Develin, Macauley, and Reiner introduced toric posets, which combinatorially are equivalence classes of posets (or rather acyclic quivers) under the operation of flipping maximum elements into minimum elements and vice versa. In this work, we introduce a toric analogue of Greene's rational function for toric posets, and study its properties. In addition, we use toric posets to show that the Kleiss-Kuijf relations, which appear in scattering amplitudes, are equivalent to a specific instance of Greene's evaluation of his rational function for strongly planar posets. We also give an algorithm for finding the set of toric total extensions of a toric poset.
The following versions are available: