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Theme

Splitting methods. Efficient time integration of nonlinear
evolution equations by exponential operator splitting methods

d
dt u(t ) = F

(
u(t )

)= A
(
u(t )

)+B
(
u(t )

)
, 0 ≤ t ≤ T , u(0) given,

SF (t , ·) =
s∏

j=1
eas+1− j tDA ebs+1− j tDB ≈ EF (t , ·) = etDF ,

un =SF (τn−1,un−1) ≈ u(tn) = EF
(
τn−1,u(tn−1)

)
, 1 ≤ n ≤ N .

Applications.

Nonlinear Schrödinger equations (GPS, MCTDHF)
(with W. AUZINGER & H. HOFSTÄTTER & O. KOCH, PH. CHARTIER &
F. MEHATS, S. DESCOMBES)

Parabolic equations (Ground state computation by artificial time integration)

Wave equations (with B. KALTENBACHER)
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Local error representations. Specification and inspection of local error
representations for high-order splitting methods

LF (t , v) =SF (t , v)−EF (t , v) =O
(
t p+1,‖v‖D

)
,

SF (t , v) =
s∏

j=1
eas+1− j tDB ebs+1− j tDA v ≈ EF (t , v) = etDF v .

Convergence analysis. Derivation of convergence result relies on stability
bounds and estimates for local error∥∥uN −u(tN )

∥∥
X ≤C

(∥∥u0 −u(0)
∥∥

X +
N∑

n=1
τ

p+1
n−1

)
.

Extension to full discretisations based on time-splitting pseudo-spectral
methods ∥∥uN M −u(tN )

∥∥
X ≤C

(∥∥u0 −u(0)
∥∥

X +τp
max +M−q

)
.

References. DESCOMBES, TH. (2010, 2012), TH. (2008, 2012)
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Adaptive stepsize control. Standard strategy for adaptive time stepsize
control

τoptimal = τ ·min
(
αmax,max

(
αmin, p+1

√
α · tol

errlocal

))
.

Construction and analysis of local error estimators for higher-order
splitting methods.

Embedded splitting methods

Asymptotically correct a posteriori local error estimators

References. AUZINGER, KOCH, TH. (2012), KOCH, NEUHAUSER, TH. (2013)
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Nonlinear Schrödinger equations
(Gross–Pitaevskii equations)
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Bose–Einstein condensation
In our laboratories temperatures are measured
in micro- or nanokelvin ... In this ultracold
world ... atoms move at a snail’s pace ... and
behave like matter waves. Interesting and
fascinating new states of quantum matter are
formed and investigated in our experiments.

(GRIMM ET AL., Innsbruck)

Bose–Einstein condensation in dilute gases. In 1925 Albert Einstein
predicted that at (very) low temperatures particles in a (dilute) gas could
all reside in the same quantum state. This peculiar gaseous state, a
Bose–Einstein condensate, was produced in the laboratory for the first
time in 1995 using the powerful laser-cooling methods developed in
recent years. These condensates exhibit quantum phenomena on a large
scale, and investigating them has become one of the most active areas of
research in contemporary physics. See PETHICK, SMITH (2002).

Physical experiments (University of Innsbruck). Realisation of ground
state and investigation of time evolution (H.-C. NÄGERL, M. MARK).
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Gross–Pitaevskii systems

Physical experiments. Observation of multi-component
Bose–Einstein condensates. Realisation of double species
87Rb 41K BEC at LENS, see G. THALHAMMER ET AL. (2008).

 

Theoretical model. Mathematical description (of certain aspects)
by time-dependent Gross–Pitaevskii systems forΨ :Rd ×[0,∞) →CJ

i ħ ∂tΨj (x, t ) =
(
− ħ2

2mj
∆+Vj (x)+ħ2

J∑
k=1

gjk |Ψk (x, t )|2
)
Ψj (x, t ) ,

Vj (x) ≈
d∑
`=1

(
mj

2 ω2
j` (x`−ζj`)2 +κj`

(
sin(qj`x`)

)2
)

, ‖Ψj (·,0)‖2
L2 = Nj ,

x ∈Rd , 0 ≤ t ≤ T , 1 ≤ j ≤ J .

Geometric properties (J = 1). Preservation of particle number
∥∥Ψ(·, t )

∥∥2
L2

and energy functional

E
(
Ψ(·, t )

)= ((− ħ
2m ∆+V + 1

2 ħg
∣∣Ψ(·, t )

∣∣2)
Ψ(·, t )

∣∣∣Ψ(·, t )
)

L2
.
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Nonlinear Schrödinger equations – Model problem

Model problem. Consider nonlinear Schrödinger
equation for ψ :Rd × [0,T ] →C : (x, t ) 7→ψ(x, t ){

i ε∂tψ(x, t ) =
(
− 1

2 ε
2∆+U (x)+ϑ ∣∣ψ(x, t )

∣∣2
)
ψ(x, t ) ,

ψ(x,0) given, x ∈Rd , 0 ≤ t ≤ T ,

subject to asymptotic boundary conditions.
−1

0
1

−1
0

1

−1

0

1

      x2x1      

x3

Illustration. Solution profile |ψ|2 of GPE in 3D (ε=ω=ϑ= 1, T = 3, M = 1283, tol = 10−6).

Ground state. Solution of special form ψ(·, t ) = e− iµt ϕ that minimises
energy functional. Useful as reliable reference solution in time integration.

Semi-classical regime. Numerical solution for smaller parameter values
0 < ε<< 1. Problems of similar form arise in applications from solid state
physics. See BAO, JIN, MARKOWICH (2002/03).
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Splitting methods
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Time-splitting pseudo-spectral methods
for nonlinear Schrödinger equations
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Space and time discretisation

Numerical simulations. Favourable behaviour of time-splitting and
pseudo-spectral methods for low-dimensional nonlinear Schrödinger
equations confirmed by numerical comparisons, see contributions by
W. BAO and collaborators.

Time evolution. Discretisation of model problem

i ε∂tψ(x, t ) =
(
− 1

2 ε
2∆+U (x)+ϑ ∣∣ψ(x, t )

∣∣2
)
ψ(x, t )

by pseudo-spectral method (Fourier, Sine, Hermite, Laguerre) and
adaptive splitting method (embedded splitting pairs, a posteriori
local error estimators).

Ground state computation (ε= 1). Application of imaginary time
method (projection at each artificial time step)

∂tψ(x, t ) =
(

1
2 ∆−U (x)−ϑ ∣∣ψ(x, t )

∣∣2
)
ψ(x, t ) .

Adaptive splitting method (Lie-Strang pair), pseudo-spectral space
discretisation.
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Illustrations (Ground state computation, Time evolution)

Movie. Groundstate computation and time evolution of model problem (d = 2, ε= 1,
ϑ= 0,10) under a harmonic potential (ω= 1,2). Space discretisation by Fourier
pseudo-spectral method (x ∈ [−8,8]× [−8,8], M = 200×200). Artificial time integration
by 2(1) pair based on Strang and Lie splitting. Time integration by embedded 4(3) pair based
on 4th-order scheme by BLANES, MOAN (2002) (t ∈ [0,4], tol = 10−6).

Movie
Ground state, Time Evolution, Energy, Time stepsizes (MATLAB)
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Illustrations (Ground state computation, Time evolution)
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Exponential operator splitting methods

Aim. For nonlinear evolution equation on Banach space X
d

dt u(t ) = A
(
u(t )

)+B
(
u(t )

)
, 0 ≤ t ≤ T , u(0) given,

determine approximations at time grid points 0 = t0 < ·· · < tN ≤ T with
associated stepsizes τn−1 = tn − tn−1 for 1 ≤ n ≤ N through recurrence

un =SF (τn−1,un−1) ≈ u(tn) = EF
(
τn−1,u(tn−1)

)= eτn−1DF u(tn−1) .

Approach. Splitting methods rely on suitable decomposition of
right-hand side and presumption that subproblems

d
dt v(t ) = A

(
v(t )

)
, v(t ) = etDA v(0) , 0 ≤ t ≤ T ,

d
dt w(t ) = B

(
w(t )

)
, w(t ) = etDB w(0) , 0 ≤ t ≤ T ,

are solvable in accurate and efficient manner.
General form. High-order splitting methods are cast into following form
scheme with real (or complex) method coefficients (a j ,b j )s

j=1

SF (t , ·) =
s∏

j=1
eas+1− j tDA ebs+1− j tDB ≈ EF (t , ·) = etDF = et (DA+DB ) .
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Example methods

Low-order methods. First-order Lie–Trotter splitting method and
second-order Strang splitting method

SF (t , ·) = etDB etDA , SF (t , ·) = e
1
2 tDA etDB e

1
2 tDA .

Higher-order methods. Symmetric fourth-order splitting method
proposed in BLANES, MOAN (2002) and embedded third-order splitting
method (KOCH, TH.) for time stepsize control.

j aj

1 0
2,7 0.245298957184271
3,6 0.604872665711080
4,5 1/2− (a2 +a3)

j âj

1 a1
2 a2
3 a3
4 a4
5 0.3752162693236828
6 1.4878666594737946
7 −1.3630829287974774

j bj

1,7 0.0829844064174052
2,6 0.3963098014983680
3,5 −0.0390563049223486
4 1−2(b1 +b2 +b3)

j b̂j

1 b1
2 b2
3 b3
4 b4
5 0.4463374354420499
6 −0.0060995324486253
7 0
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Practical realisation (Schrödinger equations)

Spectral decomposition. Numerical solution of first subproblem

d
dt v(t ) = A v(t ) , 0 ≤ t ≤ T , v(0) given,

involving linear differential operator A (related to Laplacian, eigenrelation
A Bm =µm Bm) relies on spectral decomposition

v(t ) = et A v(0) =∑
m

vm et µm Bm , 0 ≤ t ≤ T , v(0) =∑
m

vm Bm .

Invariance. Numerical solution of second subproblem

d
dt w(t ) = B

(
w(t )

)
w(t ) = B(w0) w(t ) , 0 ≤ t ≤ T , w(0) = w0 ,

involving (unbounded) nonlinear multiplication operator B (related to
potential and nonlinearity) relies on pointwise multiplication(

w(t )
)
(x) = (

etB(w0)w0
)
(x) = et (B(w0))(x)w0(x) , 0 ≤ t ≤ T .

Explanation. For analytical solution of ∂tψ(x, t ) =− i
(
V (x)+ϑ |ψ(x, t )|2)

ψ(x, t ) it follows

∂t |ψ(x, t )|2 = ∂t
(
ψ(x, t )ψ(x, t )

)= 2ℜ(
ψ(x, t ) ∂tψ(x, t )

)= 2ℜ(− i
(
V (x)+ϑ |ψ(x, t )|2) |ψ(x, t )|2)= 0.
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Fourier pseudo-spectral method

Spectral decomposition. LetΩ= (−a1, a1)×·· ·× (−ad , ad ) with a` > 0
(large) for 1 ≤ `≤ d . Fourier basis functions (Fm)m∈Zd form orthonormal
basis of L2(Ω) and satisfy eigenvalue relation

ψ(·, t ) =∑
m
ψm(t )Fm , ψm(t ) = (

ψ(·, t ) |Fm
)

L2 ,

−∆Fm =λm Fm , Fm(x) =
d∏
`=1

e
iπm`

(
x`
a`

+1
)

p
2a`

, λm =
d∑
`=1

π2m2
`

a2
`

.

Numerical approximation. Truncation of infinite sum and application of
trapezoid quadrature formula yields approximation

QM ψ(·, t ) = ∑
M

m
ψm(t )Fm ,

ψm(t ) =
∫
Ω
ψ(x, t )Fm(x) dx ≈∑

k
ωk ψ(ξk , t )Fm(ξk ) .

Implementation. Realisation by Fast Fourier Techniques.
Spectral space discretisations. Analogous relations for Sine, Hermite,
and generalised Laguerre–Fourier Hermite pseudo-spectral methods.
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Illustration (GPE with rotation, Time evolution)

Movie. Gross–Pitaevskii equation with additional rotation term (EXAMPLE IN BAO, LI, SHEN,
2009). Movie generated by Harald Hofstätter.

Movie (Rotating condensate)
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Objective

Mein Verzicht auf das Restglied war leichtsinnig. (W. ROMBERG, 1979)

Situation. Time integration of nonlinear evolution equations by
high-order exponential operator splitting methods

d
dt u(t ) = F

(
u(t )

)= A
(
u(t )

)+B
(
u(t )

)
, 0 ≤ t ≤ T , u(0) given,

SF (t , ·) =
s∏

j=1
eas+1− j tDA ebs+1− j tDB ≈ EF (t , ·) = etDF ,

un =SF (τn−1,un−1) ≈ u(tn) = EF
(
τn−1,u(tn−1)

)
, 1 ≤ n ≤ N .

Objective. Deduce local error representation for high-order splitting
methods that remains suitable for nonlinear evolutions equations
involving unbounded operators and critical parameters

LF (t , v) =SF (t , v)−EF (t , v) =O
(
t p+1,‖v‖D

)
.

Hope. Requirement sup
{‖u(t )‖D : 0 ≤ t ≤ T

}≤C (or ε j
∥∥∂ j

x u(0)
∥∥

X ≤C )
reasonable in connection with nonlinear Schrödinger equations.
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Illustration (Order of convergence)

Illustration. Space and time discretisation of Gross–Pitaevskii
equation (ε= 1, ω= 1, ϑ= 1, T = 1) by Fourier pseudo-spectral
method (M = 256) and different splitting methods of (nonstiff)
orders p ≤ 4. Numerically observed orders of convergence.
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order 1
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Numerical comparisons. Numerical comparisons (accuracy, efficiency,
long-term behaviour) of higher-order time-splitting Fourier/Hermite
pseudo-spectral methods (2D), see CALIARI, NEUHAUSER, TH. (2009).
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Derivation of local error expansions

Standard approaches.

Expansion of exponential functions

Baker–Campbell–Hausdorff formula

Alternative approaches.

Quadrature formulas. Optimal error bounds regarding
regularity of analytical solution for evolutionary Schrödinger
equations by techniques studied in JAHNKE, LUBICH (2000),
KOCH, NEUHAUSER, TH. (2013), LUBICH (2008), and TH. (2008,

2012).

Differential equations. Investigation of exact local error
representation for evolution equations involving critical
parameters exploited in DESCOMBES, DUMONT, LOUVET,
MASSOT (2007), DESCOMBES, SCHATZMAN (2002), and
DESCOMBES, TH. (2010, 2012).
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Baker–Campbell–Hausdorff formula

Baker–Campbell–Hausdorff formula. BCH formula implies

et L et K = et S(t ) , S(t ) = K +L− 1
2 t

[
K ,L

]+O
(
t 2) .

Local error expansion. For exponential operator splitting methods
involving two compositions (Lie, Strang)

SF (t , ·) = et S(t ) = ea1tDA eb1tDB ea2tDA eb2tDB ≈ EF (t , ·) = et (DA+DB )

above relation yields expansion (order conditions)

DA +DB ≈ S(t ) = (a1 +a2)DA + (b1 +b2)DB

+ 1
2 t

(
b2(a2 +a1)+b1(a1 −a2)

) [
DA ,DB

]+O
(
t 2) ,

where [DA ,DB ]v = DA DB v −DB DA v = B ′(v) A(v)− A′(v)B(v).

Difficulties. Justify approach for unbounded nonlinear operators?
Capture precise form of remainder to obtain optimal regularity
requirements on analytical solution? Employ alternative approaches ...
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Order conditions (Lie, Strang)

Order conditions. For bounded nonlinear operators requirement
LF (t , ·) =O

(
t p+1

)
for p = 1,2 implies (nonstiff) order conditions

a1 +a2 = 1, b1 +b2 = 1, (p = 1)

(1−a1)b1 = 1
2 . (p = 2)

Examples. Retain first-order Lie–Trotter splitting

s = 1, a1 = 1, b1 = 1,

s = 2, a1 = 0, a2 = 1, b1 = 1, b2 = 0,

and second-order Strang splitting

s = 2, a1 = 1
2 = a2 , b1 = 1, b2 = 0,

s = 2, a1 = 0, a2 = 1, b1 = 1
2 = b2 .

Question. Order reduction of splitting methods when applied to
equations involving unbounded operators and critical parameters?
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Approach based on quadrature formulas
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Quadrature formulas

Approach. Alternative local error expansion

LF (t , v) =SF (t , v)−EF (t , v) =O
(
t p+1,‖v‖D

)
provides optimal error estimates regarding regularity of analytical
solution for (non)linear evolutionary Schrödinger equations with
(un)bounded potentials.

Linear equations. See also JAHNKE, LUBICH (2000),
NEUHAUSER, TH. (2009), TH. (2008).

Nonlinear equations. See also GAUCKLER (2010), KOCH,
NEUHAUSER, TH. (2013), LUBICH (2008), TH (2012).

Main tools.

Variation-of-constants formula
(Gröbner–Alekseev)

Stepwise expansion of etDB

Quadrature formulas for multiple integrals

Bounds for iterated commutators

Characterise domains of
unbounded operators
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Local error expansion (Linear equations, Strang)

Situation. Time discretisation of linear evolution equation by splitting
method involving two compositions with a1 +a2 = 1

d
dt u(t ) = A u(t )+B u(t ) , 0 ≤ t ≤ T , u(0) given,

SF (t , ·) = eb2tB ea2t A eb1tB ea1t A ≈ EF (t , ·) = et (A+B) .

Derivation of local error expansion. Expansion of exact solution value by
variation-of-constants formula and stepwise expansion of etB yields

LF (t , ·) =Q1 − I1 +Q2 − I2 +O
(
t 3,C 3

B , MA , MB , MA+B
)

,

Q1 = t
(
b1e(1−a1)t AB ea1t A +b2B et A)≈ I1 =

∫ t

0
e(h−τ1)A B eτ1 A dτ1 ,

Q2 = 1
2 t 2 (

b2
1 e(1−a1)t AB 2ea1t A +2b1b2B e(1−a1)t A B ea1t A +b2

2B 2 et A)
≈ I2 =

∫ t

0

∫ τ1

0
e(t−τ1)A B e(τ1−τ2)A B eτ2 A dτ2 dτ1 ,

provided that ‖B‖X←X ≤CB ,
∥∥etC

∥∥
X←X ≤ eMC t , C ∈ {A,B , A+B}. Further

Taylor series expansions of integrands (commutators [A,B ], [A, [A,B ]]).
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Local error expansion (Linear equations, Strang)

Assumptions. Assume a1 +a2 = 1 and furthermore

‖B‖X←X ≤CB ,
∥∥etC ∥∥

X←X ≤ eMC t , C ∈ {A,B , A+B} ,∥∥[
A,B

]
v
∥∥

X +∥∥[
A, [A,B ]

]
v
∥∥

X ≤Cad ‖v‖D .

Local error expansion. Exponential operator splitting method involving
two compositions (Strang) fulfills local error expansion

LF (t , v) =
(
eb2tB ea2t A eb1tB ea1t A −et (A+B)

)
v

= t
(
b1 +b2 −1

)
et AB v

− t 2 et A
((

a1b1 +b2 − 1
2

) [
A,B

]+ 1
2

(
(b1 +b2)2 −1

)
B 2

)
v

+O
(
t 3,C 3

B , MA , MB , MA+B ,Cad,‖v‖D
)

.

Extension and application to linear Schrödinger equations. Suitable
choice X = L2(Ω), D = H p (Ω), MA = MB = 0, see TH. (2008).

Drawback. Numerical illustrations show that approach not optimal with
respect to critical parameter (B =U /ε).
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Local error expansion (Nonlinear equations)

Result. Local error expansion of high-order splitting methods applied to
nonlinear evolution equations.

Theorem (Koch & Neuhauser & Th. 2013, Th. 2008, Th. 2012)

The defect operator of an exponential operator splitting method of
(classical) order p admits the (formal) expansion

LF (t , ·) =
p∑

k=1

∑
µ∈Nk

|µ|≤p−k

1
µ! t k+|µ| Ckµ

k∏
`=1

adµ`
D A

(DB ) e tD A +Rp+1(t , ·) ,

Ckµ =
∑
λ∈Λk

αλ

k∏
`=1

bλ` c µ`
λ`

−
k∏
`=1

1
µ`+···+µk+k−`+1 .

Remarks. Application to MCTDHF equations in electron dynamics (with
O. KOCH). Local error expansion suitable for parabolic problems.
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Global error estimate (Full discretisations)

Discretisation. Space and time discretisation of nonlinear Schrödinger

equations by different pseudo-spectral methods (Fourier, Sine, Hermite)

and higher-order variable stepsize time-splitting methods.

Theorem (Th. 2012)

Provided that exact solution remains bounded in fractional power
space Xβ defined by principal linear part for β≥ p, the global error
estimate holds

‖uN M −u(tN )‖X0
≤C

(∥∥u0 −u(0)
∥∥

X0
+τp

max +M−q
)

.

Extension. Extension to Gross–Pitaevskii equations with additional
rotation term (with O. KOCH & H. HOFSTÄTTER).
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Global error estimate (Full discretisations)

Theorem (Th. 2012)

Global error estimate for sufficiently smooth solutions

‖uN M −u(tN )‖X0
≤C

(∥∥u0 −u(0)
∥∥

X0
+τp

max +M−q
)

.

Illustration. Discretisation of Gross–Pitaevskii equation (d = 2, ε=ω= T = 1) by different
pseudo-spectral methods (M = 256×256) and time-splitting methods of (nonstiff) orders
p = 1,2,3,4. Dependence of global error on total number of basis functions (ϑ= 0, dominant
error term related to linear part, Fourier, Hermite basis function as exact reference solution,
temporal error dominates global error). Numerically observed orders of convergence in time
(ϑ= 1, Fourier, Sine, Hermite, smooth initial value, numerical reference solution).
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Approach based on differential equations
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Differential equations

Approach. Derivation of exact local error representation for
splitting methods applied to linear and nonlinear equations
involving critical parameters, see DESCOMBES, SCHATZMAN (2002)

and DESCOMBES, TH. (2010, 2012). Similar approach utilised for
derivation of a posteriori error estimators.

Basic idea. Deduce differential equation for splitting operator

SF (t , ·) =
s∏

j=1
eas+1− j tDA ebs+1− j tDB

closely related to differential equation for evolution operator

d
dt EF (t , ·) = (DA +DB )EF (t , ·) , 0 ≤ t ≤ T , EF (0, ·) = I .

Main tools. Variation-of-constants formula, iterated commutators.
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Exact local error representation (Linear equations, Lie)

Situation. Time integration of linear evolution equation by
first-order Lie–Trotter splitting SF (t ) = etB et A .

Derivation of exact local error representation. Consider initial
value problem for evolution operator

d
dt EF (t ) = (A+B)EF (t ) , 0 ≤ t ≤ T , EF (0) = I .

Rewrite time derivative of splitting operator as

d
dt SF (t ) = B SF (t )+etB A et A = (A+B)SF (t )+ [

etB , A
]

et A

and obtain initial value problem for splitting operator

d
dt SF (t ) = (A+B)SF (t )+R(t ) , 0 ≤ t ≤ T , SF (0) = I .

By variation-of-constants formula obtain representation

LF (t , ·) =
∫ t

0
EF (t −τ)R(τ)dτ , R(t ) = [

etB , A
]

et A , 0 ≤ t ≤ T .
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Exact local error representation (Linear equations, Lie)

Expansion of remainder. Consider remainder

R(t ) = d
dt SF (t )− (A+B)SF (t ) = [

etB , A
]

et A .

Rewrite time derivative of r (t ) = [
etB , A

]= etB A− A etB as

d
dt r (t ) = B etB A− A B etB = B r (t )+ (

B A− A B
)

etB ,

which yields initial value problem for commutator

d
dt r (t ) = B r (t )+ [

B , A
]

etB , 0 ≤ t ≤ T , r (0) = 0.

By variation-of-constants formula obtain representation

r (t ) = [
etB , A

]= ∫ t

0
eτB [

B , A
]

e(t−τ)B dτ , 0 ≤ t ≤ T .
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Exact local error representation (Linear equations, Lie)

Local error representation. Above considerations imply exact
local error representation

LF
(
τn−1,u(tn−1)

)
=

∫ τn−1

0

∫ σ1

0
EF (τn−1 −σ1) eσ2B [

B , A
]

e−σ2B SF (σ1)u(tn−1) dσ2 dσ1 .

Provided that bound ‖EF (τn−1 −σ1) eσ2B [
B , A

]
e−σ2B SF (σ1)u(tn−1)‖X ≤C ‖u(tn−1)‖D

holds, local error estimate ‖LF (τn−1,u(tn−1))‖X ≤C τ2
n−1 follows.

Generalisation. Generalisation of exact local error representation, see
DESCOMBES, TH. (2010, 2012).

High-order splitting methods for linear evolution equations.

Lie–Trotter splitting method for nonlinear evolution equations.
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Exact local error representation (Linear equations)

Theorem (Descombes & Th. 2010)

LF (t ) =
s∏

j=1
ebj tB eaj t A −et (A+B) =

∫ t

0
EF (t −τ)R(τ)dτ , t ≥ 0,

R =
s∏

j=σ+1
ebj tB eaj t A

T
σ∏

j=1
ebj tB eaj t A , σ= 1

2

{
s , s even ,

s +1, s odd ,

T =
σ−1∑
j=0

Cσ− j , j +
s−σ−1∑

j=0
Dσ+1+ j , j , I±(L1,L2, t ) =

∫ t

0
e±tL1

[
L1,L2

]
e∓tL1 dτ ,

Ck,0 = ck I+(Bk , A)+dk−1 I+(Ak ,B)+dk−1I+
(
Bk ,I+(Ak ,B)

)
,

Ck, j =Ck, j−1 +I+(Ak+ j ,Ck, j−1)+I+(Bk+ j ,Ck, j−1)

+I+
(
Bk+ j ,I+(Ak+ j ,Ck, j−1)

)
, 1 ≤ k ≤σ , 0 ≤ j ≤σ−1,

Dk,0 = ck I−(Bk , A)− ck I−
(

Ak ,I−(Bk , A)
)+dk−1 I−(Ak ,B) ,

Dk, j = Dk, j−1 −I−(Ak− j ,Dk, j−1)−I−(Bk− j ,Dk, j−1)

+ I−
(

Ak− j ,I−(Bk− j ,Dk, j−1)
)

, σ+1 ≤ k ≤ s , 0 ≤ j ≤ s −σ−1.

Alternative representation. Related approach exploited in the context of a posteriori local
error estimators for high-order splitting methods (with W. Auzinger, O. Koch).
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Exact local error representation (Nonlinear equations, Lie)

Theorem (Descombes & Th. 2012)

The defect operator of the first-order Lie–Trotter splitting method admits
the (formal) integral representation

LF (t , ·) =
∫ t

0

∫ τ1

0
eτ1DA eτ2DB

[
DA ,DB

]
e(τ1−τ2)DB e(t−τ1)DF dτ2 dτ1

=
∫ t

0

∫ τ1

0
∂2EF

(
t −τ1,SF (τ1, ·)) ∂2EB

(
τ1 −τ2,EA(τ1, ·))

× [
B , A

](
EB

(
τ2,EA(τ1, ·))) dτ2 dτ1 , 0 ≤ t ≤ T .

Remark. Formal extension of linear case

LF (t , ·) =
∫ t

0

∫ τ1

0
e(t−τ1)(A+B) e(τ1−τ2)B [

B , A
]

eτ2B eτ1 A dτ2 dτ1 .

Current work. Extend approach to higher-order splitting methods and
prove asymptotical correctness of a posteriori local error estimators (with
W. AUZINGER, H. HOFSTÄTTER, O. KOCH).

Mechthild Thalhammer (Universität Innsbruck, Austria) Discretisations for nonlinear Schrödinger equations



Introduction
Nonlinear Schrödinger equations

Splitting and spectral methods
Convergence analysis

Quadrature formulas
Differential equations
Illustrations

Application (Problems with critical parameters)

Application. Error analysis of splitting methods for Schrödinger
equations involving critical parameters 0 < ε<< 1

i ε∂tψ(x, t ) =
(
− 1

2 ε
2∆+U (x)+ϑ ∣∣ψ(x, t )

∣∣2
)
ψ(x, t ) ,

see DESCOMBES, TH. (2010, 2012).

High-order splitting methods for linear evolution equations.

Local error =O
(
τp+1

ε

)
.

Lie–Trotter splitting method for nonlinear evolution equations.

Smooth initial value: Local error =C
(
τ
ε

)
τ2 ,

WKB initial value: Local error =C
(
τ
ε

)
τ .

Remark. Difficult task to adjust time stepsize in suitable manner. Reliable
and efficient time integration of Schrödinger equations with critical
parameters based on adaptive time stepsize control.
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Illustrations (Adaptive time integration)
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Illustration

Model problem. Nonlinear Schrödinger equation for
ψ :Rd × [0,T ] →C : (x, t ) 7→ψ(x, t ){

i ε∂tψ(x, t ) =
(
− 1

2 ε
2∆+U (x)+ϑ ∣∣ψ(x, t )

∣∣2
)
ψ(x, t ) ,

ψ(x,0) = ρ0(x)eiσ0(x) given, x ∈Rd , 0 ≤ t ≤ T ,

involving critical parameter 0 < ε<< 1 under harmonic potential
(scaling ω) and WKB initial condition

ρ0(x) = e−x2
, σ0(x) =− ln

(
ex +e−x)

, x ∈R ,

see also BAO, JIN, MARKOWICH (2003).
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Illustrations (Smaller parameter, Solution behaviour)

Movie. Space and time discretisation of model problem (d = 1, ε= 10−2, ω= 1, ϑ= 1) by
Fourier pseudo-spectral method and embedded 4(3) time-splitting pair based on 4th-order
scheme by BLANES, MOAN (2002) (x ∈ [−8,8], M = 8192, t ∈ [0,3], tol = 10−6, N = 2178).

Movie (Smaller parameter, Solution behaviour)
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Illustration (Smaller parameter, Reliable time integration)

Integration without preparation is frustration. (REVEREND LEON SULLIVAN)

Situation. Time integration of model problem (ϑ= 1) by splitting
methods with constant time stepsizes.

Illustration. Model problem with ε= 10−2 and ω= 1 (columns 1 and 2) or ω= 2 (columns 3
and 4), respectively. Comparison of the solution profiles |ψ(x, t )|2 for x ∈ [0,1.5] at time t = 3,
computed by the first-order Lie–Trotter (p = 1) and a fourth-order splitting method proposed
by BLANES & MOAN (p = 4). Time stepsize h = ε/20 (columns 1 and 3) or h = ε/50 (columns 2
and 4), respectively, for p = 1. Time stepsize h = ε/20 for p = 4.
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Illustration (Smaller parameter, Reliable time integration)

Integration without preparation is frustration. (REVEREND LEON SULLIVAN)

Movie. Time integration of model problem (d = 1, ε= 10−2, ω= 2, ϑ= 1) under WKB initial
condition by Fourier pseudo-spectral method and embedded 4(3) splitting pair based on
4th-order time-splitting scheme by BLANES, MOAN (2002) (x ∈ [−8,8], M = 8192, t ∈ [0,3]).
Solution profile |ψ(x, t )|2 for tol = 10−1,10−2,10−3,10−6 (N = 951,2342,2452,3560).

Movie (Smaller parameter, Reliable time integration)
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Illustration (Smaller parameter, Reliable time integration)

Further illustrations. Time integration of model equation (d = ε= 1, ω= 5) by the
embedded 4(3) pair (tol = 10−10). Solution profiles ℜψ for (x, t ) ∈ [0,1.5]× [T0,T ] and
associated time stepsizes. Left: Additional lattice potential with κ= 10 and defocusing
nonlinearity with ϑ= 1 for t ∈ [0,10]. Middle: Focusing nonlinearity with ϑ=−10 for t ∈ [0,1].
Right: Defocusing nonlinearity with ϑ= 1 and sharp initial Gaussian with γ= 4 for t ∈ [0,10].
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Conclusions and future work

Conclusions.

Theoretical analysis of discretisations for model problems provides
insight in regard to more complex applications.

Adaptivity in time essential for reliable numerical simulations.

Future work.

Asymptotical correctness of higher-order a posteriori local error estimators for
nonlinear Schrödinger equations.

Convergence analysis of higher-order time-splitting pseudo-spectral methods for
nonlinear Schrödinger equations involving small parameters iu′ = Au + 1

εB(u).

Convergence analysis of multi-revolution compositon methods combined with
time-splitting pseudo-spectral methods for Schrödinger equations iu′ = 1

ε Au +B(u).

Thank you!
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