Johanna Michor

Department of Mathematics

An abstract of each publication is available by selecting the corresponding title. You can download the file directly in TeX or PDF format.

Preprint

Publications in refereed Journals and Proceedings

  1. Rarefaction waves for the Toda equation via Nonlinear Steepest Descent, with I. Egorova and G. Teschl, Discrete Contin. Dyn. Syst. (to appear). [ PDF ]
  2. Wave phenomena of the Toda lattice with steplike initial data, Phys. Lett. A 380, 1110-1116 (2016). doi:10.1016/j.physleta.2016.01.033. [ PDF ]
  3. Scattering theory with finite-gap backgrounds: transformation operators and characteristic properties of scattering data, with I. Egorova and G. Teschl, Math. Phys. Anal. Geom. 16, 111-136 (2013). [ TEX | PDF ]
  4. On the spatial asymptotics of solutions of the Ablowitz-Ladik hierarchy, Proc. Amer. Math. Soc. 138, 4249-4258 (2010). [ TEX | PDF ]
  5. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy, with F. Gesztesy, H. Holden, and G. Teschl, Discrete Contin. Dyn. Syst. 26:1, 151-196 (2010). [ TEX | PDF ]
  6. Inverse scattering transform for the Toda hierarchy with steplike finite-gap backgrounds, with I. Egorova and G. Teschl, J. Math. Physics 50, 103522 (2009). [ TEX | PDF ]
  7. On the equivalence of different Lax pairs for the Kac-van Moerbeke hierarchy, with G. Teschl, in Modern Analysis and Applications, V. Adamyan (ed.) et al., 437-445, Oper. Theory Adv. Appl. 191, Birkhäuser, Basel, 2009 [ TEX | PDF ]
  8. Soliton solutions of the Toda hierarchy on quasi-periodic backgrounds revisited, with I. Egorova and G. Teschl, Math. Nach. 282, No. 4, 526-539 (2009). [ TEX | PDF ]
  9. Local conservation laws and the Hamiltonian formalism for the Ablowitz-Ladik hierarchy, with F. Gesztesy, H. Holden, and G. Teschl, Stud. Appl. Math. 120-4, 361-423 (2008). [ TEX | PDF ]
  10. Scattering theory for Jacobi operators with general steplike quasi-periodic background, with I. Egorova and G. Teschl, Zh. Mat. Fiz. Anal. Geom. 4-1, 33-62 (2008). [ TEX | PDF ]
  11. The Ablowitz-Ladik hierarchy revisited, with F. Gesztesy, H. Holden, and G. Teschl, in Methods of Spectral Analysis in Mathematical Physics, J. Janas (ed.) et al., 139-190, Oper. Theory Adv. Appl. 186, Birkhäuser, Basel, 2008. [ TEX | PDF ]
  12. Algebro-geometric finite-band solutions of the Ablowitz-Ladik hierarchy, with F. Gesztesy, H. Holden, and G. Teschl, Int. Math. Res. Notices 2007, no. 20, Art. ID rnm082, 55 pp (2007). [ TEX | PDF ]
  13. Scattering theory for Jacobi operators with steplike quasi-periodic background, with I. Egorova and G. Teschl, Inverse Problems 23, 905-918 (2007). [ TEX | PDF ]
  14. Inverse scattering transform for the Toda hierarchy with quasi-periodic background, with I. Egorova and G. Teschl, Proc. Amer. Math. Soc. 135, 1817-1827 (2007). [ TEX | PDF ]
  15. Trace formulas for Jacobi operators in connection with scattering theory for quasi-periodic background, with G. Teschl, in Operator Theory, Analysis and Mathematical Physics, J. Janas, et al. (eds.), 69-76, Oper. Theory Adv. Appl., 174, Birkhäuser, Basel, 2007. [ TEX | PDF ]
  16. Scattering theory for Jacobi operators with quasi-periodic background, with I. Egorova and G. Teschl, Comm. Math. Phys., 264-3, 811-842 (2006). [ PS | PDF ]
  17. Reconstructing Jacobi matrices from three spectra, with G. Teschl, in Spectral Methods for Operators of Mathematical Physics, J. Janas, P. Kurasov, and S. Naboko (eds.), 151-154, Oper. Theory Adv. Appl. 154, Birkhäuser, Basel, 2004. [ PS | PDF ]

Research Monograph

Theses

 
You can also search MatSciNet or MATH Database. Most files are also available on arxiv.org.
You can download this list of publications in pdf format.