weak solutions to (5.5)
for the initial data u1,0, u2,0 P L2pΩq X LrpΩq respectively, then

}pu1ptq ´ u2ptqq`}r ď }pu1,0 ´ u2,0q`}r.

5.3. Asymptotic behaviour

Let us first see an explicit example of the evolution by the total variation flow.
For simplicity, we consider the Dirichlet problem with zero boundary data.

Example 5.14. Let N ě 2 and take Ω Ă RN such that Bp0, rq Ť Ω and let
h ” 0. Then, consider the initial data

u0 “ kχBp0,rq.

We will show that the unique solution to the Dirichlet problem (5.5) is given by

upx, tq “ signpkq

ˆ

|k| ´
HN´1pBBp0, rqq

LN pBp0, rqq
t

˙`

χ
Bp0,rqpxq.

In particular, χBp0,rq is a (nonlinear) eigenfunction of the total variation flow.
Equivalently, we have

(5.6) upx, tq “ signpkq
N

r

ˆ

|k|r

N
´ t

˙`

χ
Bp0,rqpxq.

Before we start proving that formula (5.6) holds, let us note the following obser-
vations: the initial condition is satisfied; it changes linearly in time; the solution
reaches zero in finite time; the shape of the solution does not change, i.e., the jump
set remains the same until the extinction time and the size of the jump decreases;
in particular, the total variation flow has no smoothing effect.

Without loss of generality, suppose that k ą 0. Let us look for solutions to
problem (5.5) of the form upx, tq “ αptqχBp0,rqpxq. Our (non-rigorous) motivation
is as follows: since the initial data are radial, we expect the solutions to be radial; the
right-hand side of the PDE (5.5) is, for characteristic functions, the mean curvature
of the set, so since the boundary of a ball has constant mean curvature we expect
that the whole ball will evolve in the same way; the exterior of the ball, which has a
constant value of u0, should evolve in the same way; and the zero Dirichlet datum
should entail that the value of u is zero near the boundary.

For such a function u the Dirichlet boundary condition rz, νΩs P signph ´ uq

is automatically satisfied for any z P X2pΩq with }z}8 ď 1; let us find such vector
field z which satisfies the other two conditions, i.e.,

(5.7) u1ptq “ divpzptqq

and
ż

Ω

pzptq, Duptqq “

ż

Ω

|Duptq|.
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From the second condition, we infer that z should be equal to ´νBp0,rq on BBp0, rq.
By the first condition, divpzptqq should be the same for all points in Bp0, rq; thus,
a good candidate for z is

zpx, tq “ ´
x

r
.

For such z, integrating equation (5.7) over Bp0, rq and applying the Gauss-Green
formula (Theorem 3.9) gives

α1ptqLN pBp0, rqq “

ż

Bp0,rq

divpzptqq dx

“

ż

BBp0,rq

zptq ¨ νBp0,rq dHN´1 “ ´HN´1pBBp0, rqq.

Therefore,

α1ptq “ ´
HN´1pBBp0, rqq

LN pBp0, rqq
“ ´

N

r
,

and consequently

αptq “ k ´
N

r
t.

Observe that this formula makes sense until the extinction time Tex “ kr
N . We also

need to construct the vector field z outside of Bp0, rq; to this end, observe that since
u1 ” 0 on ΩzBp0, rq, considering radial vector fields z, i.e., z “ ρp|x|q x

|x|
, we have

0 “ divpzptqq “ ∇ρp|x|q ¨
x

|x|
` ρp|x|qdiv

ˆ

x

|x|

˙

“ ρ1p|x|q ` ρp|x|q
N ´ 1

|x|
.

Solving this equation on pr,8q with the initial condition ρprq “ ´1 gives the unique
solution

ρpsq “ ´rN´1s1´N ,

so

zpx, tq “ ´rN´1 x

|x|N
.

Again, we use this formula on p0, Texq. Since upx, tq ” 0 for t ě Tex, by taking z ” 0
we see that the conditions are satisfied. Therefore, by the above computations the
vector field

zpx, tq “

$

’

’

&

’

’

%

´
x

r
if x P Bp0, rq and t ă Tex;

´rN´1 x

|x|N
if x R Bp0, rq and t ă Tex;

0 if t ě Tex

safisfies the desired conditions for upx, tq given by equation (5.6).

Observe that in the above example both pieces Bp0, rq and Bp0, RqzBp0, rq

move linearly in time, after some time T1 ą 0 the values of u on both sets become
equal, and then the two sets move together until the extinction time, when the
solution becomes identically zero. This is qualitatively different than e.g. for the
heat flow, where the solution for positive initial data stays positive for all times.
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Exercise 5.15. Using a similar argument, show that a solution to the homo-
geneous Dirichlet problem for the total variation flow on Ω with initial data

u0 “ kχBp0,RqzBp0,rq

with r ă R, k ą 0, and Bp0, Rq Ť Ω is equal to

upx, tq “

ˆ

k ´
HN´1pBBp0, Rq Y BBp0, rqq

LN pBp0, RqzBp0, rqq
t

˙

χ
Bp0,RqzBp0,rqpxq

`
HN´1pBBp0, rqq

LN pBp0, rqq
tχBp0,rqpxq

for

t ă T1 :“

ˆ

HN´1pBBp0, Rq Y BBp0, rqq

LN pBp0, RqzBp0, rqq
`

HN´1pBBp0, rqq

LN pBp0, rqq

˙´1

k,

and for t ě T1 the solution evolves as in the previous Example. Hint: look for
solutions of the form upx, tq “ αptqχBp0,rq ` βptqχBp0,RqzBp0,rq.

Exercise 5.16. Using a similar argument, show that a solution to the Neumann
problem for the total variation flow on Bp0, Rq with initial data

u0 “ kχBp0,rq

with r ă R and k ą 0 is equal to

upx, tq “

ˆ

k ´
N

r
t

˙

χ
Bp0,rq `

NrN´1

RN ´ rN
tχBp0,RqzBp0,rq

for t ă Tex :“ pNr `N rN´1

RN´rN
q´1k. For t ą Tex, the solution is constant and equals

upx, tq ” k ´
N

r
Tex.

Hint: again look for solutions of the form upx, tq “ αptqχBp0,rq ` βptqχBp0,RqzBp0,rq.

Observe that in the above example both pieces Bp0, rq and Bp0, RqzBp0, rq

move linearly in time, at the extinction time the values of u on the two sets become
equal (and the solution is equal to the mean value of the initial data), and then the
evolution stops.

We now give an explicit bound for the extinction time of the solutions. As a
first step, let us see that for the Neumann problem the mean value of the solution
is preserved.

Lemma 5.17. Let u : Ω ˆ p0, T q be a weak solution to problem (5.1). Then, for
a.e. t P p0, T q we have

ż

Ω

uptq dx “

ż

Ω

u0 dx.

Proof. By definition of the weak solution, for a.e. t P p0, T q there exists
z P X2pΩq with the properties given in Definition 5.4. Therefore,

ż

Ω

ut dx “

ż

Ω

divpzptqq dx “

ż

Ω

rzptq, νΩs dHN´1 “ 0,

and integrating this equation over time yields the claim. □
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We conclude this lecture with the following theorem describing the asymptotic
behaviour of solutions.

Theorem 5.18. Suppose that u : Ωˆ p0, T q is a weak solution to problem (5.1).
Then, if we denote

Textpu0q “ inf

"

τ ą 0 : uptq “ pu0qΩ for all t ą τ

*

,

we have that Textpu0q ă 8 and there exists a constant C “ CpΩq such that
Textpu0q ď C ¨ }u0 ´ pu0qΩ}L2pΩq.

Similarly, if u : Ω ˆ p0, T q is a weak solution to problem (5.5) for h “ 0, and
we denote

Textpu0q “ inf

"

τ ą 0 : uptq “ 0 for all t ą τ

*

,

we have that Textpu0q ă 8 and there exists a constant C “ CpΩq such that
Textpu0q ď C ¨ }u0}L2pΩq.

Proof. We show the result for the Neumann problem (the other proof is very
similar). Let u be a weak solution to problem (5.1) and consider the function
1
2

ş

Ω
|u´pu0qΩ|2 dx, which is absolutely continuous in time on p0, T q by the regularity

of u. Then, we compute its time derivative, i.e.,

1

2

d

dt

ż

Ω

|uptq´pu0qΩ|2 dx “

ż

Ω

puptq´pu0qΩqut dx “

ż

Ω

puptq´pu0qΩqdivpzptqq dx.

But, the term with the constant is equal to zero by the Gauss-Green formula (The-
orem 3.9) and the Neumann boundary condition. Similarly,

ż

Ω

uptqdivpzptqq dx “ ´

ż

Ω

pz, Duptqq “ ´

ż

Ω

|Duptq|,

therefore, by the Poincaré inequality,

1

2

d

dt

ż

Ω

|uptq ´ pu0qΩ|2 dx ď ´

ż

Ω

|Duptq| ď ´C

ˆ
ż

Ω

|uptq ´ pu0qΩ|2 dx

˙1{2

.

Thus, the function }uptq ´ pu0qΩ}L2pΩq satisfies a differential inequality

d

dt
}uptq ´ pu0qΩ}2L2pΩq ď ´C}uptq ´ pu0qΩ}L2pΩq.

Therefore, when the right-hand side is nonzero, we get

d

dt
}uptq ´ pu0qΩ}L2pΩq ď ´C,

and consequently,

}uptq ´ pu0qΩ}L2pΩq ď }u0 ´ pu0qΩ}L2pΩq ´ Ct,

so the extinction time is at most equal to CpΩq}u0 ´ pu0qΩ}L2pΩq. □

Exercise 5.19. Modify the proof above to cover the case of the homogeneous
Dirichlet problem.
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On a final note, let us mention that this behaviour is a typical feature of convex
p-homogeneous functionals in Hilbert spaces with p ă 2; it was shown in a recent
paper [11] with a method based on the above argument.

Further reading

A classical reference on the total variation flow is the monograph [3], where
existence of solutions is obtained by an approximation of p-Laplace type.
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