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Abstract interpretation is a theory of formal program verification which generates sound
approximations of the semantics of programs, and has been used as the basis of methods and
effective algorithms to approximate undecidable or computationally intractable problems such
as the verification of safety-critical software (e.g. medical, nuclear, aviation software).

Typically, a complex concrete model (such as the powerset P(X) of a possibly infinite
set modelling program executions) is related to a model that can be efficiently represented
and manipulated, which is usually a finite lattice A that encodes the relevant — logically
interconnected — properties about these executions, by means of an adjoint pair of maps.
Specifically, the right adjoint (the concretization map v : A — P(X)) provides the intended
interpretation of the symbolic properties (that is, S = a iff S C v(a) for any S € P(X) and
a € A); the left adjoint (the abstraction map « : P(X) — A) classifies the executions of the
given program according to their satisfying the relevant properties. Even though the concrete
model is usually a Boolean algebra, the algebraic structure that the abstract lattice A retains
depends on the properties preserved by the concretization map .

Although this theory was connected to logic since its inception [2, 1, 4], it is only in the last
decade that the connection was made systematic. In particular, the notion of an (internal)
logic of an abstraction was introduced in [5] and systematically related to the order-theoretic
properties of the concretization map. In [3], this line of research is further developed. Namely,
the logics underlying specific abstractions are identified, together with explicit specification
of proof-theoretic presentations for each of them.

The present talk reports on the results of an ongoing work in which, using duality theory
and algebraic logic, we generalise the results of [3] and introduce a general procedure for
generating the (internal) logic of an abstraction together with the specification of a proof
system for it. The main idea is to generate a logic whose Lindenbaum-Tarski algebra is
isomorphic to the abstract algebra A. In particular, we highlight the connection between
properties of the logic, such as its expressiveness and its completeness, and the preservation
properties of the concretization map. We further discuss issues on the optimality of such
logics, as well as combinators of such algebras and the algebraic properties they preserve.
Ongoing research directions concern the extension of these results to richer abstract algebras
A endowed with modal (dynamic) operators.
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