Wolfgang Pauli Institute (WPI) Vienna 


Home  WPI in a nutshell  Practical Information  Events  People  WPI Projects 
Login  Thematic Programs  Pauli Fellows  Talks  Research Groups 
Fernando Casas  WPI, OMP 1, Seminar Room 08.135  Tue, 27. Feb 24, 10:00 
Symmetricconjugate splitting methods for evolution equations of parabolic type  
In this talk I will provide a short introduction to a class of operator splitting methods with complex coefficients which possess a special symmetry, the socalled symmetricconjugate methods, and analyze their application for the time integration of linear evolution problems. Including complex coefficients with nonnegative real parts permits the design of favorable highorder schemes that remain stable in the context of parabolic problems. This sets aside the secondorder barrier for standard splitting methods with real coefficients as well as the fourthorder barrier for modified splitting methods involving double commutators. Relevant applications include nonreversible systems and ground state computations for Schr{\"o}dinger equations based on the imaginary time propagation method.  

Sergio Blanes  WPI, OMP 1, Seminar Room 08.135  Mon, 26. Feb 24, 10:00 
Splitting methods with complex coefficients for the numerical integration of quantum systems  
The evolution of most quantum systems is modeled by differential equation in the complex space. However, in general, the equations are numerically solved using integrators with real coefficients. To consider complex coefficients usually does not make the schemes computationally more costly and can provide more accurate results. In this talk, we explore the applicability of splitting methods involving complex coefficients to solve numerically the timedependent Schrödinger equation. There are pros (high accuracy and not to increase the cost) and cons (instability and loose of qualitative properties) when using complex coefficients. However, there is a class of methods with complex coefficients with a particular symmetry that keep most pros while avoid most cons. This class of integrators are stable and are conjugate to unitary methods for sufficiently small step sizes. These are promising methods that we will explore: we build new methods and we analyse their performance on several examples. This is joint work with Joakim Bernier, Fernando Casas and Alejandro Escorihuela.  

Yu Zhang (MMM Univ. Wien and Macau Univ. Science & Technology)  WPI Seminar Room, 8th floor, Fak.Math. OMP1  Tue, 16. Jan 24, 14:30 
Numerical Methods for Hydrodynamic Simulations and Linear Stability Analysis  
In this presentation, three projects are sketched: 1) FPlane Approximation for Solar Simulation: We introduced the fplane approximation into the ANTARES code and ran 3D solar simulation with and without rotation, attempting to analyze how much influence rotation would have on the convection structures. 2) Linear Stability Analysis of an Incompressible Fluid with Vertical Shear in Fplane: Shear instability and GSF instability are two possible sources of extra mixing in stars to explain the differences between theoretical stellar evolution models and observations. We consider an incompressible fluid with vertical shear in fplane and try to find out what really happens when shear instabilities coexist with GSF instabilities. 3) The Stability Analysis of Polar Cyclones on Saturn and Jupiter: The longlived cyclones in the polar regions of Jupiter and Saturn have been explored for a long time. We aim to explain the number and location of Jupiter’s circumpolar cyclones and the absence of those on Saturn by linear stability analysis. This is ongoing joint work with O. Koch, F. Kupka and N.J. Mauser.  

Inmaculada Higueras (Public Univ. of Navarra)  WPI Seminar Room, 8th floor, Fak.Math. OMP1  Tue, 16. Jan 24, 13:45 
IMplictiEXplicit time stepping methods for some problems in astrophysics  
We consider equations of motion associated to a model in astrophysics. The PDE are firstly semidiscretized in space and subsequently integrated in time by IMplicitEXplicit (IMEX) RungeKutta methods constructed to preserve different stability properties. For some simple examples, as well as for the problem of doublediffusive convection, it can be demonstrated that they provide a significant computational advantage over other methods from the literature. Ongoing work continues with the study of implementation issues as well as with the study and construction of robust IMEX schemes for some other problems in astrophysics. This is joint work with O. Koch and F. Kupka.  

Peter Korn  SkyLounge, 12th floor, OskarMorgensternPlatz 1, 1090  Fri, 3. Nov 23, 10:45 
PDE dynamics in numerical ultrahighresolution climate modelling  
We discuss some aspects of the effort to produce a "digital twin" of the earth climate. The status of ultrahighresolution numerical climate modelling and recent computational achievements are discussed. Mathematical challenges and opportunities arise when numerical models aim to represent an increasing number of turbulent scales. These challenges comprise the PDE of atmosphere and ocean dynamics, their numerical discretization and the modelling of (still) unresolved scales. This is part of the research of the DFG Forschungsgruppe FOR 5528: Mathematical Study of Geophysical Flow Models: Analysis and Computation.  

Vittorio Canuto  HS11, 2nd floor, OskarMorgensternPlatz 1, 1090 Wien  Thu, 31. Aug 23, 15:00 
My Life as a Scientist: 50+ Years at NASAGISS  
I take the audience on a scientific journey from the physics of neutron stars to cosmology and further on to turbulence and its role for oceaongraphy and climate modeling. Scientific highlights on this journey include an exact equation of state for neutron stars, results on cosmology, and a general turbulence model which has guided the modeling of transport processes in oceanography which is needed in climatology. From short encounters to longterm collaborations famous physicists are part of this story, including P.A.M. Dirac, W. Heisenberg, I. Rabi, J.A. Wheeler and many others.  

Damian Fabbian  WPI, OMP 1, Seminar Room 08.135  Thu, 31. Aug 23, 10:10 
Stellar Atmospheres & Activity  
The atmospheres of most stars have at least some level of magnetic activity. This is modulated by variability, which manifests itself as varying magnetic strength across the stellar surface and in time as well as in the form of different magnetic behaviour of different stars. This is moreover intertwined with all the other physical effects occurring in the atmospheres of stars, in particular convection, radiative transfer and turbulence. In the case of the Sun, magnetic fields are known to be ubiquitous, at an average level of roughly 1 hG across its surface, which  inter alia  has an impact on its inferred temperature stratification and chemical abundance. It is especially interesting to understand solar magnetism, for example its main magnetic cycle, also in comparison to other stars, given the Sun's driving influence on life on Earth and as the base energy input for terrestrial climate. Knowledge of stellar activity is also crucial for improved exoplanet detection and characterisation. Our team is focussing on different aspects of stellar atmosphere physics, from the viewpoint of numerical (magneto)hydrodynamic simulations. Recent examples include the production of models for stars of spectral type F to A, and the study of hard turbulence as possible driver of synchronised swaying atmospheric motions akin to the still unexplained effect of solar supergranulation.  

Petri Käpylä  WPI, OMP 1, Seminar Room 08.135  Thu, 31. Aug 23, 9:30 
Convective scale, overshooting, and subadiabatic layers in deep stellar convection zones  Insights from 3D LES  
The overall understanding of solar and stellar convection has been questioned during the last decade or so with helioseismic results suggesting that the convective amplitudes at large horizontal scales in the Sun might be much lower than indicated by current simulations or mixing length estimates. A manifestation of this ``convective conundrum'' is that global simulations struggle to reproduce a solarlike differential rotation with a fast equator and slow poles with nominally solar parameters. A major contributor to this is that giant cell convection, with characteristic length scale comparable to the depth of the convection zone, is excited in simulations but appears to be much weaker in the Sun. A possible solution to this conundrum is that a large fraction of the solar convection zone is in fact stably stratified due to plumes originating near the surface and piercing the whole convection zone, such that giant cells are not excited. Nonrotating numerical simulations lend support to such nonlocal scenario of convection and lead to sizeable Schwarzschildstable, yet convecting, layers in deep convection zones. Another possibility is that convection is rotationally constrained such that horizontal extent of convection cells is significantly reduced. New results from hydrodynamic rotating Cartesian convection simulations are presented that seek to capture the rotationally constrained convection near the base of the solar convection zone. The current results indicate that in models corresponding to the deep parts of the solar convection zone, the subadiabatic and overshoot layers are somewhat shallower than in the nonrotating case. Furthermore, these simulations suggest that deep convection in the Sun is not strongly rotationally constrained and that rotational suppression of large scale flows is weak.  

Teresa Braun  WPI, OMP 1, Seminar Room 08.135  Wed, 30. Aug 23, 15:50 
Applying the Kuhfuss Convection Theory to Convective Envelopes  
In 1D stellar evolution models, the process of convection is often described using the mixing length theory (MLT). However, MLT does not account for the nonlocality of convection, and an ad hoc implementation of overshooting is needed. The Kuhfuss theory is one of the theories that attempts to derive a more complete picture of turbulent convection. In this theory, nonlocality is not implemented artificially, but is included in the theory. Both versions of the Kuhfuss theory, the 1equation model as well as the 3equation model, are implemented in the stellar evolution code GARSTEC and have already been tested on convective cores on the main sequence before (Ahlborn et al. 2022). Following these promising results for convection in stellar cores, we tested the Kuhfuss theory for convective envelopes. We applied the 1equation model of the Kuhfuss convection theory to a stellar model calibrated to the Sun. Using helioseismic measurements of quantities of the convective envelope and interior structure, we quantified the differences and improvements from the Kuhfuss theory compared to MLT. We furthermore followed the evolution of stars to the red giant branch to study the influence of the Kuhfuss theory on the location of the red giant branch bump, which is known to be sensitive to the description and depth of convective overshooting. In the future, these cases will also be studied using the full 3equation Kuhfuss model.  

Felix Ahlborn  WPI, OMP 1, Seminar Room 08.135  Wed, 30. Aug 23, 14:40 
Nonlocal convection models in stellar evolution  
Observations of stars with convectively burning cores have shown that the size of these cores is substantially underestimated. The increase of the convective core size, known as overshooting, has profound effects on the stellar structure and evolution, e.g. affecting age estimates, luminosities or nucleosynthetic yields of stars. Here, we applied a turbulent convection theory to model the evolution of intermediate and highmass stars. We predict the emergence of an overshooting zone and modifications to the thermal stratification. The application of a turbulent convection theory is a crucial step towards a more realistic description of convection in stellar models. The predictions of the turbulent convection model may be tested against a variety of different observations, e.g. spectroscopic observations of massive stars, asteroseismic observations or observations of detached binary systems. Finally, the predictions of the turbulent convection model can be compared to hydrodynamic simulations of turbulent convection.  

Günter Houdek  WPI, OMP 1, Seminar Room 08.135  Wed, 30. Aug 23, 14:00 
Stellar convection and pulsation mode physics  
In this presentation I shall provide an overview of our current understanding of modelling energy exchange between stellar convection and oscillations in stars supporting solartype oscillations. Stellar calculations, adopting a 1D, nonlocal, timedependent convection model, are calibrated against seismic observations and 3Dsimulation results. These stellar models are tested against data from the Sun and from Kepler mainsequence stars. This provides insight into the physical processes that determine energy transport in the outer stellar layers and to a better understanding of the socalled surface effects of pulsation frequencies.  

Gábor Kovács  WPI, OMP 1, Seminar Room 08.135  Wed, 30. Aug 23, 11:20 
Convection and turbulence in classical variable stars: achievements and recent progress  
While all of the stars change their brightness during their lifetimes, there are many among them that do this on a human timescale (from less than a day to years) due to external or internal reasons. We call those stars classical variables, which exhibit a strong, stable radial pulsation with periods from 0.3100 days. In these cases, the outer envelope of the star periodically expands and shrinks due to an effect tied to hydrogen and helium ionisations called the kappa mechanism. They are important to astronomers because their period is proportional to their average brightness, making them perfect distance indicators. Since the first electronic computers became available, astronomers have applied them to model the structure and dynamics of these (and every other) types of stars. The first attempts neglected convection and turbulence, considering only radiative energy transport. However, it soon turned out that we could not adequately describe pulsation without convection. Moreover, the different improved forms of static mixing length theory were also inadequate. Hence, massive research was started to create a timedependent theory that can describe convection correctly in a onedimensional approximation. These efforts revealed some hidden features of the phenomena but could not answer all of the questions raised. Since convection and nonradial pulsation are genuinely multidimensional phenomena, multiD models seem inevitable, but this approach requires high computational performance, which was not available decades ago. Today, though we have better equipment, numerical modelling of turbulent convection in stars is still a great challenge due to the many magnitudes of scale it involves, especially in classical pulsators. In this talk, I highlight some of the achievements of this journey and show the recent developments and future aspects of turbulent RHD modelling in classical pulsating stars.  

Herbert Muthsam  WPI, OMP 1, Seminar Room 08.135  Wed, 30. Aug 23, 10:10 
From turbulent to laminar: multidimensional simulations of solar granulation and pulsating stars  
We speak about numerical issues and results regarding the simulation of solar granulation flows and the pulsationconvection interaction in Cepheids in 3D and 2D, respectively.  

Friedrich Kupka  WPI, OMP 1, Seminar Room 08.135  Wed, 30. Aug 23, 9:30 
A turbulent context  
In intention of this talk is to show how research on a rather specific topics from stellar astrophysics, the study of atmospheres of Atype stars, has led myself to numerous collaborations with researchers working in other fields such as meteorology, oceanography, numerical mathematics, and high preformance computing. To explain "turbulence" in the context of solar and stellar astrophysics, a short introduction into simulations of solar granulation will be given (much more details will follow in Herbert Muthsam's talk) followed by how turbulent convection is detected and modelled in Atype stars. Various modelling approaches have been used in this context: mixing lenth theory, twopoint closure models, Reynolds stress models, and numerical simulations. The latter lead to the necessity to develop improved time integration methods which have first been probed in studies of semiconvection (diffusive convection). Studies in meteorology inspired new models for higher order moments required for Reynolds stress models. Finally, some result on the modelling of convective overshooting is presented which has been inspired by work that will be discussed in detail in other talks during the workshop (by Felix Ahlborn, Teresa Braun, Petri Käpylä).  

Rupert Klein  HS11, 2nd floor, OskarMorgensternPlatz 1, 1090 Wien  Tue, 29. Aug 23, 15:40 
"Mathematical modelling in geophysical fluid dynamics"  
Three examples from geophysical fluid dynamics will showcase mathematical modelling as the "art of judicious simplification": The computational prediction of two seasonal to decadal phenomona, the "quasibiennial oscillation" (QBO) and the "El Niño Southern Oscillation" (ENSO) became possible only after theoreticians had captured their essential causal structures in convincing reduced mathematical models. With our own research, we aim to similarly untangle the mechanisms behind the "rapid intensification" (RI) of tropical storms during their transition to hurricane strength.  

Dmitrii Mironov  HS11, 2nd floor, OskarMorgensternPlatz 1, 1090 Wien  Tue, 29. Aug 23, 14:25 
Some Possibly Useful Thoughts on Modelling Turbulence in Operational Meteorology  
Turbulence closure models (parameterization schemes) currently used in numerical models of the atmosphere are discussed. The focus is on truncated oneequation turbulence kinetic energy (TKE) closure schemes that are arguably the presentday draft horses of operational meteorology, e.g., numerical weather prediction. Advantages and shortcomings of oneequation TKE schemes are outlined in the context of various operational constraints. A TKE scalar variance (TKESV) closure scheme is considered in some detail. The TKESV scheme carries transport equations (with due regard for the timerateofchange and thirdorder transport terms) for both the TKE and the variances and covariance of scalar quantities (e.g., temperature and humidity) that characterize turbulence potential energy. It is argued that the TKESV scheme has considerable advantages over the TKE scheme in terms of the essential physics but it can still meet severe operational requirements. Careful consideration is given to a number of tricky parameterization issues, including the pressurescrambling effects in the Reynoldsstress and scalarflux equations and the influence of clouds on turbulent mixing. An assumed PDF (probability distribution function) closure approach is briefly outlined. Finally, realizability of turbulence closures is considered within a more general framework of the problem of moments of the probability theory.  

Carsten Eden  HS11, 2nd floor, OskarMorgensternPlatz 1, 1090 Wien  Tue, 29. Aug 23, 13:40 
"Eddies, waves and turbulence in the ocean"  
The three principal dynamical regimes of the atmosphere and the ocean are: i) smallscale turbulence down to the smallest space and time scales ii) internal gravity waves over a wide range of spatial scales iii) geostrophically balanced eddying motion at the largest space and time scales. All regimes are of turbulent character and need parameterisations in ocean components of climate models because of the lack of coarse grid resolution. A few aspects of closures for gravity wave turbulence are presented and closures for eddies in the ocean are discussed.  

Maurizio Salaris  HS11, 2nd floor, OskarMorgensternPlatz 1, 1090 Wien  Tue, 29. Aug 23, 10:55 
Stellar evolution anf turbulent convection  
Stellar evolution models provide the foundation of several methods applied to study the evolutionary properties of stars and stellar populations, both Galactic and extragalactic. The accuracy of the results obtained with these techniques is tied to the accuracy of the stellar models, and in this context the correct treatment of turbulent convection is crucial. Unfortunately, the modelling of turbulent convection in stellar evolution computations is still affected by sizable uncertainties. The aim of this talk is to highlight the effect of turbulent convection on the most important stellar model predictions in the context of the study of stellar systems like star clusters and galaxies, and the (simple) prescriptions we currently use (out of necessity).  

Bérengère Dubrulle  HS11, 2nd floor, OskarMorgensternPlatz 1, 1090 Wien  Tue, 29. Aug 23, 9:35 
“Irreversibility and Singularities in Turbulence"  
In a viscous fluid, the energy dissipation is the signature of the breaking of the timereversal symmetry (hereafter TSB) t>t, u> u, where u is the velocity. This symmetry of the NavierStokes equations is explicitly broken by viscosity. Yet, in the limit of large Reynolds numbers, when flow becomes turbulent, the nondimensional energy dissipation per unit mass becomes independent of the viscosity, meaning that the timereversal symmetry is spontaneously broken. Natural open questions related to such observation are: what is the mechanism of this spontaneous symmetry breaking? Can we associate the resulting time irreversibility to dynamical processes occurring in the flow? Can we devise tools to locally measure this time irreversibility? In this talk, I first show that the TSB is indeed akin to a spontaneous phase transition in the Reversible NavierStokes equations, a modification of the NavierStokes equation suggested by G. Gallavotti to ensure energy conservation and relevance of statistical physics interpretation. I then discuss a mechanism of the TSB in NavierStokes was first suggested by L. Onsager in 1949, in which quasisingularities or singularities create a nonviscous dissipation. I exhibit the tools to track these quasisingularities. I show how the application of these tools to velocity measurements in a turbulent swirling flow allows to detect Eulerian and Lagrangian signatures of irreversibility. This enables me to evidence the structures that are responsible for irreversibility and associate them with peculiar properties of the local velocity field or trajectories.  

Anna MarciniakCzochra  WPI, OMP 1, Seminar Room 08.135  Tue, 8. Aug 23, 14:00 
Transcriptomicsstructured population models: From data to models and modelbased data analysis  

Johnny Ottesen  WPI, OMP 1, Seminar Room 08.135  Tue, 8. Aug 23, 11:15 
A Mathematical Modeling Approach to Clonal Architecture of Hematopoietic Cancers and its Impact on Stem Cell Dynamics, Disease Progression and Treatment Efficiency  

Doron Levy  WPI, OMP 1, Seminar Room 08.135  Tue, 8. Aug 23, 10:00 
Mathematical Models for Immunotherapy  

Michael Bergmann  WPI, OMP 1, Seminar Room 08.135  Tue, 8. Aug 23, 9:15 
Short Term Primary Tumor Culture to Understand the Response to Therapy in Colorectal Cancer  

Walter Berger  WPI, OMP 1, Seminar Room 08.135  Mon, 7. Aug 23, 16:50 
Unusual Mode of Action for Usual Pharmacon  

Peter Roth  WPI, OMP 1, Seminar Room 08.135  Mon, 7. Aug 23, 15:30 
Computational Medicine: Computer Science in Veterinary Medicine  

Benoît Perthame  WPI, OMP 1, Seminar Room 08.135  Mon, 7. Aug 23, 14:15 
Analysis of Mechanical Models of Living Tissues and Free Boundary Problems  

Morten Andersen  WPI, OMP 1, Seminar Room 08.135  Mon, 7. Aug 23, 13:30 
Blood Cancer (MPN) Progression and Treatments Clarified by Mathematical Modeling  

Luca GerardoGiorda  WPI, OMP 1, Seminar Room 08.135  Mon, 7. Aug 23, 11:15 
Digital Twins in Computational Medicine  

Thomas Stiehl  WPI, OMP 1, Seminar Room 08.135  Mon, 7. Aug 23, 10:00 
Mechanistic modeling of stem cell dynamics during inflammation, aging and cancer  

Francois Rincon & David Hosking  WPI, OMP 1, Seminar Room 08.135  Fri, 4. Aug 23, 10:00 
Summary  

Claude Bardos & Nicolas Besse  WPI, OMP 1, Seminar Room 08.135  Thu, 3. Aug 23, 16:15 
Homogeneous approximations for solutions of the Vlasov equation from quasilinear to BalescuLenard equation  

Archie Bott  WPI, OMP 1, Seminar Room 08.135  Thu, 3. Aug 23, 10:45 
Firehoseinduced collisionality  

Robbie Ewart  WPI, OMP 1, Seminar Room 08.135  Thu, 3. Aug 23, 10:00 
TBA  

Nuno Loureiro  WPI, OMP 1, Seminar Room 08.135  Wed, 2. Aug 23, 16:15 
Ruminations on reconnection  

Anatoly Spitkovsky  WPI, OMP 1, Seminar Room 08.135  Wed, 2. Aug 23, 10:45 
1) Recovering phasespace structures in particle simulations 2) Particle diffusion in largeamplitude waves near shocks  

Tunde Fulop  WPI, OMP 1, Seminar Room 08.135  Wed, 2. Aug 23, 10:00 
Seeding an avalanche: which snowflake is most responsible  

Steve Cowley  WPI, OMP 1, Seminar Room 08.135  Tue, 1. Aug 23, 17:00 
Magnetic reconnection from a different perspective  

Patrick Reichherzer  WPI, OMP 1, Seminar Room 08.135  Tue, 1. Aug 23, 10:45 
Micromirrors mediating multiscale motions in magnetised megastructures  

Martin Lemoine  WPI, OMP 1, Seminar Room 08.135  Tue, 1. Aug 23, 10:45 
Discussion on on particle acceleration in turbulent environments  

Philipp Kempski  WPI, OMP 1, Seminar Room 08.135  Tue, 1. Aug 23, 10:00 
Towards a new theory of cosmic ray transport  

Bruno Despres  WPI, OMP 1, Seminar Room 08.135  Mon, 31. Jul 23, 16:15 
1) Scattering theory and plasma physics (Linear Landau Damping revisited, others, and extension to non homogeneous case) 2) Design of moment methods for numerical magnetized plasmas (with 3D calculation)  

Stephen Majeski  WPI, OMP 1, Seminar Room 08.135  Mon, 31. Jul 23, 10:45 
Wave interactions and turbulence in collisionless, highbeta plasmas  

Alex Velberg  WPI, OMP 1, Seminar Room 08.135  Mon, 31. Jul 23, 10:00 
Resistivekinkinduced turbulence in magnetic flux ropes  

Matthew Kunz  WPI, OMP 1, Seminar Room 08.135  Fri, 28. Jul 23, 10:45 
Week 1 summary  

David Hosking  WPI, OMP 1, Seminar Room 08.135  Fri, 28. Jul 23, 10:00 
Metastable MHD atmospheres and their relaxation  

Ian Abel  WPI, OMP 1, Seminar Room 08.135  Thu, 27. Jul 23, 16:15 
Stability of centrifugal mirrors  

Georgia Acton  WPI, OMP 1, Seminar Room 08.135  Thu, 27. Jul 23, 10:45 
TBC  

Hanne Thienpondt  WPI, OMP 1, Seminar Room 08.135  Thu, 27. Jul 23, 10:00 
Turbulence prevents core particle depletion in stellarators  

Felix Parra Diaz  WPI, OMP 1, Seminar Room 08.135  Wed, 26. Jul 23, 17:00 
Ideal MHD equilibria around stellarator rational flux surfaces  

Toby Adkins  WPI, OMP 1, Seminar Room 08.135  Wed, 26. Jul 23, 11:30 
Do we really need the torus? Lessons learned from the humble slab (latest news on q scaling and thermoAlfvenic instability in a GK torus).  

Palmen Ivanov  WPI, OMP 1, Seminar Room 08.135  Wed, 26. Jul 23, 10:45 
Effects of flow shear in models of ITG and ETG turbulence  

Richard Nies  WPI, OMP 1, Seminar Room 08.135  Wed, 26. Jul 23, 10:00 
Radial magnetic drift effects on critical balance and secondary instability  

Per Helander  WPI, OMP 1, Seminar Room 08.135  Tue, 25. Jul 23, 16:15 
Upper bounds on gyrokinetic instabilities  

Romain Meyrand  WPI, OMP 1, Seminar Room 08.135  Tue, 25. Jul 23, 10:45 
Reflectiondriven turbulence beyond the Alfven surface  

Vinicius Duarte  WPI, OMP 1, Seminar Room 08.135  Tue, 25. Jul 23, 10:00 
Formulation of a selfconsistent reduced transport theory for discrete nearthreshold modes  

Ben Chandran  WPI, OMP 1, Seminar Room 08.135  Mon, 24. Jul 23, 16:15 
MTMs  

Silvia Trinczek  WPI, OMP 1, Seminar Room 08.135  Mon, 24. Jul 23, 10:45 
Neoclassical transport in stronggradient regions  

Thomas Foster  WPI, OMP 1, Seminar Room 08.135  Mon, 24. Jul 23, 10:00 
Particles orbits near rational flux surfaces in stellarators  

Peter Schmelcher  HS 11 Fak. Math. OMP1, Uni Wien  Fri, 21. Jul 23, 14:15 
Impurities in highly imbalanced ultracold mixtures: Controlled transport and counterflow dynamics  

Ofir Alon  HS 11 Fak. Math. OMP1, Uni Wien  Fri, 21. Jul 23, 14:00 
How accurate the MCTDHB wavefunction is: Lessons from numerics, analytics, and examples  

Eric Fischer  HS 11 Fak. Math. OMP1, Uni Wien  Fri, 21. Jul 23, 11:15 
How Chemistry and Physics Meet in Optical Infrared Cavities: Application of the MCTDH Method to Vibrational Strong Coupling Models  

Jiajun Ren:  HS 11 Fak. Math. OMP1, Uni Wien  Fri, 21. Jul 23, 10:00 
Tensor Network Methods for ElectronPhonon Problems  

David MendiveTapia  HS 11 Fak. Math. OMP1, Uni Wien  Fri, 21. Jul 23, 9:15 
Finding optimal multilayer trees through graph theory  

Graham Worth  HS 11 Fak. Math. OMP1, Uni Wien  Thu, 20. Jul 23, 16:00 
New Applications Using MLMCTDH: Gaussian basis sets and Density Matrices  

Örs Legeza  HS 11 Fak. Math. OMP1, Uni Wien  Thu, 20. Jul 23, 14:45 
Simulation of long time and Lindbladian evolution via massively parallel hybrid CPUGPU based tensor network state algorithms  

Micheline Soley  HS 11 Fak. Math. OMP1, Uni Wien  Thu, 20. Jul 23, 14:00 
Tensor Trains and Quantum Computing for Highly Multidimensional Molecular Simulations  

Tucker Carrington  HS 11 Fak. Math. OMP1, Uni Wien  Thu, 20. Jul 23, 11:15 
Obviating the need for as many points as basis functions when using collocation with MCTDH to do efficient and accurate quantum dynamics on a general PES  

Haobin Wang  HS 11 Fak. Math. OMP1, Uni Wien  Thu, 20. Jul 23, 10:00 
MLMCTDH simulation in the interaction picture  

Roman Ellerbrock  HS 11 Fak. Math. OMP1, Uni Wien  Thu, 20. Jul 23, 9:15 
Quantum Circuit simulations with Tree Tensor Network States  

Sudip Sasmal  HS 11 Fak. Math. OMP1, Uni Wien  Wed, 19. Jul 23, 16:45 
Compact sumofproducts form of the molecular electronic Hamiltonian and its application within the MCTDH method  

Markus Schröder  HS 11 Fak. Math. OMP1, Uni Wien  Wed, 19. Jul 23, 16:00 
Compact representation of operators in sumofproducts form  

Daniel Pelaez  HS 11 Fak. Math. OMP1, Uni Wien  Wed, 19. Jul 23, 14:45 
Towards highdimensional analytical sumofproducts representations  

Irene Burghardt  HS 11 Fak. Math. OMP1, Uni Wien  Wed, 19. Jul 23, 14:00 
Multiconfigurational quantum dynamics with multiplicative neural network potentials  

Uli Schollwöck  HS 11 Fak. Math. OMP1, Uni Wien  Wed, 19. Jul 23, 12:00 
Dynamics of singlet fission in covalently linked tetracene dimers using tensor network states  

PierreNicholas Roy  HS 11 Fak. Math. OMP1, Uni Wien  Wed, 19. Jul 23, 10:00 
Quantum Critical Molecular assemblies: from matrix product states to path integrals  

Nina Glaser  HS 11 Fak. Math. OMP1, Uni Wien  Wed, 19. Jul 23, 9:15 
Largescale anharmonic vibrational calculations with the DMRG algorithm  

Benedikt Kloss  HS 11 Fak. Math. OMP1, Uni Wien  Tue, 18. Jul 23, 16:45 
Subspace expansions: Schemes to dynamically adapt the approximation rank or bond dimension  

Christian Lubich  HS 11 Fak. Math. OMP1, Uni Wien  Tue, 18. Jul 23, 16:00 
Time integration of tree tensor networks  

Uwe Manthe  HS 11 Fak. Math. OMP1, Uni Wien  Tue, 18. Jul 23, 14:45 
Developments in the nonhierarchical multilayer MCTDH approach  

Henrik R. Larsson  HS 11 Fak. Math. OMP1, Uni Wien  Tue, 18. Jul 23, 14:00 
Introduction to MCTDH and Tensor Network States  

Shi Jin (Inst. Natural Sciences  Shanghai Jiao Tong Univ.)  WPI Seminar room  Tue, 7. Feb 23, 14:30 
Consensusbased High Dimensional Global Nonconvex Optimization in Machine Learning  
We introduce a stochastic interacting particle consensus system for global optimization of high dimensional nonconvex functions. This algorithm does not use gradient of the function thus is suitable for nonsmooth functions. We prove, for fully discrete systems, that under dimensionindependent conditions on the parameters, with suitable initial data, the algorithms converge to the neighborhood of the global minimum almost surely. We also introduce an Adaptive Moment Estimation (ADAM) based version to significantly improve its performance in highspace dimension.  
Note: External webpage: http://old.ins.sjtu.edu.cn/faculty/jinshi  

Nana Liu (INS – U. Michigan  Shanghai Jiao Tong Univ.)  WPI Seminar room  Tue, 31. Jan 23, 12:00 
Quantum simulation of partial differential equations via Schrödingerisation  
In this talk, I’ll introduce a simple new way – called „Schrödingerisation“ – to simulate general linear partial differential equations via quantum simulation. Using a simple new transform, referred to as the „warped phase transformation“, any linear partial differential equation can be recast into a system of Schrödinger’s equations – in real time — in a straightforward way. This can be seen directly on the level of the dynamical equations without more sophisticated methods. This approach is not only applicable to PDEs for classical problems but also those for quantum problems – like the preparation of quantum ground states, Gibbs states and the simulation of quantum states in random media in the semiclassical limit.  
Note: External webpage: www.nanaliu.weebly.com  

Rupert Klein (FU Berlin)  Hörsaal 2 ”Eduard Suess” 2A122, 1 st floor UZA II, “Geozentrum”, JosefHolaubek Platz 2, 1090 Wien  Mon, 12. Dec 22, 15:30 
Mathematics, a key to Climate Research  
Abstract: Mathematics in climate research is often thought to be mainly a provider of techniques for solving, e.g., the atmosphere and ocean flow equations. Three examples elucidate that its role is much broader and deeper: 1) Climate modelers often employ reduced forms of “the flow equations” for efficiency. Mathematical analysis helps assessing the regimes of validity of such models and defining conditions under which they can be solved robustly. 2) Climate is defined as “weather statistics”, and climate research investigates its change in time in our “single realization of Earth” with all its complexity. The required reliable notions of time dependent statistics for sparse data in high dimensions, however, remain to be established. Recent math ematical research offers advanced data analysis techniques that could be “game changing” in this respect. 3) Climate research, economy, and the social sciences are to generate a scientific basis for informed political decision making. Subtle misunderstandings often hamper systematic progress in this area. Mathematical for malization can help structuring discussions and bridging language barriers in interdisciplinary research.  
Note: Click here for further information  

Jannis Körner (TU Wien)  WPI, OMP 1, Seminar Room 08.135  Thu, 20. Oct 22, 15:30 
WKB scheme for the 1D stationary Schrödinger equation in the highly oscillating regime  

Erik Wahlen (U. Lund)  WPI, OMP 1, Seminar Room 08.135  Thu, 20. Oct 22, 14:00 
Large amplitude solitary waves for the Whitham equation  

Ken McLaughlin (Tulane)  WPI, OMP 1, Seminar Room 08.135  Thu, 20. Oct 22, 10:45 
Analysis of soliton interactions and random matrix theory  

Peter Perry (U. Kentucky)  WPI, OMP 1, Seminar Room 08.135  Thu, 20. Oct 22, 9:15 
Towards Inverse Scattering for the intermediate long wave equation  

Douglas Svensson (NTNU)  WPI, OMP 1, Seminar Room 08.135  Wed, 19. Oct 22, 15:30 
Asymmetric traveling waves for the gravity capillary Whitahm equation  

Nikola Stoilov (U. Bourgogne)  WPI, OMP 1, Seminar Room 08.135  Wed, 19. Oct 22, 14:00 
Numerical studies of the ZakharovKuznetsov family of equations  

Anton Arnold (TU Wien)  WPI, OMP 1, Seminar Room 08.135  Wed, 19. Oct 22, 10:45 
All relative entropies for the FokkerPlanck equation  

Benoit Grebert (U. Nantes)  WPI, OMP 1, Seminar Room 08.135  Wed, 19. Oct 22, 9:15 
Dynamics of Hamiltonian PDEs at low regularity  

Jiao He (U. ParisSaclay)  WPI, OMP 1, Seminar Room 08.135  Tue, 18. Oct 22, 15:30 
Some work in progress on integrability of the KadomtsevPetviashviliII equation  

Petar Topalov (Northeastern U. College of Science)  WPI, OMP 1, Seminar Room 08.135  Tue, 18. Oct 22, 14:00 
Spatially quasiperiodic solutions of the Euler equation  

Patrick Gerard (U. ParisSaclay)  WPI, OMP 1, Seminar Room 08.135  Tue, 18. Oct 22, 10:45 
Doubly periodic solutions of the BenjaminOno equation  

Christian Klein (U. Bourgogne)  WPI, OMP 1, Seminar Room 08.135  Tue, 18. Oct 22, 9:15 
Complex geometric optics for the DaveyStewartsonII equation  

Jakob Möller (U. Wien)  WPI, OMP 1, Seminar Room 08.135  Mon, 17. Oct 22, 16:45 
Semiclassical limit of PauliPoisswell by WKB and Wigner methods  

Rémi Carles (CNRS Rennes)  WPI, OMP 1, Seminar Room 08.135  Mon, 17. Oct 22, 15:45 
Time dependent Hartree approximation in quantum dynamics  

JeanClaude Saut (U. ParisSaclay)  WPI, OMP 1, Seminar Room 08.135  Mon, 17. Oct 22, 14:30 
Old and new on Boussinesq systems  

Christian Lubich (U. Tübingen)  HS13, 2nd floor Fak Math Oskar Morgensternplatz 1  Tue, 27. Sep 22, 14:00 
Time integration of tree tensor networks  
I first report on recent numerical experiments with timedependent tree tensor network algorithms for the approximation of quantum spin systems. I will then describe the basics in the design of time integration methods that are robust to the usual presence of small singular values, that have good structurepreserving properties (norm, energy conservation or dissipation), and that allow for rank (= bond dimension) adaptivity and also have some parallelism. This discussion of basic concepts will be done for the smallest possible type of tensor network differential equations, namely lowrank matrix differential equations. Once this simplest case is understood, there is a systematic path to the extension of the integrators and their favourable properties to general tree tensor networks. This talk is based on joint work with many colleagues and former and present students, among which I wish to single out Othmar Koch for the first mathematical work on dynamical lowrank approximation (DLRA) in 2007, Ivan Oseledets for jointly finding the first robust DLRA integrator (the projectorsplitting integrator) in 2014, Gianluca Ceruti for jointly finding the Basis Update & Galerkin (BUG) integrators in 2021, and him and Hanna Walach and Dominik Sulz for the recent systematic extension from lowrank matrices to general tree tensor networks.  

Christian Kühnlein  Wed, 17. Aug 22, 16:00  
Developing a performanceportable finitevolume model for numerical weather prediction)  
Note: (remote)  

Rupert Klein  Wed, 17. Aug 22, 15:00  
Aspects of the BK19 scheme: seamlessness & the Euler equations in two almost linear steps  
Note: (in presence)  

Joachim Schöberl  Wed, 17. Aug 22, 14:00  
Simulation of Moist Air by Discontinuous Galerkin Methods within NGSolve  
Note: (in presence)  

Gottfried Hastermann  Tue, 16. Aug 22, 17:15  
Analysis of the cellvertex finite volume method for pseudoincompressible divergence constraints on quadrilateral and cuboid meshes  
Note: (in presence)  

Felix Jochum  Tue, 16. Aug 22, 16:15  
Implementing terrainfollowing coordinates into a semiimplicit pseudoincompressible flow solver  
Note: (in presence)  

Ray Chew  Tue, 16. Aug 22, 14:30  
Balanced data assimilation with a blended numerical model: Acoustic imbalances  
Note: (in presence)  

Piotr Smolarkiewicz  Mon, 15. Aug 22, 17:15  
A suite of Richardson preconditioners for semiimplicit allscale atmospheric models  
Note: (remote)  

Joanna Szmelter  Mon, 15. Aug 22, 16:15  
Preconditioning elliptic operators in highperformance allscale atmospheric models on unstructured meshes  
Note: with M. Gillard (Loughborough University) & F. Cocetta (Centro EuroMediterraneo Sui Cambiamenti Climatici) (in presence)  

Tommaso Benacchio  Mon, 15. Aug 22, 14:30  
A semiimplicit compressible model for atmospheric flows with seamless access to soundproof and hydrostatic dynamics  
Note: (remote)  

Nicolas Besse  Mon, 20. Dec 21, 15:30  
Trying to prove quasilinear theory in plasma physics  
The aim of quasilinear theory is to explain relaxation or saturation of kinetic instabilities governed by the VlasovPoisson (VP) equation, by showing that in fact the Hamiltonian dynamics of VP can be approximated by a diffusion equation in velocity for the spaceaverage distribution function.  

Ivan Moyano  Mon, 20. Dec 21, 15:00  
Unique continuation, Carleman estimates and propagation of smallness with applications in observability  
Based on a series of works in collaboration with Gilles Lebeau and Nicolas Burq Propagation of smallness and control for heat equations (with Nicolas Burq, to appear in JEMS), Spectral Inequalities for the Schrödinger operator (with Gilles Lebeau). Propagation of smallness and spectral estimates (with Nicolas Burq) And the recent advances in propagation of smallness introduced by Logonuv and Malinnikova. A. Logunov and E. Malinnikova. Quantitative propagation of smallness for solutions of elliptic equations. Preprint, Arxiv, (arXiv:1711.10076), 2017 A. Logunov. Nodal sets of Laplace eigenfunctions : polynomial upper estimates of the Hausdorff measure. Ann. of Math. (2), 187(1):221–239, 2018.  

Jakob Möller  Mon, 20. Dec 21, 12:30  
The PauliPoisson equation and its cassical limit  
The PauliPoisson equation is a semirelativistic description of electrons under the influence of a given linear (strong) magnetic field and a selfconsistent electric potential computed from the Poisson equation in 3 space dimensions. It is a system of two magnetic Schrödinger type equations for the two components of the spinor, coupled by the additional SternGerlach term of magnetic field and spin represented by the Pauli matrices. On the other hand the PauliPoiswell equation includes the selfconsistent description of the magnetic field by coupling it via a three Poisson equations with the Pauli current as source term to the Pauli equation. The PauliPoiswell equation offers a fully selfconsistent description of spin1/2particles in the semirelativistic regime. We introduce the equations and study the semiclassical limit of PauliPoisson towards a semirelativistic Vlasov equation with Lorentz force coupled to the Poisson equation. We use Wigner transform methods and a mixed state formulation, extending the work of LionsPaul and MarkowichMauser on the semiclassical limit of the SchrödingerPoisson equation. We also present a result on global weak solutions of the PauliPoiswell equation.  

Francois Golse  Mon, 20. Dec 21, 12:00  
From NBody Schrödinger to EulerPoisson  
This talk presents a joint meanfield and classical limit by which the EulerPoisson system is rigorously derived from the Nbody Schrödinger equation with Coulomb interaction in space dimension 3. One of the key ingredients in this derivation is a remarkable inequality for the Coulomb potential which has been obtained by S. Serfaty in 2020 (Duke Math. J.). 2)  

Didier Pilod  Fri, 26. Nov 21, 10:30  
Unconditional uniqueness for the BenjaminOno equation POSTPONED  
We study the unconditional uniqueness of solutions to the BenjaminOno equation with initial data in Hs, both on the real line and on the torus. We use the gauge transformation of Tao and two iterations of normal form reductions via integration by parts in time. By employing a refined Strichartz estimate we establish the result below the regularity threshold s = 1/6. As a byproduct of our proof, we also obtain a nonlinear smoothing property on the gauge variable at the same level of regularity. This talk is based on a joint work with Razvan Mosincat (University of Bergen).  

Ola Maehlen  Fri, 26. Nov 21, 9:15  
Onesided Hölder regularity of global weak solutions of negative order dis persive equations  
The majority of dispersive equations in one spacedimension can be realized as dispersive perturbations of the Burgers equation ut + uux = Lux, where L is a local or nonlocal symmetric operator. For negative order dispersion, the Burg ers’ nonlinearity dominates and classical solutions break down due to shockformation/wave breaking. Using hyperbolic techniques we establish global existence and uniqueness of entropy solutions, with L2 initial data, for a family of negative order dispersive equations, but our main focus will be on a new generalization of the classical Oleïnik estimate for Burgers equation. We obtain one sided Hölder regularity for the solutions, which in turn controls their height and provides a novel bound of the lifespan of classical solutions based on their initial skewness. This is joint work with Jun Xue (NTNU).  

Nikola Stoilov  Thu, 25. Nov 21, 10:45  
Numerical study of DaveyStewartson I I systems  
An efficient high precision hybrid numerical approach for integrable DaveyStewartson (DS) I equations for trivial boundary conditions at infinity is presented for Schwartz class initial data. The code is used for a detailed numerical study of DS I solutions in this class. Localized stationary solutions are constructed and shown to be unstable against dispersion and blowup. A finitetime blowup of initial data in the Schwartz class of smooth rapidly decreasing functions is discussed.  

Anton Arnold  Thu, 25. Nov 21, 9:15  
Optimal nonsymmetric FokkerPlanck equation for the convergence to a given equilibrium  
We are concerned with finding FokkerPlanck equations in whole space with the fastest exponential decay towards a given equilibrium. For a prescribed, anisotropic Gaussian we determine a nonsymmetric FokkerPlanck equation with linear drift that shows the highest exponential decay rate for the convergence of its solutions towards equilibrium. At the same time it has to allow for a decay estimate with a multiplicative constant arbitrary close to its infimum. This infimum is 1, corresponding to the highrotational limit in the FokkerPlanck drift. Such an optimal Fokkerplanck equation is constructed explicitly with a diffusion matrix of rank one, hence being hypocoercive. The proof is based on the recent result that the L2 projector norms of the FokkerPlanck equation and of its driftODE coincide. Finally we give an outlook onto using FokkerPlanck equation with tdependent coefficients. This talk is based on a joint work with Beatrice Signorello.  

Goeksu Oruk  Wed, 24. Nov 21, 15:15  
A Numerical Approach for the Spectral Stability of Periodic Travelling Wave Solutions to the Fractional BenjaminBonaMahony Equation  
Currently, the studies on periodic travelling waves of the nonlinear dispersive equations are becoming very popular. In this study we investigate the spectral stability of the periodic waves for the fractional BenjaminBonaMahony (fBBM) equation, numerically. For the numerical generation of periodic travelling wave solutions we use an iteration method which is based on a modification of Petviashvili algorithm. This is a joint work with S. Amaral, H. Borluk, G.M. Muslu and F. Natali.  

Christian Klein  Wed, 24. Nov 21, 14:00  
Hybrid approaches to DaveyStewartson II systems  
We present a detailed numerical study of solutions to DaveyStewartson (DS) II systems, nonlocal nonlinear Schrödinger equations in two spatial dimensions. A possible blowup of solutions is studied, a conjecture for a selfsimilar blowup is formulated. In the integrable cases, numerical and hybrid approaches for the inverse scattering are presented.  

Thomas Kappeler  Wed, 24. Nov 21, 10:45  
Normal form coordinates for the BenjaminOno equation having ex pansions in terms of pseudodifferential operators  
Using the Birkhoff map of the BenjaminOno equation as a starting point, we deform it near an arbitrary compact family of finite dimensional tori, invariant under the BenjaminOno flow, so that the following main properties hold: (i) When restricted to the family of finite dimensional tori, the transformation coincides with the Birkhoff map. (ii) Up to a remainder term, which is smoothing to any given order, it is a pseudodifferential operator of order 0, with principal part given by the Fourier transform, modified by a phase factor. (iii) The transformation is canonical and the pullback of the BenjaminOno Hamiltonian by it is in normal form up to order three. Such coordinates are a key ingredient for studying the stability of finite gap solutions of arbitrary size of the BenjaminOno equation under small, quasilinear, momentum preserving perturbations. This is joint work with Riccardo Montalto.  

Patrick Gérard  Wed, 24. Nov 21, 9:15  
High frequency approximation of solutions of the BenjaminOno equation on the torus  
For solutions of the BenjaminOno equation with periodic boundary conditions, I will discuss the link in the high frequency regime between the nonlinear Fourier transform inherited from the integrable structure, and a gauge transform introduced by T. Tao in 2004 in the context of the low regularity initial value problem. As an application, we will get optimal high frequency approximations of solutions. This talk is based on a recent joint work with T. Kappeler and P. Topalov.  

JeanClaude Saut  Tue, 23. Nov 21, 14:30  
New and old on the Intermediate Long Wave equation  
We survey new and old results on the Intermediate Long Wave (ILW) equation from modeling, PDE and integrability aspects.  

Golinski, Tomasz  OMP 1, HS 11  Fri, 20. Aug 21, 16:30 
Restricted Grassmannian and integrable systems around it  
The talk deals with the restricted Grassmannian which is a Hilbert manifold and related Banach LiePoisson spaces. One of the integrable systems related to this setup is of course the KdV equation. Using Magri method it is also possible to define another infinite hierarchy of differential equations on a certain central extension of a Banach LiePoisson space. Using integral of motions it is possible to write down solutions in particular cases.  

Slizewska, Aneta  OMP 1, HS 11  Fri, 20. Aug 21, 15:00 
Fibrewise linear Poisson structures related to Walgebras  
see external webpage  

Nahari, Hadi  OMP 1, HS 11  Fri, 20. Aug 21, 14:00 
Morita equivalence of singular Riemannian foliations and IPoisson geometry  
We define the notion of Morita equivalence for singular Riemannian foliations (SRFs) such that the underlying singular foliations are HausdorffMorita equivalent as recently introduced by Garmendia and Zambon. We then define a functor from SRFs to the category of IPoisson manifolds, where the objects are Poisson manifolds together with appropriate ideals and morphisms are defined as a particular relaxation of Poisson maps. We show that Morita equivalent SRFs are mapped to IPoisson manifolds with isomorphic Poisson algebra of smooth functions on the symplectically reduced spaces. This is joint work in progress with T. Strobl.  

Seol, Seokbong  OMP 1, HS 11  Fri, 20. Aug 21, 13:30 
Formal exponential map of differential graded manifolds  
Exponential maps arise naturally in Lie theory and in the context of smooth manifolds endowed with affine connections. The PoincaréBirkhoffWitt isomorphism and the complete symbols of differential operators are related to these classical exponential maps through their infiniteorder jets. The construction of (jets of) exponential maps can be extended to differential graded (dg) manifolds. As a consequence, the space of vector fields of any dg manifold inherits an Linfinity algebra structure, which is related to the Atiyah class of the dg manifold. Specializing this construction to the dg manifold arising from a foliation of a smooth manifold, one obtains an Linfinity structure on the de Rham complex of the foliation. In particular, a complex manifold can be regarded as a sort of `complexified' foliation. It turns out that the induced Linfinity structure is quasiisomorphic to the Linfinity structure associated to the Atiyah class of the holomorphic tangent bundle on the Dolbeault complex first discovered by Kapranov. This is a joint work with Mathieu Stiénon and Ping Xu.  

Visman, Cornelia ((Univ. de Vest din Timisoara) / Haller Stefan (Univ. Wien)  OMP 1, HS 11  Fri, 20. Aug 21, 11:30 
Infinite dimensional Grassmannians and flag manifolds  
see external webpage  
Note: Minicourse (4)  

Beltita, Daniel (Inst.of Mathematics  OMP 1, HS 11  Fri, 20. Aug 21, 10:00 
Poisson geometrical aspects of von Neumann algebras  
We plan to discuss certain genuine Poisson geometrical structures that arise in the theory of operator algebras on Hilbert spaces. Lecture 1 should be a gentle introduction to the basic notions on operator algebras that are needed later, with emphasis on the socalled standard form of von Neumann algebras that goes back to the PhD thesis of of U. Haagerup (1973). In Lecture 2, the focus is on the Poisson bracket carried by the predual of any von Neumann algebra, which turns out to admit smooth symplectic leaves, just as in the case of finitedimensional Poisson manifolds. This lecture is partly based on joint work with T.S. Ratiu (2005). Finally, in Lecture 3, the geometric structures underlying the standard representations are pointed out, thereby presenting infinitedimensional versions of presymplectic groupoids. This lecture is based on joint work with A. Odzijewicz (2019).  
Note: Minicourse (3)  

Preston, Stephen (Brooklyn College)  OMP 1, HS 11  Thu, 19. Aug 21, 16:30 
Breakdown of the muCamassaHolm equation  
see external webpage  

Zambon, Marco (KU Leuven)  OMP 1, HS 11  Thu, 19. Aug 21, 15:00 
Singular subalgebroids and their integrations  
see external webpage  

Kadiyan, Lory (Max Planck Institut, Bonn)  OMP 1, HS 11  Thu, 19. Aug 21, 14:00 
The Lie algebroids of diffeological groupoids  
see external webpage  

Villatoro, Joel (KU Leuven)  OMP 1, HS 11  Thu, 19. Aug 21, 13:30 
Paths in LieRinehart algebras  
In this talk I will discuss how one can construct an infinite dimensional space of paths associated to a sheaf of LieRinehart algebras. We will briefly examine some of the topological properties of this path space and how it can be used to construct a diffeological groupoid which appears to integrate the underlying sheaf. We will also take a look at some motivating examples for studying sheaves of LieRinehart algebras over manifolds.  

Garmendia, Alfonso (Univ. Potsdam)  OMP 1, HS 11  Thu, 19. Aug 21, 12:00 
Path Integration: The fundamental groupoid of a singular foliation  
In this talk I will present the diffeological space of paths along a singular foliation and its groupoid structure. I will also show how to construct the fundamental groupoid of a singular foliation from its diffeological space of paths. This is a presentation of the joint work with Joel Villatoro entitled "Integration of singular foliations via paths" and to be published on IMRN.  

Visman, Cornelia ((Univ. de Vest din Timisoara) / Haller Stefan (Univ. Wien)  OMP 1, HS 11  Thu, 19. Aug 21, 10:45 
Infinite dimensional Grassmannians and flag manifolds  
see external webpage  
Note: Minicourse (3)  

Blohmann, Christian (MaxPlanckInstitut f. Mathematik, Bonn)  OMP 1, HS 11  Thu, 19. Aug 21, 9:30 
Diffeological groupoids  
Diffeological groupoids appear in many areas of mathematics, such as infinitedimensional Lie theory, classical field theory, deformation theory, and moduli spaces. The category of diffeological spaces, however, is too general and does not have a good differential calculus, which would be needed for a Lie theory of diffeological groupoids. I will introduce the notion of elastic diffeological spaces and show that these form a subcategory with an abstract tangent structure in the sense of Rosicky. The tangent structure yields a Cartan calculus consisting of vector fields, differential forms, the de Rham differential, inner derivatives, and Lie derivatives, satisfying the usual relations. Surprisingly, all diffeological groups are elastic. I then introduce the notion of diffeological Lie algebroids and show that the invariant vector fields of an elastic diffeological groupoid form a diffeological Lie algebroid. As application, I will revisit a diffeological groupoid that arises in lorentzian geometry whose diffeological Lie algebroid encodes the Poisson brackets of the GaussCodazzi constraint functions.  
Note: Minicourse (3)  

Visman, Cornelia (Univ. de Vest din Timisoara) / Haller Stefan (Univ. Wien)  OMP 1, HS 11  Wed, 18. Aug 21, 12:00 
Infinite dimensional Grassmannians and flag manifolds  
see external webpage  
Note: Minicourse (2)  

Blohmann, Christian (MaxPlanckInstitut f. Mathematik, Bonn)  OMP 1, HS 11  Wed, 18. Aug 21, 10:45 
Diffeological groupoids  
Diffeological groupoids appear in many areas of mathematics, such as infinitedimensional Lie theory, classical field theory, deformation theory, and moduli spaces. The category of diffeological spaces, however, is too general and does not have a good differential calculus, which would be needed for a Lie theory of diffeological groupoids. I will introduce the notion of elastic diffeological spaces and show that these form a subcategory with an abstract tangent structure in the sense of Rosicky. The tangent structure yields a Cartan calculus consisting of vector fields, differential forms, the de Rham differential, inner derivatives, and Lie derivatives, satisfying the usual relations. Surprisingly, all diffeological groups are elastic. I then introduce the notion of diffeological Lie algebroids and show that the invariant vector fields of an elastic diffeological groupoid form a diffeological Lie algebroid. As application, I will revisit a diffeological groupoid that arises in lorentzian geometry whose diffeological Lie algebroid encodes the Poisson brackets of the GaussCodazzi constraint functions.  
Note: Minicourse (2)  

Beltita, Daniel (Inst.of Mathematics  Wed, 18. Aug 21, 9:30  
Poisson geometrical aspects of von Neumann algebras  
We plan to discuss certain genuine Poisson geometrical structures that arise in the theory of operator algebras on Hilbert spaces. Lecture 1 should be a gentle introduction to the basic notions on operator algebras that are needed later, with emphasis on the socalled standard form of von Neumann algebras that goes back to the PhD thesis of of U. Haagerup (1973). In Lecture 2, the focus is on the Poisson bracket carried by the predual of any von Neumann algebra, which turns out to admit smooth symplectic leaves, just as in the case of finitedimensional Poisson manifolds. This lecture is partly based on joint work with T.S. Ratiu (2005). Finally, in Lecture 3, the geometric structures underlying the standard representations are pointed out, thereby presenting infinitedimensional versions of presymplectic groupoids. This lecture is based on joint work with A. Odzijewicz (2019).  
Note: Minicourse (2)  

Diez, Tobias (TU Delft)  OMP 1, HS 11  Tue, 17. Aug 21, 16:30 
A journey through the infinite lands of symplectic geometry  
I will discuss different aspects of infinitedimensional symplectic geometry. Why is it interesting and what are important applications? What are the common technical issues in the infinitedimensional setting and how to overcome them? In particular, I will explain how the MarleGuilleminSternberg local normal form and symplectic reduction work in infinite dimensions.  

Janssens, Bas (TU Delft)  OMP 1, HS 11  Tue, 17. Aug 21, 15:00 
Localization for positive energy representations of gauge groups  
see external webpage  

Ryvkin, Leonid (Univ. Göttingen)  Tue, 17. Aug 21, 14:00  
Extensions for the Poisson algebra of a symplectic manifold  
see external webpage  

Miaskiwskyi, Lukas  OMP 1, HS 11  Tue, 17. Aug 21, 13:30 
Continuous Lie Algebra Homology of Gauge Algebras  
Quantizations of infinitesimal gauge symmetries are classified in terms of the continuous Lie algebra cohomology group of gauge algebras in degree 2. For gauge bundles with semisimple fibers, this space was calculated by JanssensWockel (2013), their method relying heavily on the low degree of the cohomology group. In this talk, we extend these results to homology in higher degree. To this end, we review some homological algebra for topological chain complexes and use it to lift the wellknown LodayQuillenTsyganTheorem (1983, 1984) from a statement in algebraic Lie algebra homology to one that takes topological data into account. For globally trivial gauge algebras whose fibres are classical Lie algebras, this calculates a certain stable part of continuous homology. A similar description was given by Feigin (1988), but lacking a detailed proof. Finally, we use the results for trivial bundles to construct a Gelfand Fukslike localtoglobal spectral sequence from which homological information about nontrivial gauge algebras can be extracted. If time permits, we discuss obstructions to a full understanding of this spectral sequence. This talk is based on joint work with Bas Janssens.  

Khavkine, Igor (Akad. ved Ceske republiky, Prague)  OMP 1, HS 11  Tue, 17. Aug 21, 12:00 
The geometry of analytic structures  
Analytic structure on a manifold (adapted to a specific analytic atlas) is a special type of Gstructure of infinite order. I will report on work in progress that aims to answer the following questions: What is an almost analytic structure? What are obstructions to integrability? Does formal integrability imply integrability? What natural geometric objects define corresponding analytic structures?  

Visman, Cornelia (Univ. de Vest din Timisoara) / Haller Stefan (Univ. Wien)  Tue, 17. Aug 21, 10:45  
Infinite dimensional Grassmannians and flag manifolds  
see external homepage  
Note: Minicourse (1)  

Beltita, Daniel (Inst.of Mathematics  OMP 1, HS 11  Tue, 17. Aug 21, 9:30 
Poisson geometrical aspects of von Neumann algebras  
We plan to discuss certain genuine Poisson geometrical structures that arise in the theory of operator algebras on Hilbert spaces. Lecture 1 should be a gentle introduction to the basic notions on operator algebras that are needed later, with emphasis on the socalled standard form of von Neumann algebras that goes back to the PhD thesis of of U. Haagerup (1973). In Lecture 2, the focus is on the Poisson bracket carried by the predual of any von Neumann algebra, which turns out to admit smooth symplectic leaves, just as in the case of finitedimensional Poisson manifolds. This lecture is partly based on joint work with T.S. Ratiu (2005). Finally, in Lecture 3, the geometric structures underlying the standard representations are pointed out, thereby presenting infinitedimensional versions of presymplectic groupoids. This lecture is based on joint work with A. Odzijewicz (2019).  
Note: Minicourse (1)  

Larotonda, Gabriel (Univ. de Buenos Aires)  OMP 1, HS 11  Mon, 16. Aug 21, 16:30 
Hamiltonian actions of compact Lie groups and their induced geometry  
see external webpage  

Marcut, Ioan (Radboud Univ., Nijmegen)  OMP 1, HS 11  Mon, 16. Aug 21, 15:00 
Rigidity of solutions to PDEs with symmetry  
Local normal form theorems in differential geometry are often the manifestation of rigidity of the structure in normal form. For example, the existence of local Darboux coordinates in symplectic geometry follows from the fact that, locally, the standard symplectic structure has no deformations. After introducing closed pseudogroups and their associated sheaf of Lie algebras, I will discuss a general local rigidity result for solutions to PDE’s under the action of a closed pseudogroup of symmetries. The result is of the form: “infinitesimal tame rigidity” implies “tame rigidity”; it is in the smooth setting, and the proof uses the NashMoser fast convergence method. Several classical theorems fit in our setting: e.g. the NewlanderNirenberg theorem in complex geometry, Conn’s theorem in Poisson geometry. This is a joint work with Roy Wang.  

Zeiser, Florian (MaxPlanckInstitut für Mathematik, Bonn)  OMP 1, HS 11  Mon, 16. Aug 21, 14:00 
Poisson linearization using the NashMoser method  
In this talk we outline how one can use the NashMoser method to prove Poisson linearization results of compact semisimple Lie algebras. We use Conn's idea to prove a more general linearization result.  

Angulo, Camilo (Univ. Federal Fluminense)  OMP 1, HS 11  Mon, 16. Aug 21, 13:30 
Gray stability for contact groupoids  
A Jacobi structure is a Lie bracket on the sections of a line bundle. These brackets encode timedependent mechanics in the same way Poisson brackets encode mechanics. Contact groupoids are finitedimensional models for the "integrations" of these infinitedimensional Lie algebras. In this talk, we explain how, under a certain compactness hypothesis, one can adapt the argument of GrayMoser to these multiplicative contact structures and point out some applications.  

Blohmann, Christian (MaxPlanckInstitut f. Mathematik, Bonn)  OMP 1, HS 11  Mon, 16. Aug 21, 11:30 
Diffeological groupoids  
Diffeological groupoids appear in many areas of mathematics, such as infinitedimensional Lie theory, classical field theory, deformation theory, and moduli spaces. The category of diffeological spaces, however, is too general and does not have a good differential calculus, which would be needed for a Lie theory of diffeological groupoids. I will introduce the notion of elastic diffeological spaces and show that these form a subcategory with an abstract tangent structure in the sense of Rosicky. The tangent structure yields a Cartan calculus consisting of vector fields, differential forms, the de Rham differential, inner derivatives, and Lie derivatives, satisfying the usual relations. Surprisingly, all diffeological groups are elastic. I then introduce the notion of diffeological Lie algebroids and show that the invariant vector fields of an elastic diffeological groupoid form a diffeological Lie algebroid. As application, I will revisit a diffeological groupoid that arises in lorentzian geometry whose diffeological Lie algebroid encodes the Poisson brackets of the GaussCodazzi constraint functions.  
Note: Minicourse (1)  

Schmeding, Alexander (Univ. of Bergen)  OMP 1, HS 11  Mon, 16. Aug 21, 10:00 
Connecting finite, infinitedimensional and higher differential geometry  
Infinitedimensional differential geometry is often viewed as a fairly arcane subject with little connection to geometric questions arising in (finitedimensional) applications. The aim of this talk is to show that this impression could not be further from the truth. We will take a scenic tour to a multitude of examples, connecting finite, infinitedimensional and higher geometry. While some of these are well known classics such as EulerArnold theory for partial differential equations, also new results with surprising applications (such as in rough path integration theory) will be presented. As this talk is intended as a gentle introduction to these topics, no prior knowledge of infinitedimensional geometry will be necessary.  

Cornelius Rampf (Obs Nice)  Fri, 21. Feb 20, 15:00  
Singularities in cosmological VlasovPoisson and quantum picture  
The evolution of cold dark matter (CDM) is governed by the cosmological Vlasov–Poisson equations. As it is wellknown, the gravitational collapse of CDM leads to infinitedensity caustics that seed the primordial darkmatter halos in the cosmic largescale structure. Focusing on the onedimensional case, I report a landscape of so far unknown singularities in the particle acceleration that emerge after the first crossing of particle trajectories. These singular features may be regulated by assuming a finite temperature for dark matter, which, to some extend, simplifies the numerical computation but complicates the theoretical modelling. Alternatively, singular features are naturally tamed in semiclassical, Schrödingerlike descriptions for the largescale structure which I will discuss as well.  

Sebastian Erne (VCQ Wien)  Fri, 21. Feb 20, 14:30  
Analog simulators for early universe cosmology: from false vacuum decay to reheating  
Designing effective field theories in a laboratory setup has gained increasing attention over the last years and lies at the heart of analoggravity experiments. Probing the validity of these effective models constitutes an essential step towards (quantum) simulators of otherwise inaccessible systems. Focusing on its applications for early universe cosmological problems, I report on the opportunities, validation, and limitations of analog classical and quantum simulators for (Quantum) Field Theory in curved and timedependent spacetimes, in particular to cosmic inflation. As specific examples, I will discuss applications of single and multicomponent quantum fluids and classical twofluid systems in strong gradient magnetic fields.  

Robin Kaiser (INLPH Nice)  Fri, 21. Feb 20, 11:45  
Photon –Atom Interactions: from cold atoms to astrophysics  
Atomic physics experiments, based on hot vapors or lasercooled atomic samples, may be useful to simulate some astrophysical problems, where radiation pressure, radiative transport or light amplification are involved. I will present some ongoing experimental efforts in Nice and discuss spontaneous selforganisation with lightinduced longrange forces.  

Oliver Hahn (Obs Nice)  Fri, 21. Feb 20, 11:15  
Cosmological Structure Formation: Numerics and Theory, State of the Art and Open Problems  

Tiziano Dalmonte (AixMarseille University)  WPI, OMP 1, Seminar Room 08.135  Wed, 13. Nov 19, 15:00 
Countermodel construction via optimal hypersequent calculi for nonnormal modal logics (joint work with Björn Lellmann, Nicola Olivetti, and Elaine Pimentel)  
We develop semanticallyoriented calculi for the cube of nonnormal modal logics and some deontic extensions. The calculi manipulate hypersequents and have a simple semantic interpretation. Their main feature is that they allow for direct countermodel extraction. Moreover they provide an optimal decision procedure for the respective logics. They also enjoy standard prooftheoretical properties, such as a syntactical proof of cutadmissibility.  

Bjoern Lellmann (TU Wien)  WPI, OMP 1, Seminar Room 08.135  Wed, 13. Nov 19, 14:15 
Nested sequents and countermodels for monotone modal logic  
In this talk I will present a nested sequent system for a combination of (nonnormal) monotone modal logic M and normal modal logic K. The system is fully internal, can be used for proof search, and is suitable for countermodel construction. I will also consider some deontic extensions and present a prototype implementation.  

Guido Governatori (Data61, Brisbane)  WPI, OMP 1, Seminar Room 08.135  Wed, 13. Nov 19, 9:30 
Combining Modalities and Substructural conclusions with nonmonotonic reasoning using Defeasible Logic.  
Defeasible Logic is a simple practical computationally oriented (sceptical) nonmonotonic formalism that proved (i) to be flexible to capture different facets of nonmonotonic reasoning and (ii) to be extensible. The logic is based on a constructive proof theory. We are going to show to use the proof theory to extend the logic with modalities, and to capture some aspects of substructural logic. We also show how to use some of these features to address some paradoxes of deontic logic.  

Tim Lyon (TU Wien)  WPI, OMP 1, Seminar Room 08.135  Tue, 12. Nov 19, 16:45 
On Deriving Nested Calculi for Intuitionistic Logics from Semantic Systems  
In this talk we look at how to derive nested calculi from labelled calculi for propositional intuitionistic logic and firstorder intuitionistic logic with constant domains, thus connecting the general results for labelled calculi with the more refined formalism of nested sequents. The extraction of nested calculi from labelled calculi obtains via considerations pertaining to the elimination of structural rules in labelled derivations. As a consequence of the extraction process, each nested calculus inherits favorable prooftheoretic properties from its associated labelled calculus.  

Roman Kuznets (TU Wien)  WPI, OMP 1, Seminar Room 08.135  Tue, 12. Nov 19, 16:00 
Translating Quantitative Semantic Bounds into Nested Sequents  
As follows from their name, treehypersequents (also known as nested sequents) were created to represent the tree structure of underlying Kripke models. While this approach works well on modal and intermediate logics complete w.r.t. many types of treelike frames, it is not directly suited to encode quantitative restrictions on these frames, e.g., bounded depth and/or bounded number of children per node. In order to capture these restrictions, we add the injectivity condition to nested sequents requiring different sequent nodes to correspond to distinct worlds in the underlying Kripke model. The downside is the loss of the formula interpretation. On the plus side, we show how the injective nested sequents can be used to constructively prove the Craig interpolation property for all interpolable intermediate logics strictly between the intuitionistic and classical propositional logics that are complete with respect to treelike models, i.e., Smetanich logic (also known as the logic of here and there), the greatest semiconstructive logic, logic BD_2 of bounded depth 2, and Gödel logic. For the last one, we obtain a stronger form of interpolation called Lyndon interpolation.  

Luigi Santocanale (AixMarseille University)  WPI, OMP 1, Seminar Room 08.135  Tue, 12. Nov 19, 12:15 
Residuated lattices of joincontinuous endofunctions of chains, ... and the Fibonacci numbers.  
I shall expose recent advances on exploring the equaltional theories of the residuated lattices Q(C) made of joincontinuous endofunctions of a complete chain C. On one side, when investating congruences, we observed that the number of idempotents in the residuated lattice Q({0,1,...,n}) is the 2n+1th Fibonacci number. Our proof yields a combinatorial interpretation of results due to Howie and LaradjiUmar. If C is a finite chain or the interval [0,1] of the reals, Q(C) is an involutive residuated lattice. Generalizing this fact, we shall present the following result : for a complete lattice L, the residuated lattice Q(L) of joincontinuous endofunctions of L is involutive if and only of L is a completely distributive lattice. Thus, the step from ILL to MALL requires, for those residuated lattices, also a classical structure on the additives. It also holds that Q(L) is an involutive mix residuated lattice if and only if L is a complete chain.  

Kees van Berkel (TU Wien)  WPI, OMP 1, Seminar Room 08.13  Tue, 12. Nov 19, 11:30 
Automating Agential Reasoning: ProofCalculi and Syntactic Decidability for (Deontic) STIT Logics (joint work with Tim Lyon)  
The logic of STIT (`seeing to it that') is an agency logic for reasoning about agents that make choices at certain moments in time. This class of modal logics has received considerable attention in the past decades with formal application in epistemic, legal, and deontic reasoning. Furthermore, in relation to the increasing development of autonomous systems assisting and interacting with humans, the need for automated normative reasoning with STIT logics has been stressed in the literature. Our present research addresses this issue. In this talk we will set out the concrete aims of our STIT project and discuss some of the results obtained so far. We will first provide an introduction to the logic of STIT and discuss our recently proposed Temporal Deontic extension STIT. Second, we provide labelled sequent calculi for the class of multiagent STIT logic with limited choice axioms and show how these calculi can be refined with the use of propagation rules, enabling us to reduce the structure of sequents and to make the proofs more compact. For the class of refined calculi we obtain automated proofsearch and countermodel extraction. We will conclude by discussing some open problems.  

Sara Negri (University of Helsinki)  WPI, OMP 1, Seminar Room 08.135  Tue, 12. Nov 19, 10:00 
Proof analysis for the logics of agency: the deliberative STIT (joint work with Edi Pavlovic)  
TBA  

Timo Lang (TU Wien)  WPI, OMP 1, Seminar Room 08.135  Mon, 11. Nov 19, 15:45 
Bounded sequent calculi via hypersequents (joint work with A.Ciabattoni and R.Ramanayake)  
Many substructural, intermediate and modal logics have found cutfree presentations in the hypersequent calculus. We demonstrate that for many such logics, this cutfreeness at the level of hypersequents also implies completeness with respect to a sequent system where only cuts of a certain shape are allowed. The restriction on the cuts thus obtained is often strong enough to allow for proofs of metalogical properties such as decidability, or embeddability into a weaker base logic. Our method also allows for a new proof of the fact that the modal logic S5 has a sequent calculus in which only analytic cuts are needed.  

Daniel Mery (LORIA  Université de Lorraine)  WPI, OMP 1, Seminar Room 08.135  Mon, 11. Nov 19, 14:30 
Relating Labelled and LabelFree Bunched Calculi in BI Logic (joint work with Didier Galmiche)  
In this talk we discuss proof translations between labelled and labelfree calculi for the logic of Bunched Implications (BI). We first consider the bunched sequent calculus LBI and define a labelled sequent calculus, called GBI, in which labels and constraints reflect the properties of a specifically tailored Kripke resource semantics of BI with two total resource composition operators and explicit internalization of inconsistency. After showing the soundness of GBI wrt our specific Kripke frames, we show how to translate any LBIproof into a GBIproof. Building on the properties of that translation we devise a tree property that every LBItranslated GBIproof enjoys. We finally show that any GBIproof enjoying this tree property (and not only LBItranslated ones) can systematically be translated to an LBIproof.  

Francesca Gulisano (Scuola Normale Superiore, Pisa)  WPI, OMP 1, Seminar Room 08.135  Mon, 11. Nov 19, 11:45 
Resolving conflicting obligations in Mimamsa: a sequentbased approach  
Over the course of more than two millennia, the philosophical school of Mimamsa has thoroughly discussed and analyzed the prescriptive portion of the Vedas, the sacred texts of Hinduism, in order to make sense of it as a consistent corpus of rules. We present a formalization of the deontic system applied by Mimamsa authors for resolving conflicts between normative statements by giving preference to the more specific ones. Finally, we show how to use the resulting system to provide a better understanding of these philosophical texts.  

Dominique LarcheyWendling (LORIA  CNRS)  WPI, OMP 1, Seminar Room 08.135  Mon, 11. Nov 19, 11:00 
Hilbert's Tenth Problem in Coq (joint work with Yannick Forster)  
We formalise the undecidability of solvability of Diophantine equations, i.e. polynomial equations over natural numbers, in Coq's constructive type theory. To do so, we give the first full mechanisation of the DavisPutnamRobinsonMatiyasevich theorem, stating that every recursively enumerable problem  in our case by a Minsky machine  is Diophantine. We obtain an elegant and comprehensible proof by using a synthetic approach to computability and by introducing Conway's FRACTRAN language as intermediate layer.  

Matthias Baaz (TU Wien)  WPI, OMP 1, Seminar Room 08.135  Mon, 11. Nov 19, 9:40 
Note on Globally Sound Analytic Calculi for Quantifier Macros (joint work with Anela Lolic)  
This paper focuses on a globally sound but possibly locally unsound analytic sequent calculus for the quantifier macro Q. It is demonstrated that no locally sound analytic representation exists.  

Seiji Miyashita (University of Tokyo)  WPI, OMP 1, Seminar Room 08.135  Mon, 14. Oct 19, 12:30 
Atomistic study on thermal and dynamical properties of Ndmagnet  

Harald Oezelt (DonauUniversität Krems)  WPI, OMP 1, Seminar Room 08.135  Mon, 14. Oct 19, 12:00 
Renormalization of the intrinsic magnetic propertiesfor stochastic micromagnetics  

Alexander Kovacs (DonauUniversität Krems)  WPI, OMP 1, Seminar Room 08.135  Mon, 14. Oct 19, 11:30 
Classification and optimization of a magnet's microstructure  

Thomas Schrefl (DonauUniversität Krems)  WPI, OMP 1, Seminar Room 08.135  Mon, 14. Oct 19, 11:00 
Permanent magnet design  results from the European NOVAMAG project  

Markus Gusenbauer (DonauUniversität Krems)  WPI, OMP 1, Seminar Room 08.135  Mon, 14. Oct 19, 10:30 
From electron microscopy to machine learningbased coercivity models  

Lukas Exl (Universität Wien)  WPI, OMP 1, Seminar Room 08.135  Mon, 14. Oct 19, 10:00 
Machine Learning and Dimensionality Reduction for Computational Micromagnetism  

Johann Fischbacher (DonauUniversität Krems)  WPI, OMP 1, Seminar Room 08.135  Mon, 14. Oct 19, 9:30 
Surface Anisotropies in Permanent magnets  

Joackim Bernier (ENS Rennes)  WPI, OMP 1, Seminar Room 08.135  Fri, 4. Oct 19, 10:30 
Long time behavior of the Solutions of NLW on the ddimensional torus  
I will present a new normal form transformation decomposing the dynamics of some nonlinear Hamiltonian systems into low and high frequencies with weak interactions. While the low part of the dynamics can be put under classical Birkhoff normal form, the high modes evolves according to a time dependent linear Hamiltonian system. We then control the global dynamics by using poly nomial growth estimates for high modes and the preservation of Sobolev norms for the low modes. We will see how this procedure allows us to prove that, for almost any mass, small and smooth solutions of the nonlinear wave equation on Td of high Sobolev indices are stable up to arbitrary long times with respect to the size of the initial data. This is a joint work with Erwan Faou and Benoit Grebert. 
Thomas Alazard (ENS ParisSaclay)  WPI, OMP 1, Seminar Room 08.135  Fri, 4. Oct 19, 9:00 
Entropies and Lyapounov functionals for the HeleShaw equation  
This lecture is devoted to the study of the HeleShaw equation, based on a joint work with Nicolas Meunier and Didier Smets. We introduce an approach inspired by the waterwave theory. Starting from a reduction to the boundary, introducing the Dirichlet to Neumann operator and exploiting various cancel lations, we exhibit parabolic evolution equations for the horizontal and vertical traces of the velocity on the free surface. This allows to quasilinearize the equa tions in a very simple way. By combining these exact identities with convexity inequalities, we prove the existence of hidden Lyapounov functions of different natures. We also deduce from these identities and previous works on the water wave problem a simple proof of the wellposedness of the Cauchy problem.  

Corentin Audiard (UPMC Paris)  WPI, OMP 1, Seminar Room 08.135  Thu, 3. Oct 19, 11:30 
Lifespan of solutions of the EulerKorteweg System  
The EulerKorteweg system is a dispersive perturbation of the usual compress ible Euler equations that includes the effect of capillary forces. For small ir rotational initial data, global wellposedness is known to hold in dimension at least three. In this talk we discuss the case of small initial data with non zero vorticity, where the dispersive system becomes a coupled dispersivetransport system. The main result is that the time of existence only depends on the size of the initial vorticity.  

Guillaume Ferriere (ENS ParisSaclay)  WPI, OMP 1, Seminar Room 08.135  Thu, 3. Oct 19, 10:30 
MultiSolitons for the logarithmic Schroedinger equation  
In this presentation, we consider the nonlinear Schr¨odinger equation with loga rithmic nonlinearity (logNLS in short). We mostly focus on the focusing case which presents a very special Gaussian stationary solution, called Gausson, which is orbitally stable. In fact, more generally, it has been shown that every Gaussian data remains Gaussian through the flow of logNLS, and this feature gives rise to (almost) periodic solutions in the focusing case, called breathers. The main result of this talk addresses the existence of multisolitons, i.e. solu tions to logNLS which behaves like the sum of several solitons (i.e. Gaussons here) for large times, in dimension 1. This kind of result is rather usual for dispersive equations with polynomiallike nonlinearity, and our proof is directly inspired from the usual proof with energy techniques. The main difficulty is the fact that the energy cannot be linearized as one would want, at least not ev erywhere. Furthermore, some new and surprising features appear in this result: the convergence is in H1 and (H1) with a rate faster than exponential, and there is no need for a large enough relative speed (nonzero is sufficient).  

Miguel Rodrigues (U. Rennes)  WPI, OMP 1, Seminar Room 08.135  Thu, 3. Oct 19, 9:00 
Harmonic and solitary wave limits of periodic traveling waves.  
In a series of papers with Sylvie BenzoniGavage (and, depending on papers, Pascal Noble or Colin Mietka), we have studied both coperiodic stability and modulation systems for periodic traveling waves of a rather large class of Hamil tonian partial differential equations that includes quasilinear generalizations of the Korteweg–de Vries equation and dispersive perturbations of the Euler equa tions for compressible fluids, either in Lagrangian or in Eulerian coordinates. All characterizations are derived in terms of the Hessian matrix of the action integral of profile equations, a finitedimensional object. In the present talk, with this in mind, we shall discuss the consequences of the recently obtained expansions of this matrix in two asymptotic regimes, namely the zeroamplitude and the zerowavelength limits.  

Valeria Banica (LJLL Paris)  WPI, OMP 1, Seminar Room 08.135  Wed, 2. Oct 19, 11:30 
On the energy of critical Solutions of the binormal flow  
The binormal flow is a model for the dynamics of a vortex filament in a 3D in viscid incompressible fluid. The flow is also related with the classical continuous Heisenberg model in ferromagnetism, and the 1D cubic Schr¨odinger equation. We consider a class of solutions at the critical level of regularity that generate singularities in finite time. One of our main results presented in this talk is to prove the existence of a natural energy associated to these solutions. This energy remains constant except at the time of the formation of the singularity when it has a jump discontinuity. When interpreting this conservation law in the framework of fluid mechanics, it involves the amplitude of the Fourier modes of the variation of the direction of the vorticity. This is a joint work with Luis Vega.  

Ricardo Barros (U. Loughborough)  WPI, OMP 1, Seminar Room 08.135  Wed, 2. Oct 19, 10:30 
Effect of variation in density on the stability of bilinear shear currents with a free surface  
The linear stability of homogenous shear flows between two rigid walls is a clas sical problem that goes back to Rayleigh (1880). Among other things, Rayleigh was able to show that a shear flow with no inflection points is linearly stable. The generalisation of this stability criterion to the freesurface setting is not straightforward and was established much later by Yih (1971) (under certain restrictions) and, more recently, Hur & Lin (2008). In the case when a shear flow with a free surface is modelled by constant vorticity layers, no stability criterion is known. As a first step in this direction we consider the stability analysis of a bilinear shear current and establish a criterion for the stability of the flow. The effect of density stratification on the stability of the flow will also be investigated.  

Vincent Duchene (U. Rennes)  WPI, OMP 1, Seminar Room 08.135  Wed, 2. Oct 19, 9:00 
On the FavrieGavrilyuk approximation to the SerreGreenNaghdi system.  
The SerreGreenNaghdi system is a fully nonlinear and weakly dispersive model for the propagation of surface gravity waves. It enjoys many good theoretical properties, including a robust wellposedness theory for the initialvalue prob lem, and a Hamiltonian structure. It is however not so suitable for practical use, as standard numerical strategies involve the costly inversion of an elliptic operator at each time step. N. Favrie and S. Gavrilyuk proposed a novel strat egy for efficiently producing approximate solutions, by introducing a “relaxed” firstorder quasilinear system of balance laws, depending on additional unknows and a free parameter. The claim is that in the singular limit when the param eter goes to infinity, solutions of the relaxed system approach solutions of the SerreGreenNaghdi system. We will discuss a rigorous analysis. It differs from standard results due to the presence of an additional parameter (describing the shallowness of the flow) and orderzero source terms which become dominant when the shallowness parameter goes to zero.  

Anton Arnold (TU Wien)  WPI, OMP 1, Seminar Room 08.135  Tue, 1. Oct 19, 11:30 
Short and longtime behavior in (hypo)coercive ODEsystems and FokkerPlanck equations. 
Thomas Kappeler (U. Zurich)  WPI, OMP 1, Seminar Room 08.135  Tue, 1. Oct 19, 10:30 
On Birkhoff coordinates of the Benjamin Ono equation on the torus and applications to solutions with negative Sobolev regularity. Part 2. 
Patrick Gérard (U. ParisSud)  WPI, OMP 1, Seminar Room 08.135  Tue, 1. Oct 19, 9:00 
On Birkhoff coordinates of the Benjamin Ono equation on the torus and applications to solutions with negative Sobolev regularity. Part 1.  
This is a jointwork with Thomas Kappeler. Using the Lax pair structure for the BenjaminOno equation with periodic boundary conditions, we construct a global system of Birkhoff coordinates on the phase space of real valued square integrable functions with average 0 on the torus, including a characterisation of finite gap potentials. Among consequences, we infer almost periodicity of all trajectories, identification of traveling waves and construction of periodic in time solutions with low regularity.  

Christian Klein (U. Bourgogne)  WPI, OMP 1, Seminar Room 08.135  Mon, 30. Sep 19, 17:00 
Multidomain spectral methods for dispersive PDEs.  
We discuss numerical methods to construct solutions to nonlinear dispersive PDEs on the whole real line, and this for initial data which are slowly decreasing towards infinity or just bounded there. As an example we discuss the transverse stability of the Peregrine solution in the 2d nonlinear Schrodinger equation.  

Nikola Stoilov (U. Bourgogne)  WPI, OMP 1, Seminar Room 08.135  Mon, 30. Sep 19, 15:30 
Numerical study of the DaveyStewartson equation  
In this work we will look at the focusing DaveyStewartson equation from two different angles, using advanced numerical tools. As a nonlinear dispersive PDE and a generalisation of the nonlinear Schr¨odinger equation, DS possesses solutions that develop a singularity in finite time. We numerically study the long time behaviour and potential blowup of solutions to the focusing DaveyStewartson II equation for various initial data and propose a conjecture describing the blow up rate and solution profiles near the singularity. Secondly, DS is an integrable system and can be studied as an inverse scat tering problem. Both the forward and inverse scattering transformation in this case are reduced to a dbar system which plays the role that RiemannHilbert problems play in one dimensional problems. We will present numerical solutions for Schwartzian and compactly supported potentials. Further, to complement numerics, we will discuss analytical considerations to handle asymptotic be haviour. In all studied cases we use spectral methods and achieve machine pre cision. Based on joint works with Christian Klein and Ken McLaughlin  

Rémi Carles (CNRS)  WPI, OMP 1, Seminar Room 08.135  Mon, 30. Sep 19, 14:30 
Turbulent effects through quasirectification  
This is a joint work with Christophe Cheverry. We study high frequency so lutions of nonlinear hyperbolic equations for time scales at which dispersive and nonlinear effects can be present in the leading term of the solution, on a model stemming from strongly magnetized plasmas or nuclear magnetic reso nance experiments. We show how the produced waves can accumulate during long times to produce constructive and destructive interferences which, in the above contexts, are part of turbulent effects.  

Khedher, Asma (U. Amsterdam)  WPI, OMP 1, Seminar Room 08.135  Thu, 5. Sep 19, 16:30 
Semimartingale characterstics in Hilbert space  
TBA  

Eisenberg, Paul (U. Liverpool)  WPI, OMP 1, Seminar Room 08.135  Thu, 5. Sep 19, 16:00 
Abstract polynomial processes  
TBA  

Detering, Nils (Santa Barbara, California)  WPI, OMP 1, Seminar Room 08.135  Thu, 5. Sep 19, 15:30 
Directed Chain Stochastic Differential Equations  
TBA  

Cuchiero, Christa (U. Wien)  WPI, OMP 1, Seminar Room 08.135  Thu, 5. Sep 19, 14:30 
Infinite dimensional polynomial processes and applications to rough volatility modeling (Part II)  
TBA  

SvalutoFerro, Sara (U. Wien)  WPI, OMP 1, Seminar Room 08.135  Thu, 5. Sep 19, 14:00 
Infinite dimensional polynomial processes and applications to rough volatility modeling (Part I)  
TBA  

Bergmann, Michael (Med. Uni Vienna)  OMP 1, Sky Lounge (12th floor)  Fri, 2. Aug 19, 15:45 
Interplay of Therapy and Tumor Microenvironment in Human Colorectal Cancer  
Advances in tumor immunology now calls for a novel understanding of the immunological consequence of standard cancer therapy. At the same time the expression of proteins mediating immunogenic cell death should have a positive predictive and prognostic impact. This molecular understanding of the disease will allow a more rational design of immunomodulating drugs and standard therapy. Murine models clearly indicate that irradiation induced DNA damage can stimulates the innate and adaptive immune system. However, there is little evidence that irradiation leads to apiscopal effects in the clinic. We here show that neoadjuvant irradiation applied in rectal cancer patients induces the polarization of tumor associated M2like macrophages to an M1like phenotype in surgical resection specimen. Ex vivo primary cultures and organotypic assays were used to better dissect this repolarization. Using exvivo cultures we further show that the shift of irradiationinduced macrophage polarization could be mediated by exosomes. Those data clearly indicate that radiotherapy induced DNA damage using 25 Gy actively stimulates the innate immune system. This proinflammatory effect of radiotherapy might now be complemented by immunomodulating drugs modulating the adaptive part of the immune system. In contrast, when analyzing the prognostic and predictive impact of spontaneous DNA damage and associated pathways in colorectal liver metastases we demonstrate that DNA damage had a strong negative impact on response to neoadjuvant applied chemotherapy but also on disease free and overall survival. Spontaneous DNA damage was not associated with an induction of the innate immune response in this setting and inversely correlated with infiltrates of CD8+ or CD45RO+ cells. This calls for a more detailed understanding of spontaneous DNA damage induced pathways in colorectal liver metastases as their blockade might enhance prognoses. 
Menche, Jörg (CeMM Vienna)  OMP 1, Sky Lounge (12th floor)  Fri, 2. Aug 19, 14:40 
From ProteinProtein to DrugDrug Interactions  
From protein interactions to signal transduction, from metabolism to the nervous system: Virtually all processes in health and disease rely on the careful orchestration of a large number of diverse individual components ranging from molecules to cells and entire organs. Networks provide a powerful framework for describing and understanding these complex systems in a wholistic fashion. They offer a unique combination of a highly intuitive, qualitative description, and a plethora of analytical, quantitative tools. In my presentation, I will introduce three ongoing projects of my group, each highlighting a different aspect of how network science can help us understand the pathobiological processes of human disease: First, I will sketch out how proteinprotein interaction networks can be understood as maps to investigate relationships between diseases. Second, I will discuss how drugdrug interaction networks can be used to identify basic principles of the cellular response to multiple perturbations. Lastly, I will present our vision of a virtual reality platform for the next generation of networkbased data integration and exploration. 
Peurichard, Diane (INRIA)  OMP 1, Sky Lounge (12th floor)  Fri, 2. Aug 19, 14:00 
Modelling AdhesionIndependent Cell Migration: How Cells Can Cross Biological Barriers  
One of the most important cellular behaviors is cell crawling migration. It is observed in many cellular systems both in culture and in vivo, and involved in many essential physiological or pathological processes (wound healing, embryonic development, cancer metastasis etc). As in the last decade adhesionindependent migration has been observed in confining environement and has emerged as a possibly common migration mode, we propose a simplified 2D model for focal adhesionfree cell migration: A cell is modeled through its membrane represented as a set of connected springs which undergo internal pressure forces. The renewal of the actin network is modelled by creation/suppression of springs in the membrane, and we suppose that a cell generates internal counterforces compensating mass displacement due to membrane renewal. Numerical simulations show that these simple rules can account for the behavior observed in experiments, suggesting a possible mechanical mechanism for cell motility in confined environment. 
Komorowski, Michal (Polish Academy of Sciences)  OMP 1, Sky Lounge (12th floor)  Fri, 2. Aug 19, 11:20 
Making Sense of Signaling Complexity  
An engineer designing a communication system would use few distinct signaling components while ensuring that the output of each component is highly accurate. However, natural evolution came up with a different solution: cells have many interconnected, cross reactive components that individually produce noisy signals. Why? In the talk, I will present the perspective of mathematical informationtheory at the two intriguing properties of cellular signaling pathways: noisiness and crosstalk. Specifically, I will discuss their (i) evolutionary origins; (ii) implications for interpretation of single cell data; and (iii) consequences for the design of therapeutic interventions in signaling. 
Hecht, Sophie (Imperial College London)  OMP 1, Sky Lounge (12th floor)  Fri, 2. Aug 19, 10:40 
An IndividualBased Model for InterKinetic Nuclear Movement  
Understanding how tissues develop and regulate their growth is crucial in biology. Both proliferation and regulation of cells growth are fundamental for the development of healthy tissue in animals and plants, as well as for the progression of tumours. In pseudostratified epithelia, the organisation of the nuclei and their movement inside the tissue influence the final architecture of the tissue and impact growth. In particular, nuclei move along the apical/basal axis during the interkinetic phases of the cell cycle. This movement is called the interkinetic nuclear movement. Because pseudostratified epithelia have a high density of nuclei, their movement is likely to be influenced by the crowing inside the tissue. We developed an Individualbased model for the interkinetic nuclear movement in pseudostratified epithelia based in a minimisation framework. The model focuses is placed on the nuclei and their deformation. We study the influence of crowding the specific case of the Imaginal Disc of Drosophila and tuned the model with biological data. We then show that the crowding increases the cell cycle duration, resulting in the slow down of growth. 
Cordero, Francesca (U. Turin)  OMP 1, Sky Lounge (12th floor)  Fri, 2. Aug 19, 10:20 
Multiscale models to investigate IntraTumor Heterogeneity  
In cancer research most efforts are devoted on the decipher of the IntraTumoral Heterogeneity (ITH). In ITH the action of the evolutionary forces of mutation and selection are essential to determinant the tumor progression, diagnosis and treatment. ITH gives rise to cancer cell populations with distinct genotypic and metabolic characteristics contributing to the failure of cure, by initiating phenotypic diversity and enabling more aggressive and drug resistant clones. I will present multiscale models of cancer linking the tumor growth to the intracellullar signalling and metabolic events to genomic profiles. The models consider several heterogenous omics data (metabolomics, proteomics, transcriptomics, genomics) to investigate the ITH associated with different genomic and metabolic traits. 
Berger, Walter (Med. Uni Wien)  OMP 1, Sky Lounge (12th floor)  Fri, 2. Aug 19, 9:40 
Contribution of Immune Mechanisms to the Anticancer Activity of Platinum Drugs  
Currently, immunotherapy with checkpoint inhibitor antibodies is revolutionizing clinical oncology even allowing cure of highly aggressive cancer types like melanoma and lung cancer. However, response to these immunotherapies is restricted to patient subgroups and currently conclusive predictive biomarkers are not available. Classically, anticancer metal drugs are considered to target predominantly nucleic acids, hence killing cancer cells by inducing genomic damage and apoptotic cell death. However, during the last years it became clear that metal drugs are not pure cytotoxic agents, but might also strongly interact with the fidelity of anticancer immune responses. Central underlying mechanisms include upregulation of cancer cell immunogenicity or depletion of regulatory immune cell compartments1. As one example, we have found that an intraperitoneal colon cancer model can be cured when combining oxaliplatin with bacterial ghosts as adjuvants2. Bacterial ghosts are empty envelopes of gramnegative bacteria with a distinct immunestimulatory potential. In contrast, oxaliplatin alone only retarded tumor growth. Interestingly, animals cured by this immunochemotherapy approach were vaccinated against the original cancer cells making regrowth of the tumor graft impossible. As this vaccination effect was entirely depending on the presence of activated T cells, induction of an immunogenic cell death by oxaliplatin supported by innate immune activation via the adjuvant can be anticipated. This hypothesis was proven be induction of endoplasmic reticulum (ER) stress, calreticulin cell surface exposure, as well as HMGB1 and ATP release be the combinationtreated cancer cells. A platinum(IV) prodrug of oxaliplatin targeted for tumorspecific activation based on albumin binding was able to cure CT26 murine colon cancer even without additional adjuvant in immunocompetent but not severe combined immunodeficient (SCID) mice3. The question arises whether mathematical modelling of at least parts of the complex interplay between DNA damage and immune activation by anticancer platinum drugs would be conceivable. 
Lorenzi, Tommaso (University of St. Andrews)  OMP 1, Sky Lounge (12th floor)  Fri, 2. Aug 19, 9:00 
Dissecting the Evolutionary Dynamics of Cancer Cell Populations in Fluctuating Environments  
A number of studies have demonstrated that the disordered process of angiogenesis occurring in malignant tumours produces stochastic variations in blood flow leading to cycles of perfusion, cessation of flow, and then reperfusion. This produces corresponding fluctuations in environmental conditions that include the concentration of nutrients, such as oxygen and glucose. In order to support a deeper understanding of the adaptive role of spontaneous phenotypic variations in cancer cell populations exposed to fluctuating environments, we consider a system of nonlocal partial differential equations modelling the evolutionary dynamics of two competing populations in the presence of periodically oscillating nutrient levels. Exploiting the analytical tractability of our model, we study the longtime behaviour of the solutions to obtain a detailed mathematical depiction of evolutionary dynamics. Our analytical results formalise the idea that when nutrient levels experience small and slow periodic oscillations, and thus environmental conditions are relatively stable, it is evolutionarily more efficient to rarely undergo spontaneous phenotypic variations. Conversely, under relatively large and fast periodic oscillations in the nutrient levels, which lead to alternating cycles of starvation and nutrient abundance, higher rates of spontaneous phenotypic variations can confer a competitive advantage, as they may allow for a quicker adaptation to changeable environmental conditions. In the latter case, our results indicate that higher levels of phenotypic heterogeneity are to be expected compared to those observed in slowly fluctuating environments. Finally, our results suggest that bethedging evolutionary strategies, whereby cancer cells switch between antithetical phenotypic states, can naturally emerge in the presence of relatively large and fast nutrient fluctuations leading to drastic environmental changes. 
Eder, Thomas (Vetmed Uni Wien)  OMP 1, Sky Lounge (12th floor)  Thu, 1. Aug 19, 15:45 
Benchmarking Differential ChIPSeq Tools  
Chromatin immunoprecipitation followed by sequencing (ChIPseq) is widely used in the global investigation of proteinDNA interactions. One of its main applications is the analysis of differential chromatin binding patterns of the proteins of interest in varying biological states. While various algorithms can be used to quantitatively compare ChIPseq datasets, different computational tools apply different normalization strategies, which can strongly influence the results of the analyses. Applying inappropriate normalization can lead to erroneous outcomes, and the performance of different tools can strongly depend on the nature of the investigated dataset. Therefore it is hard to choose the most appropriate differential ChIPseq tool. To overcome this limitation, we systematically assessed available tools for differential ChIPseq analysis to provide recommendations which tools to use for different biological scenarios and data types. We created standardized reference datasets by insilico simulation of ChIPseq data to represent different biological scenarios, including global reduction of genomic regions in one sample versus the other, but also up and downregulation of equal proportions of genomic regions in both samples. We used these scenarios to evaluate the performance of 24 computational tools for differential ChIPseq analysis. We found enormous differences in precision and recall across differential ChIPseq analysis tools. The performance was strongly dependent on the sizes and shapes of simulated peaks as well as on the regulation scenario. We are currently extending these findings to publicly available and unpublished experimental ChIPseq datasets. Our analysis provides unbiased recommendations which tools to use for particular biological scenarios. The application of appropriate analysis tools will greatly improve the outcomes of ChIPseq studies, and will thus contribute to improved identification of molecular mechanisms. 
Szakacs, Gergely (Med. Uni Wien)  OMP 1, Sky Lounge (12th floor)  Thu, 1. Aug 19, 14:40 
Treasure Hunting in the NCI60 Anticancer Drug Screen Database  
Molecular descriptor (2D) and three dimensional (3D) shape based similarity methods are widely used in ligand based virtual drug design. In the present study pairwise structure comparisons among a set of 4858 DTP compounds tested in the NCI60 tumor cell line anticancer drug screen were computed using chemical hashed fingerprints and 3D molecule shapes to calculate 2D and 3D similarities, respectively. Additionally, pairwise biological activity similarities were calculated by correlating the 60 element vectors of pGI50 values corresponding to the cytotoxicity of the compounds across the NCI60 panel. Subsequently, we compared the power of 2D and 3D structural similarity metrics to predict the toxicity pattern of compounds. We found that while the positive predictive value and sensitivity of 3D and molecular descriptor based approaches to predict biological activity are similar, a subset of molecule pairs yielded contradictory results. By simultaneously requiring similarity of biological activities and 3D shapes, and dissimilarity of molecular descriptor based comparisons, we identify pairs of scaffold hopping candidates displaying characteristic core structural changes such as heteroatom/heterocycle change and ring closure. Attempts to discover scaffold hopping candidates of mitoxantrone recovered known Topoisomerase II (Top2) inhibitors, and also predicted new, previously unknown chemotypes possessing in vitro Top2 inhibitory activity. 
Saut, Olivier (CNRS, INRIA Monc Bordeaux)  OMP 1, Sky Lounge (12th floor)  Thu, 1. Aug 19, 14:00 
Early Evaluation of Cancer Treatment Using Modeling and AI  
The main goal of this talk is to present examples of how mathematical modeling and AI may help clinicians following the evolution of cancer. The first example uses machine learning to evaluate the efficacy of neoadjuvant chemotherapy of softtissue sarcoma. Standard of care for advanced stages (grade 3) is the following: neoadjuvant chemotherapy (6 cycles), curative surgery and then adjuvant radiotherapy. Unfortunately, for some patients, chemotherapy does not improve the situation. In clinical routine, two MR exams are performed on patients: one before the chemotherapy and one after two cycles. Using a retrospective study of more than 60 patients from Institut Bergonié, we investigate whether the differences between these two exams may be correlated with response to chemotherapy. For this matter a radiomics approach is used with novel handcrafted features specific to the disease. On the cohort, the results we obtain are better than state of the art. In the second example, we try to evaluate the efficacy of tyrosine kinase inhibitors (TKI) for patients with EGFR mutated NonSmall Cell Lung Carcinoma. Patients almost always end up relapsing. Our goal is to analyze if an insight on this relapse may be obtained from the early response to treatment. We built a mathematical model — based on a set of PDE  of the response to TKI. This model is personalized for each patient of a retrospective cohort from Institut Bergonié. For the patientspecific model, we compute a novel marker that we show to be correlated with risk of relapse. Finally, a new data assimilation technique will be presented that is able to recover patientspecific parameters of a PDE model of growth of brain metastases. It may be used to predict the evolution of these metastases. 
Pils, Dietmar (Med. Uni Wien)  OMP 1, Sky Lounge (12th floor)  Thu, 1. Aug 19, 11:40 
Network Analysis for Hypothesis Generation, Target Definition, and (Multiomics) Data Integration  
In high grade serous ovarian cancer patients with peritoneal involvement have an unfavorable outcome and would benefit from targeted therapies. In the last years we comprehensively described two types of peritoneal tumor spreading, miliary, with many millet sized tumor nodules in the peritoneal cavity, and nonmiliary, with few larger and exophytically growing tumors. The former showed significant shorter survival, therefore we aimed to find a druggable target against miliary peritoneal metastasizing. We constructed a planar – scale free and small world – coassociation gene expression network from RNAsequencing data using mutual information as the association measure, defined subclusters with multiscale clustering, and searched for subclusters with hub genes upregulated in miliary tumors. A subcluster of 38 genes and Nectin 4 as hubgene was among the highest significant upregulated subclusters. Using the genes of this subcluster for a gene signature we validated the impact on survival with six publicly available expression datasets. Protein expression and impact on survival of Nectin 4 was validated via immunohistochemistry and correlated to other omics and mediumdimensional data. Results were condensed to a network and used for biological interpretation of the impact of Nectin 4 on peritoneal ovarian cancer metastasizing. An antiNectin 4 antibody with a linked antineoplastic drug – already used in clinical trials for cancer treatment – could be a promising candidate for a targeted therapy in patients with miliary peritoneal involvement. 
Bunimovich, Svetlana (Ariel University)  OMP 1, Sky Lounge (12th floor)  Thu, 1. Aug 19, 11:00 
Mathematical Model of CRC Lung Metastases Growth Patterns  
Colorectal cancer (CRC) is one of the most common causes of cancerrelated mortality worldwide. Most cases of deaths result from metastases, assumed to be shed, in many cases, before disease detection. Providing reliable predictions of the metastases' growth pattern may help planning treatment. Available mathematical tumor growth models rely mainly on primary tumor data, and rarely relate to metastases growth. The aim of this talk was to explore CRC lung metastases growth patterns. We used data of a metastatic CRC patient, for whom ten lung metastases were measured while untreated by seven serial computed tomography (CT) scans, during almost three years. Three mathematical growth models – Exponential, logistic and Gompertzian – were fitted to the actual measurements. Goodness of fit of each of the models to actual growth was estimated using different scores. Factors affecting growth pattern were explored: size, location and primary tumor resection. Exponential growth model demonstrated good fit to data of all metastases. Logistic and Gompertzian growth models, in most cases, were overfitted and hence unreliable. Metastases inception time, calculated by backwards extrapolation of the fitted growth models, was 819 years before primary tumor diagnosis date. Three out of ten metastases demonstrated enhanced growth rate shortly after primary tumor resection. Our unique data provide evidence that exponential growth of CRC lung metastases is a legitimate approximation, and encourage focusing research on shortterm effects of surgery on metastases growth rate. 
Tolios, Alexander (Med.Uni Wien)  OMP 1, Sky Lounge (12th floor)  Thu, 1. Aug 19, 9:50 
Predicting Healthy and Cancerous Tissue Samples by Applying Predictive Modeling Techniques on Epigenetic Markers  
DNA methylation is known to have a major impact on the protein biosynthesis of tissues. Those epigenetic modifications could theoretically also be used for tissue classification. In this study we hypothesized that machine learning algorithms could be applied to distinguish between different tissue samples. 
Delitala, Marcello (Politechnico Torino)  OMP 1, Sky Lounge (12th floor)  Thu, 1. Aug 19, 9:10 
Combination Therapies and Drug Resistance in Heterogeneous Tumoral Populations  
How combination therapies can reduce the emergence of cancer resistance? Can we exploit intratumoral competition to modify the effectiveness of anticancer treatments? Bearing these questions in mind, we present a mathematical model of cancerimmune competition under therapies. The model consists of a system of differential equations for the dynamics of two cancer clones and Tcells. Comparisons with experimental data and clinical protocols have been performed. In silico experiments confirm that the selection of proper infusion schedules plays a key role in the success of anticancer therapies. The outcomes of protocols of chemotherapy and immunotherapy (separately and in combination) differing in doses and timing of the treatments are analyzed. In particular, we highlight how exploiting the competition between cancer populations seems to be an effective recipe to limit the insurgence of resistant populations. In some cases, combination of low doses therapies could yield a substantial control of the total tumor population without imposing a massive selective pressure that would suppress the sensitive clones leaving unchecked the clonal types resistant to therapies. 
Hao Wu (Tsinghua Univ.)  WPI, OMP 1, Seminar Room 08.135  Mon, 22. Jul 19, 12:00 
The focus computing method  
In this study, we propose a novel direct numerical method with computational cost to simulate the wave equation in the seismic inverse problem. It based on the fact that the computation of the entire wave filed may not be necessary here. Thus, we only need to evaluate the wave equation around the waveform of interest and the computational cost is significantly saved here. 
Sebastian Erne (Nottingham)  WPI Seminarroom  Tue, 9. Jul 19, 11:30 
Analog cosmology in classical and quantum fluids  
The dynamics of the early universe and black holes are deeply linked to the interplay between general relativity and quantum fields. The essential physical processes occur in situations that are hard to observe and impossible to experiment with: when gravitational interactions are strong and/or when quantum effects are important. Analog (quantum) simulators, utilising the analogy between the dynamics of perturbations in classical or quantum fluids and relativistic fields in a curved spacetime metric, enable us to study these processes in controlled laboratory setups. I will give an introduction to the current questions, opportunities, and challenges concerning analog simulations in the context of early universe cosmology, focusing, in particular, on cosmic inflation. It is our current understanding that, during inflation, quantum fluctuations are stretched to cosmic scales during the rapid expansion of spacetime, yielding the seed for the large scale structure formation in our universe. Analog simulations give direct experimental access to the field dynamics in these extreme conditions, enabling us to study the underlying processes, like modefreezing, particle creation, quantumclassical transition, and signature changes in the spacetime metric, in detail. 
Edriss S. Titi, U. Texas  WPI, OMP 1, Seminar Room 08.135  Mon, 17. Dec 18, 10:00 
TBA  
TBA  

Peter Constantin, U. Princeton  WPI Seminarr Room  Sun, 16. Dec 18, 16:00 
TBA  

Piotr Gwiazda, Polish Academy of Science  WPI, OMP 1, Seminar Room 08.135  Sun, 16. Dec 18, 14:30 
On the Extension of Onsager's Conjecture for General Conservation Laws  
The aim of this talk is to extend and prove the Onsager conjecture for a class of conservation laws that possess generalized entropy. One of the main findings of this work is the "universality" of the Onsager exponent, larger than 1/3, concerning the regularity of the solutions  space of Hölder continuous functions with the above exponent, that guarantees the conservation of the generalized entropy; regardless of the structure of the genuine nonlinearity in the underlying system.  

Agnieska SwierczewkaGwiazda, U. Warsaw  WPI, OMP 1, Seminar Room 08.135  Sun, 16. Dec 18, 11:00 
Measurevalued  strong uniqueness for general conservation laws  
In the last years measurevalued solutions started to be considered as a relevant notion of solutions if they satisfy the socalled measurevalued  strong uniqueness principle. This means that they coincide with a strong solution emanating from the same initial data if this strong solution exists. Following result of Yann Brenier, Camillo De Lellis and Laszlo Szekelyhidi Jr. for incompresible Euler equation, this property has been examined for many systems of mathematical physics, including incompressible and compressible Euler system, compressible NavierStokes system, polyconvex elastodynamics et al. In my talk I will concentrate on results concerning general conservation laws. Our goal is to provide a unified framework for general systems, that would cover the most interesting cases of systems. Following earlier common result with Eduard Feireisl, Piotr Gwiazda and Emil Wiedemann for compresible NavierStokes system, we develop the concept of dissipative measurevalued solution to general hyperbolic systems. The talk is based on joint results with Piotr Gwiazda and Ondrej Kreml.  

Francois Golse, X Paris  WPI, OMP 1, Seminar Room 08.135  Sun, 16. Dec 18, 10:00 
Derivation of Models for the Dynamics of Sprays/Aerosols  
This talk proposes a derivation of the VlasovNavierStokes system used in the modeling of "thin" aerosol flows from a system of Boltzmann equations for a binary gas mixture involving the propellant gas and the dispersed phase in the aerosol. This derivation is formal, in the sense of the program for deriving fluid dynamic limits of the Boltzmann equation laid out in [C. Bardos  F. Golse  C.D. Levermore: J. Stat. Phys. 63 (1991), 323344].  

Vlad Vicol, U. Princeton  WPI, OMP 1, Seminar Room 08.135  Sat, 15. Dec 18, 16:00 
Convex integration on thin sets  
I will discuss the construction of wild weak solutions to the NavierStokes equation which are smooth on the complement of a thin set of times (with Haursdorff dimension strictly less than 1). This is based on joint work with T. Buckmaster and M. Colombo.  

Emil Wiedemann; U. Hannover  WPI, OMP 1, Seminar Room 08.135  Sat, 15. Dec 18, 11:00 
The viscosity limit with boundaries and interfaces: some remarks  
It is a notorious and classical problem whether Leray solutions of the NavierStokes equations converge to a solution of the Euler equations, as viscosity tends to zero. The problem is only wellunderstood in the case that the Euler solution is smooth and there are no physical boundaries. If one (or both) of these requirements are violated, the problem is still largely open. We discuss two specific situations: First, we prove a version of Onsager's conjecture in bounded domains that gives rise to a statement on the viscosity limit and the absence of anomalous dissipation (joint work with C. Bardos and E. S. Titi). Secondly, we discuss the viscosity limit problem for the (nonsmooth) shear flow, also departing from work with Bardos and Titi; we investigate in particular the question what happens when the initial data is not exactly fixed along the viscosity sequence (in progress).  

Marco Sammartino, U. Palermo  WPI, OMP 1, Seminar Room 08.135  Sat, 15. Dec 18, 10:00 
2D analytic solutions of Euler equations with concentrated vorticity  

Peter Constantin, U. Princeton  OMP 1, Lecture Room 5 (Ground floor)  Fri, 14. Dec 18, 16:00 
Remarks on some mathematical problems in hydrodynamics  

Tim Langen, U. Stuttgart  WPI, OMP 1, Seminar Room 08.135  Wed, 31. Oct 18, 12:15 
"Dipolar Gases  From Magnetic Atoms to Molecules"  

Ilaria Perugia, U. Wien  WPI, OMP 1, Seminar Room 08.135  Fri, 5. Oct 18, 10:00 
Trefftz finite element methods  
Over the last years, finite element methods based on operatoradapted approximating spaces have been developed in order to better reproduce physical properties of the analytical solutions, and to enhance stability and approximation properties. They are based on incorporating a priori knowledge about the problem into the local approximating spaces, by using trial and/or test spaces locally spanned by functions belonging to the kernel of the differential operator (Trefftz spaces). These methods are particularly popular for wave problems in frequency domain. Here, the use of oscillating basis functions allows to improve the accuracy vs. computational cost, with respect to standard polynomial finite element methods, and breaks the strong requirements on number of degrees of freedom per wavelength to ensure stability. In this talk, the basic principles of Trefftz finite element methods for timeharmonic wave problems will be presented. Trefftz methods differ from each other by the way interelement continuity conditions are imposed. We will focus on discontinuous Galerkin approaches, where the approximating spaces are made of completely discontinuous Trefftz spaces, and on the recent virtual element framework.  

Nikola Stoilov, U. Bourgogne  WPI, OMP 1, Seminar Room 08.135  Fri, 5. Oct 18, 9:00 
Electric Impedance Tomography  
Electric Impedance Tomography (EIT) is a medical imaging technique that uses the response to voltage difference applied outside the body to reconstruct tissue conductivity. As different organs have different impedance, this technique makes it possible to produce images of the body without exposing the patient to potentially harmful radiation. In mathematical terms, EIT is what is a nonlinear inverse problem, whereby data inside a given domain is recovered from data on its boundary. Such problems also belong to the area of Integrable Systems, which deals with nonlinear problems for which analytic solutions can be found, thus providing us with a mathematical framework for reconstructing images from the electrical information created by EIT. I will discuss the design of numerical algorithms based on spectral collocation methods that address Dbar problems found in both integrable systems and medical imaging. Successfully implementing these methods in EIT on modern computing architectures should allow us to achieve images with much higher resolutions at reduced processing times.  

Didier Pilod, U. Bergen  WPI, OMP 1, Seminar Room 08.135  Thu, 4. Oct 18, 14:00 
Wellposedness for some dispersive perturbations of Burger’s equation  
We show that the Cauchy problem associated to a class of dispersive perturbations of Burgers' equations containing the low dispersion BenjaminOno equation $$ \partial_tuD_x^{\alpha}\partial_xu+u\partial_xu=0 \, ,$$ with $0<\alpha \le 1$, is locally wellposed in $H^s(\mathbb R)$ for $s>s_\alpha: = \frac 32\frac {5\alpha} 4$. As a consequence, we obtain global wellposedness in the energy space $H^{\frac{\alpha}2}(\mathbb R)$ as soon as $\frac\alpha 2> s_\alpha$, i.e. $\alpha>\frac67$.  

Thomas Kappeler, U. Zürich  WPI, OMP 1, Seminar Room 08.135  Thu, 4. Oct 18, 11:00 
Normal form coordinates for the KdV equation having expansions in terms of pseudodifferential operators  
Complex normal coordinates for integrable PDEs on the torus can be viewed as 'nonlinear Fourier coefficients'. Based on previous work we construct near an arbitrary finite gap potential a real analytic, 'nonlinear Fourier transform' for the KdV equation having the following two main properties: (1) Up to a remainder term, which is smoothing to any given order, it is a pseudodifferential operator of order 0 with principal part given by the Fourier transform. (2) It is canonical and the pullback of the KdV Hamiltonian is in normal form up to order three. Furthermore, the corresponding Hamiltonian vector field admits an expansion in terms of a paradifferential operator. Such coordinates are a key ingredient for studying the stability of finite gap solutions, i.e., periodic multisolitons, of the KdV equation under small, quasilinear perturbations. This is joint work with Riccardo Montalto.  

Patrick Gérard, U. ParisSud  WPI, OMP 1, Seminar Room 08.135  Thu, 4. Oct 18, 9:30 
Growth of Sobolev norms for a weakly damped Szegö equation  
The Szegö equation is an integrable model for lack of dispersion on the circle. An important feature of this model is the existence of a residual set  in the Baire sense of initial data leading to unbounded trajectories in high Sobolev norms. It is therefore natural to study the effect of a weak damping on such a system. In this talk I will discuss the damping of the lowest Fourier mode, which has the specificity of saving part of the integrable structure. Somewhat surprinsingly, we shall show that such a weak damping leads to a wider set of unbounded trajectories in high Sobolev norms. This is a jointwork in collaboration with Sandrine Grellier.  

Peter Perry, U. Kentucky  WPI, OMP 1, Seminar Room 08.135  Wed, 3. Oct 18, 14:00 
Soliton Resolution for the Derivative Nonlinear Schr"{o}dinger Equation  
This talk reports on joint work with Robert Jenkins, Jiaqi Liu, and Catherine Sulem. The derivative nonlinear Schr\"{o}dinger equation (DNLS) is a completely integrable, dispersive nonlinear equation in one space dimension that arises in the study of circularly polarized Alfv\'{e}n waves in plasmas, and admits soliton solutions. In 1978, Kaup and Newell showed that the DNLS is completely integrable, and in the 1980's, J.H. Lee used the BealsCoifman approach to inverse scattering to solve the DNLS. In the work to be described, drawing on recent advances in the RiemannHilbert formulation of inverse scattering due to DiengMcLaughlin (2008) and BorgheseJenkinsMcLaughlin (2017), we use the inverse scattering formalism to show that, for a spectrally determined generic set of initial data, the solution decomposes into the sum of 1soliton solutions with calculable phase shifts plus radiation.  

Derchyi Wu, Academia Sinica  WPI, OMP 1, Seminar Room 08.135  Wed, 3. Oct 18, 11:00 
The Direct Problem of perturbed KadomtsevPetviashvili II 1line solitons  
BoitiPempinelliPogrebkov's inverse scattering theories on the KPII equation provide an integrable approach to solve the Cauchy Problem and the stability problem of the KPII equation for perturbed multisoliton solutions. In this talk, we will present rigorous analysis for the direct scattering theory of perturbed KPII one line solitons, the simplest case in BoitiPempinelliPogrebkov's theories. Namely, for generic small perturbation of the one line soliton, the existence of the eigenfunction is proved by establishing uniform estimates of the Green function and the Cauchy integral equation for the eigenfunction is justified by nonuniform estimates of the spectral transform. Difficulties and outlooks for the inverse problem will be discussed as well.  

Anton Arnold, TU Wien  WPI, OMP 1, Seminar Room 08.135  Wed, 3. Oct 18, 9:30 
A hybrid WKBbased method for Schrödinger scattering problems in the semiclassical limit  
We are concerned with 1D scattering problems related to quantum transport in (tunneling) diodes. The problem includes both oscillatory and evanescent regimes, partly including turning points. We shall discuss the efficient numerical integration of ODEs of the form epsilon^2 u" + a(x) u = 0 for 0 < epsilon << 1 on coarse grids, but still yielding accurate solutions. In particular we study the numerical coupling of the highly oscillatory regime (i.e. for given a(x) > 0 ) with evanescent regions (i.e. for a(x) < 0 ). In the oscillatory case we use a marching method that is based on an analytic WKBpreprocessing of the equation. And in the evanescent case we use a FEM with WKBansatz functions. We present a full convergence analysis of the coupled method, showing that the error is uniform in epsilon and second order w.r.t. h, when h = O(epsilon^1/2). We illustrate the results with numerical examples for scattering problems for a quantumtunnelling structure. The main challenge when including a turning point is that the solution gets unbounded there as epsilon > 0. Still one can obtain epsilonuniform convergence, when h = O(epsilon^7/12).  

Christian Klein, U. Bourgogne  WPI, OMP 1, Seminar Room 08.135  Tue, 2. Oct 18, 11:00 
Numerical study of blowup in dispersive PDEs  
We study numerically the stability of solitons and a possible blowup of solutions in dispersive PDEs of the family of Kortwegde Vries and nonlinear Schr\"odinger equations. The biowup mechanism in the $L^2$ critical and supercritical case is studied.  

JeanClaude Saut, ICP & U. Paris Sud  WPI, OMP 1, Seminar Room 08.135  Tue, 2. Oct 18, 9:30 
On KP type equations  
After recalling the known results on the KP I and KP II equations, we survey some open problems on the KP equations, both from the PDE and IST aspects, and also on some relevant KP type equations.  

Parra Diaz, Felix (U.Oxford)  WPI, OMP 1, Seminar Room 08.135  Fri, 3. Aug 18, 10:00 
TBA  
TBA  

Milanese, Lucio (MIT)  WPI, OMP 1, Seminar Room 08.135  Thu, 2. Aug 18, 16:00 
Electrontemperaturegradientdriven inverse cascade of energy  

White, Ryan (MIT)  WPI, OMP 1, Seminar Room 08.135  Thu, 2. Aug 18, 10:00 
Anomalous resistivity and reconnection in an evolving current profile  
TBA  

Abel, Ian (U. Maryland)  WPI, OMP 1, Seminar Room 08.135  Wed, 1. Aug 18, 16:00 
The simplest possible pedestal?  
TBA  

Parker, Jeff (LLNL)  WPI, OMP 1, Seminar Room 08.135  Wed, 1. Aug 18, 10:00 
Multipletimescale global GK turbulence and transport simulations for tokamaks  
TBA  

Dodin, Ilya (U. Princeton)  WPI, OMP 1, Seminar Room 08.135  Tue, 31. Jul 18, 10:00 
Inhomogeneous driftwave turbulence as an effective quantum plasma  
TBA  

Hardman, Michael (U. Oxford)  WPI, OMP 1, Seminar Room 08.135  Mon, 30. Jul 18, 10:45 
A scale separated framework for studying cross scale interactions in plasma turbulence  
TBA  

Maeyama, Shinya (U. Nagoya)  WPI, OMP 1, Seminar Room 08.135  Mon, 30. Jul 18, 10:00 
Effects of subionscale structures on crossscale interactions in Tokamak plasma turbulence  
TBA  

Schekochihin, Alex (U. Oxford)  WPI, OMP 1, Seminar Room 08.135  Fri, 27. Jul 18, 10:45 
1. Ion vs. electron heating in astroGK turbulence (theory with Kawazura & Barnes) 2. Some interesting nuggets in MHD turbulence theory 3. Fluidisation of kinetic density turbulence (with Meyrand & Dorland)  
TBA  

Loureiro, Nuno (MIT)  WPI, OMP 1, Seminar Room 08.135  Fri, 27. Jul 18, 10:00 
Turbulence in pair plasmas  
TBA  

Werner, Greg (UC Boulder)  WPI, OMP 1, Seminar Room 08.135  Thu, 26. Jul 18, 16:45 
1. Relativistic reconnection: heating and nothermal particle acceleration in pair and electronion plasmas 2. Relativistic reconnection with external inverse Compton cooling  
TBA  

Uzdensky, Dmitri (UC Boulder)  WPI, OMP 1, Seminar Room 08.135  Thu, 26. Jul 18, 16:00 
1. Relativistic nonthermal particle acceleration in magnetic reconnection 2. Ion vs. electron heating in relativistic collisionless turbulence  
TBA  

Stone, James (U. Princeton)  WPI, OMP 1, Seminar Room 08.135  Thu, 26. Jul 18, 10:45 
Statistics of current sheets in MRI turbulence  
TBA  

Kunz, Matthew (U. Princeton)  WPI, OMP 1, Seminar Room 08.135  Thu, 26. Jul 18, 10:00 
1. Sound waves in highbeta plasma 2. Mirrormediated magnetic reconnection  
TBA  

Bott, Archie (U. Oxford)  WPI, OMP 1, Seminar Room 08.135  Wed, 25. Jul 18, 10:45 
New plasma dynamo experiments on OMEGA  
TBA  

StOnge, Denis (U. Princeton)  WPI, OMP 1, Seminar Room 08.135  Wed, 25. Jul 18, 10:00 
Plasma dynamo: latest results  
TBA  

Beloborodov, Andrei (U. Columbia)  WPI, OMP 1, Seminar Room 08.135  Tue, 24. Jul 18, 16:45 
Radiative reconnection  
TBA  

Spitkovsky, Anatoly (U. Princeton)  WPI, OMP 1, Seminar Room 08.135  Tue, 24. Jul 18, 16:00 
1. Electron heating in shocks 2. Relativistic reconnection with pair production  
TBA  

Chandran, Ben (U. New Hampshire)  WPI, OMP 1, Seminar Room 08.135  Tue, 24. Jul 18, 10:45 
Parametric instability, inverse cascade, and the 1/f spectrum of solarwind turbulence  
TBA  

Arzamasskiy, Lev (U. Princeton)  WPI, OMP 1, Seminar Room 08.135  Tue, 24. Jul 18, 10:00 
Hybridkinetic simulations of driven solarwind turbulence: spectral anisotropy, perpendicular ion heating and nonthermal features in distribution function  
TBA  

Sironi, Lorenzo (U. Columbia)  WPI, OMP 1, Seminar Room 08.135  Mon, 23. Jul 18, 16:45 
Electron heating in shocks and reconnection  
TBA  

Kawazura, Yohei (U. Oxford)  WPI, OMP 1, Seminar Room 08.135  Mon, 23. Jul 18, 16:00 
Ion vs. electron heating in astroGK turbulence (simulations)  
TBA  

Cerri, Silvio (U. Princeton)  WPI, OMP 1, Seminar Room 08.135  Mon, 23. Jul 18, 10:45 
3D hybridkinetic turbulence and phasespace cascades in a beta=1 plasma  
TBA  

Groselj, Daniel (IPP Garching)  WPI, OMP 1, Seminar Room 08.135  Mon, 23. Jul 18, 10:00 
Kinetic turbulence in astrophysical plasmas: waves and/or structures?  
TBA  

Levy, Doron (U. Maryland)  Sat, 21. Jul 18, 16:25  
Closing Remarks  

Lorz, Alexander (KAUST)  Sat, 21. Jul 18, 15:45  
Mathematics meets oncology: from Adaptive evolution to Zebrafish  
In this talk, I focus on current biological problems and on how to use mathematical modeling to analyze a variety of pressing questions arising from oncology, developmental pattern formation and population ecology. I first discuss novel mathematical models for cancer growth dynamics and heterogeneity. These studies rely on evolutionary principles and shed light on 3D hepatic tumor dynamics, spatial heterogeneity and tumor invasion, and single cancer cell responses to antimitotic therapies. We also develop mathematical models that quantitatively demonstrate how the interplay between nongenetic instability, stressinduced adaptation, and selection leads to the transient and reversible phenotypic evolution of cancer cell populations exposed to therapy. Finally, we study control techniques for optimal therapeutic administration.  

Kefurt, Ronald (Med. Uni Vienna)  Sat, 21. Jul 18, 14:40  
TBA  
TBA  

Kicheva, Anna (IST Austria)  Sat, 21. Jul 18, 14:00  
Coordination of progenitor specification and growth in the developing spinal cord  
As the spinal cord grows during embryonic development, an elaborate pattern of molecularly distinct neuronal precursor cells forms along the DV axis. This pattern depends both on the dynamics of a morphogenregulated gene regulatory network, and on tissue growth. We study how these processes are coordinated. Our data revealed that during mouse and chick development the gene expression pattern changes but does not scale with the overall tissue size. These changes in the pattern are sequentially controlled by distinct mechanisms. Initially, neural progenitors integrate signaling from opposing morphogen gradients to determine their identity by using a mechanism equivalent to maximum likelihood decoding. This strategy allows accurate assignment of position along the patterning axis and can account for the observed precision and shifts of pattern. During the subsequent developmental phase, celltype specific regulation of differentiation rate, but not proliferation, elaborates the pattern.  

Gevertz, Jana (New Jersey College)  Sat, 21. Jul 18, 11:20  
Identifying robust optimal cancer treatment protocols from small experimental  
Mathematical models of biological systems are often validated by fitting the model to the average of an (often small) experimental dataset. Here we ask the question of whether predictions made from a model fit to the average of a dataset are actually applicable in samples that deviate from the average. We will explore this in the context of a murine model of melanoma treated with oncolytic viruses and dendritic cell injections. We have hierarchically developed a system of ordinary different equations to describe the average of this experimental data, and optimized treatment subject to clinical constraints. Using a virtual population method, we explore the robustness of treatment response to the predicted optimal protocol; that is, we quantify the extent to which the optimal treatment protocol elicits the same qualitative response in virtual populations that deviate from the average. We find that our predicted optimal is not robust and in fact is potentially a dangerous protocol for a fraction of the virtual populations. However, if we consider a different drug dose than used in the experiments, we are able to identify an optimal protocol that elicits a robust antitumor response across virtual populations.  

Cordero, Francesca (U. Turin)  Sat, 21. Jul 18, 10:40  
Multiscale models to investigate IntraTumor Heterogeneity  
In cancer research most efforts are devoted on the decipher of the IntraTumoral Heterogeneity (ITH). In ITH the action of the evolutionary forces of mutation and selection are essential to determinant the tumor progression, diagnosis and treatment. ITH gives rise to cancer cell populations with distinct genotypic and metabolic characteristics contributing to the failure of cure, by initiating phenotypic diversity and enabling more aggressive and drug resistant clones. I will present multiscale models of cancer linking the tumor growth to the intracellullar signalling and metabolic events to genomic profiles. The models consider several heterogenous omics data (metabolomics, proteomics, transcriptomics, genomics) to investigate the ITH associated with different genomic and metabolic traits.  

Klingmüller, Ursula (U. Heidelberg)  Sat, 21. Jul 18, 9:40  
Modelbased optimization of personalized anemia treatment in chronic diseases  
Anemia associated with chronic diseases is the second most prevalent anemia in the world after anemia caused by iron deficiency. Advanced stages of diseases such as chronic kidney disease (CKD) and cancer coincide with a high prevalence of severe anemia that results in fatigue, reduced quality of life and decreased treatment responses in patients. Two therapeutic options are available to manage anemia: blood transfusion and treatment with erythropoiesis stimulating agents (ESAs) in combination with iron supplementation. However, adverse events and increased risk of mortality have been reported for blood transfusions and ESAs. Decisions on the clinical treatment should be based on the specific benefittorisk ratio of each patient, which is complicated to assess due to the heterogeneity of the patients, the lack of prognostic markers and the dynamics of comorbidities associated with the diseases. We developed a multiscale mathematical model that links mechanistic insights at the cellular scale to response at the body level to guide clinical decisions based on the prediction of the response to the available therapeutic options. The mathematical model stratifies patients based on the estimation of two patient specific dynamic parameters. These parameters are estimated by the mathematical model based on the timecourse of the haemoglobin (Hb) values, CRP, iron values and scheduled chemotherapy in each patient. These two patient specific parameters reflect the anaemic status of the patient as well as the capability to respond to treatment with ESAs. The model is capable to propose optimized personalized interventions for anaemia management in lung cancer and CKD patients.  

Clairambault, Jean (INRIA)  Sat, 21. Jul 18, 9:00  
Evolutionary viewpoint on drug resistance in cancer cell populations with perspectives in therapeutic control, and open general questions on cancer with respect to evolution  
To tackle the question of drug resistance in cancer, I will present an adaptive dynamic framework to represent the evolution in phenotype of cell populations, that allows to follow the instantaneous distribution and asymptotic behaviour of drug resistance phenotype(s) in the cell population. Such phenotypes evolve under drug pressure towards either established or transient, possibly reversible, drug tolerance, a behaviour taken into account by the models we design to allow for therapeutic control. Optimal control strategies describing the combination of different categories of drugs on specified cell functional targets (thus far cytotoxics, that act on death terms, and cytostatics, that act on proliferation terms) are proposed, aiming at minimising a tumour cell population while limiting both unwanted toxic side effects on healthy cell populations and occurrence of drug resistance in cancer cell populations. The models used for these representations, their asymptotic properties and their theoretical therapeutic control are integrodifferential (nonlocal LotkaVolterralike) or PDE models (reactiondiffusion models with or without advection). Finally, I will present some transdisciplinary challenges of cancer modelling that should concern mathematicians, cell biologists, evolutionary biologists and oncologists, aiming to go beyond the present state of the art in the treatments of cancer.  

Nenning, Karl Heinz (Med. Uni Vienna)  Fri, 20. Jul 18, 16:25  
The changing global functional connectivity structure in patients with glioblastoma  
Glioblastoma may have widespread effects on the cortical organization and cognitive function since even focal lesions impact the brains’ functional network architecture. Currently, our understanding of the interaction between tumor lesions and their impact on the functional connectome is limited. Hence, we used 3 Tesla restingstate functional magnetic resonance imaging to evaluate the functional connectivity structure of 15 patients with glioblastoma. We further tracked the functional characteristics of six patients over time using bimonthly followup examinations. We found changes in restingstate networks to be highly symmetric and mirrored by changes in the cerebellum. Patients shared a pattern of network deterioration after surgery, with subsequent recovery at the first followup examination. Additionally, we showed that glioblastoma has a global effect on the functional connectivity structure of the individual patient, which might serve as sensitive early marker of tumor recurrence. Of note, local tumor recurrence coincided with network deterioration before structural changes were apparent upon imaging. In summary, our results demonstrate how the functional connectome is affected by focal lesions, and that it might be exploited as an early predictor of local tumor recurrence. This renders the individual patient’s functional connectome a promising novel biomarker for the longitudinal patient followup in order to support early informed treatment decisions.  

Seoane Sepúlveda, Jesús M. (U. Rey Juan Carlos)  Fri, 20. Jul 18, 15:45  
Dynamics of tumor and immune cell aggregates  
In this talk we present our work on the dynamics of tumor and immune cell interactions [14]. A hybrid probabilistic cellular automaton model describing the spatiotemporal evolution of tumor growth and its interaction with the cellmediated immune response is developed. The model parameters are adjusted to an ordinary differential equation model, which has been previously validated [1] with in vivo experiments and chromium release assays. The cellular automaton is used to perform in silico experiments which, together with mathematical analyses, allow us to characterize the rate at which a tumor is lysed by a population of cytotoxic immune cells [23]. Finally, the transient and asymptotic dynamics of the cellmediated immune response to tumor growth is considered [4]. The cellular automaton model is used to investigate and discuss the capacity of the cytotoxic cells to sustain long periods of tumor mass dormancy, as commonly observed in recurrent metastatic disease. This is a joint work with Alvaro G. López and Miguel A. F. Sanjuán.  

Mayerhöfer, Marius (Med. Uni Wien)  Fri, 20. Jul 18, 14:40  
Novel trends in cancer imaging: from hybrid techniques to radiomics  
Cancer imaging has undergone major paradigm shifts within the last decade. Hybrid imaging techniques, and in particular, PET/CT (positron emission tomography / computed tomography) with the glucose analogue radiotracer [18F]FDG is now an integral part of the management guidelines for patients with different cancers, with a particular emphasis on the early detection of treatment effects on the tumor. Novel PET radiotracers that are specific for certain types of cancer – such as [68Ga]PSMA for prostate cancer – are currently being evaluated in clinical trials. Notably, though visual image interpretation is still the clinical standard, there is now a trend towards the use of quantitative data extracted from diagnostic images. The recently introduced PET/MRI (magnetic resonance imaging) is of particular interest in that regard, because it offers information on tissue properties such as cell density and blood flow in addition to the metabolic information provided by PET. The combination of quantitative parameters extracted from MRI and PET may not only improve noninvasive, imagebased characterization of tumor heterogeneity, but may also improve evaluation of the effects of novel types of treatment. This multiparametric approach also provides an ideal basis for radiomics – i.e., computerassisted image analysis, and based on it, recognition of mathematical image patterns that are related to tumor characteristics. This novel approach to image interpretation, which is aided by advanced techniques such as artificial neural networks, has the potential to contribute significantly to the success of precision medicine, and the welfare of patients.  

Peurichard, Diane (INRIA)  Fri, 20. Jul 18, 14:00  
A multiscale approach for models of tumor growth: from shortrange repulsion to HeleShaw problems  
In this talk, we investigate the link between multiscale models for tumor growth. We start from a microscopic model where cells are modelled as 2D spheres undergoing short range repulsion and cell division. We derive the associated macroscopic dynamics leading to a porous media type equation. As the macroscopic equation obtained through usual derivation method fails at providing the correct qualitative behavior, we propose a modified version of the macroscopic equation introducing a density threshold for the repulsion. We numerically validate the new formulation by comparing the solutions of the micro and macro dynamics. Moreover, we study the asymptotic behavior of the dynamics as the repulsion between cells becomes singular (leading to nonoverlapping constraints in the microscopic model). We show formally that such asymptotic limit leads to a HeleShaw type problem for the macroscopic dynamics. The numerical simulations reveal an excellent agreement between the micro and macro descriptions, validating the formal derivation of the macroscopic model. The macroscopic model derived here therefore enables to overcome the problem of large computational time raised by the microscopic model, but stays closely linked to the microscopic dynamics.  

Benzekry, Sebastien (INRIA)  Fri, 20. Jul 18, 11:40  
Mathematical modeling and prediction of clinical metastasis  
In the majority of cancers, secondary tumors (metastases) and associated complications are the main cause of death. To design the best therapy for a given patient, one of the major current challenge is to estimate, at diagnosis, the eventual burden of invisible metastases and the future time of emergence of these, as well as their growth speed. In this talk, I will present the current state of research efforts towards the establishment of a predictive computational tool for this aim. I will first shortly present the model used, which is based on a physiologicallystructured partial differential equation for the time dynamics of the population of metastases, combined to a nonlinear mixedeffects model for statistical representation of the parameters’ distribution in the population. Then, I will show results about the descriptive power of the model on data from clinically relevant orthosurgical animal models of metastasis (breast and kidney tumors). The main part of my talk will further be devoted to the translation of this modeling approach toward the clinical reality. Using clinical imaging data of brain metastasis from nonsmall cell lung cancer, several biological processes will be investigated to establish a minimal and biologically realistic model able to describe the data. Integration of this model into a biostatistical approach for individualized prediction of the model’s parameters from data only available at diagnosis will also be discussed. Together, these results represent a step forward towards the integration of mathematical modeling as a predictive tool for personalized medicine in oncology.  

Grebien, Florian (LBI Cancer Research)  Fri, 20. Jul 18, 11:00  
Identification of actionable nodes in cancerspecific protein networks  
Oncogenes perturb molecular mechanisms to drive neoplastic initiation and progression. Chromosomal rearrangements are frequent events in cancer, and can result in the expression of fusion proteins. Fusion proteins represent neomorphic protein variants with aberrant activities and are often drivers of oncogenesis. Acute myeloid leukemia (AML) is an aggressive cancer of the white blood cell lineage that is associated with poor prognosis. While AML features a particular high prevalence of fusion proteins, it is largely unknown how the majority of AML fusion proteins rewire the molecular machinery of normal blood cells to induce leukemia. We hypothesize that oncogenic mechanisms of AML fusion proteins are hardwired in specific networks of physical, genetic and epigenetic interactions with key effector proteins. Functional exploration of these networks by systematic comparative approaches will provide new insights into cellular processes that depend on critical effector proteins among these networks. The goal of our research is a comprehensive systemslevel investigation of oncogenic mechanisms employed by AML fusion proteins. We have established a robust experimental pipeline for the rapid characterization of fusion oncoproteins in a multilayered, global fashion. We use modern genetic tools to generate advanced cell and animal models for tunable expression of AML fusion proteins. Fusion proteindependent changes in cellular topologies are charted by proteomic and transcriptomic approaches. In parallel, genomescale lossof function CRISPR/Cas9 screening is used to identify critical effectors of leukemogenesis. Highconfidence candidates are validated using a wide array of different approaches, including studies in primary patientderived leukemia cells. Results from this pipeline provide evidence for its robust validity, but also for its translational impact, strongly implying that this approach will contribute to an improved understanding of oncogenesis.  

Bergmann, Michael (Med. Uni Vienna)  Fri, 20. Jul 18, 9:50  
Understanding and modulation of the immune infiltrate in solid tumors  
TBA  

Maini, Philip (U. Oxford)  Fri, 20. Jul 18, 9:10  
Mathematical modelling of angiogenesis  
Angiogenesis is the process by which the body generates new blood vessels. This occurs in the context of wound healing where, of course, it is beneficial to the body. However, it can also occur in cancer where it can enhance delivery of nutrients to the cancer and enable cancer cells to infiltrate the blood system and metastasize to vital organs, leading to the often fatal secondary tumours. Understanding this process is a challenge for both experimentalists and theoreticians. I will review some recent work we have done on this problem which includes generating a new partial differential equation model for the socalled ``snailtrail'' movement of blood vessel cells to the tumour (Pillay et al, 2017), by developing a continuuum model of the process from a discrete description. I will then present a computational multiscale model for a key experimental assay that is used by experimentalists to measure the efficacy of antiangiogenesis drugs and use it to make predictions (Grogan et al, 2018; 2017).  

Mauser, Norbert J. (WPI Director)  Fri, 20. Jul 18, 9:00  
Opening Remarks  

Schmidt, Thorsten (U. Freiburg)  Wed, 4. Jul 18, 11:00  
Affine processes under parameter uncertainty  
We develop a onedimensional notion of affine processes under parameter uncertainty, which we call nonlinear affine processes. This is done as follows: given a set $Theta$ of parameters for the process, we construct a corresponding nonlinear expectation on the path space of continuous processes. By a general dynamic programming principle we link this nonlinear expectation to a variational form of the Kolmogorov equation, where the generator of a single affine process is replaced by the supremum over all corresponding generators of affine processes with parameters in $Theta$. This nonlinear affine process yields a tractable model for Knightian uncertainty, especially for modelling interest rates under ambiguity. We then develop an appropriate Itoformula, the respective termstructure equations and study the nonlinear versions of the Vasicek and the CoxIngersollRoss (CIR) model. Thereafter we introduce the nonlinear VasicekCIR model. This model is particularly suitable for modelling interest rates when one does not want to restrict the state space a priori and hence the approach solves this modelling issue arising with negative interest rates. Joint work with Tolulope Fadina and Ariel Neufeld.  

Peyre, Remi (U. Lorraine)  Wed, 4. Jul 18, 10:00  
Where stochastic processes, fractal dimensions, numerical computations and quasistationary distributions meet  
In a joint work with Walter Schachermayer (still in progress), we investigate the optimal strategy of an economic agent trading a fractional asset in presence of transaction costs. A fascinating conjecture by us asserts that, contrary to the Bronwnian case, such an optimal trading would be fully discrete, only involving countably many trading times. What we can already prove is that only certain specific times, which we call "potential trading times", may involve trading, regardless of the agent's porfolio (this shall be explained more in detail). An idea towards our conjecture (though unsuccessful yet) would be to bound above the fractal dimension of the set of potential trading times. The nice point with this approach is that, contrary to the optimal strategy, this fractal dimension can be computed numerically: the goal of my talk will be to explain how one can do so. The method I propose involves quasistationary distributions, that is, killed Markov processes conditioned by longtime survival: which is rather surprising, as this concept has a priori nothing to do with fractal dimension ...  

Pulido, Sergio (ENSIIE France)  Wed, 4. Jul 18, 9:00  
Affine Volterra processes  
Motivated by recent advances in rough volatility modeling, we introduce affine Volterra processes, defined as solutions of certain stochastic convolution equations with affine coefficients. Classica affine diffusions constitute a special case, but affine Volterra processes are neither semimartingales, nor Markov processes in general. Nonetheless, their FourierLaplace functionals admit exponentialaffine representations in terms of solutions of associated deterministic integral equations, extending the wellknown Riccati equations for classical affine diffusions. Our findings generalize and clarify recent results in the literature on rough volatility.  

Glau, Kathrin (Queen Mary U. London)  Tue, 3. Jul 18, 17:30  
A new approach for American option pricing: The Dynamic Chebyshev method  
We introduce a new method to price American options based on Chebyshev interpolation. The key advantage of this approach is that it allows to shift the modeldependent computations into an offline phase prior to the timestepping. This leads to a highly efficient online phase. The modeldependent part can be solved with any computational method such as solving a PDE, using Fourier integration or Monte Carlo simulation.  

Liu, Chong (ETH Zürich)  Tue, 3. Jul 18, 17:00  
Cadlag rough paths  

Teichmann, Josef (ETH Zürich)  Tue, 3. Jul 18, 16:30  
Machine Learning and regularity structures  

Khosrawi, Wahid (U. Freiburg)  Tue, 3. Jul 18, 16:00  
A homotopic view on machine learning with applications to SLV calibration  

Escobar,Daniela (U. Wien)  Tue, 3. Jul 18, 15:30  
The distortion premium principle: properties, identification and robustness  

Tangpi, Ludovic (U. Wien)  Tue, 3. Jul 18, 15:00  
New limit theorems for Wiener process and applications  
We will discuss nonexponential versions of well known limit theorems, specialising on the case of Brownian motion. The proofs will partially rely on the theory of BSDEs and their convex dual formulations, and an application to (stochastic) optimal transport will be provided.  

Rogers, Chris (U. Cambridge)  Tue, 3. Jul 18, 11:00  
Economics: science or sudoku?  
When we are ill, most of us would prefer to receive treatment that was supported by scientific evidence, rather than anecdotal tradition or superstition. When a nation's economy is ill, policymakers turn to economists for advice, but how well is their advice supported by evidence? This talk critiques the value of economic theory in practice, and tries to suggest ways of increasing the practical relevance of the subject.  

Jentzen, Arnulf (ETH Zürich)  Tue, 3. Jul 18, 10:00  
Stochastic approximation algorithms for highdimensional PDEs  
Partial differential equations (PDEs) are among the most universal tools used in modelling problems in nature and manmade complex systems. For example, stochastic PDEs are a fundamental ingredient in models for nonlinear filtering problems in chemical engineering and weather forecasting, deterministic Schroedinger PDEs describe the wave function in a quantum physical system, deterministic HamiltonianJacobiBellman PDEs are employed in operations research to describe optimal control problems where companys aim to minimise their costs, and deterministic BlackScholestype PDEs are also highly employed in portfolio optimization models as well as in stateoftheart pricing and hedging models for financial derivatives. The PDEs appearing in such models are often highdimensional as the number of dimensions, roughly speaking, corresponds to the number of all involved interacting substances, particles, resources, agents, or assets in the model. For instance, in the case of the above mentioned financial engineering models the dimensionality of the PDE often corresponds to the number of financial assets in the involved hedging portfolio. Such PDEs can typically not be solved explicitly and it is one of the most challenging tasks in applied mathematics to develop approximation algorithms which are able to approximatively compute solutions of highdimensional PDEs. Nearly all approximation algorithms for PDEs in the literature suffer from the socalled "curse of dimensionality" in the sense that the number of required computational operations of the approximation algorithm to achieve a given approximation accuracy grows exponentially in the dimension of the considered PDE. With such algorithms it is impossible to approximatively compute solutions of highdimensional PDEs even when the fastest currently available computers are used. In this talk we introduce of a class of new stochastic approximation algorithms for highdimensional nonlinear PDEs. We prove that these algorithms do indeed overcome the curse of dimensionality in the case of a general class of semilinear parabolic PDEs and we thereby prove, for the first time, that a general semilinear parabolic PDE with a nonlinearity depending on the PDE solutiothe approximation algorithm to achieve a given approximation accuracy grows exponentially in the dimension of the considered PDE.  

Kardaras, Kostas (London School of Economics)  Tue, 3. Jul 18, 9:00  
Equilibrium in thin security markets under restricted participation  
A market of financial securities with restricted participation is considered. Agents are heterogeneous in beliefs, risk tolerance and endowments, and may not have access to the trade of all securities. The market is assumed thin: agents may influence the market and strategically trade against their price impacts. Existence and uniqueness of the equilibrium is shown, and an efficient algorithm is provided to numerically obtain the equilibrium prices and allocations given marketâ€™s inputs. (Based on joint work with M. Anthropelos.)  

SvalutoFerro, Sara (U. Wien)  Mon, 2. Jul 18, 17:30  
Generators of probabilityvalued jumpdiffusions  
Probabilityvalued jumpdiffusions provide useful approximations of large stochastic systems in finance, such as large sets of equity returns, or particle systems with meanfield interaction. The dynamics of a probabilityvalued jumpdiffusion is governed by an integrodifferential operator of Levy type, expressed using a notion of derivative that is wellknown from the superprocesses literature. General and easytouse existence criteria for probabilityvalued jumpdiffusions are derived using new optimality conditions for functions of probability arguments. In general, we consider the space of probability measures as endowed with the topology of weak convergence. For jumpdiffusions taking value on a specific subset of the probability measures, it can however be useful to work with a stronger notion of convergence. Think for instance at the wellknown Wasserstein spaces. This change of topology permits to include in the theory a larger class of generators, and hence, a larger class of probabilityvalued jumpdiffusions. We derive general and easytouse existence criteria for jumpdiffusions valued in those spaces.  

Harms, Philipp (U. Freiburg)  Mon, 2. Jul 18, 17:00  
Cylindrical Wiener Processes  

Reppen, Max (ETH Zürich)  Mon, 2. Jul 18, 16:30  
Discrete dividends in continuous time  

Zeineddine, Raghid (U. Freiburg)  Mon, 2. Jul 18, 16:00  
Variable Annuities in hybrid financial market  
In this talk I will explain what is a Variable Annuities (VA) contract and how we can find the pricing formula of VA when the financial market is hybrid in the sense introduced by Eberlein.  

Jamneshan, Asgar (ETH Zürich)  Mon, 2. Jul 18, 15:30  
On the structure of measure preserving dynamical systems and extensions of disintegration of measure  
TBA  

Birghila, Corina (U. Wien)  Mon, 2. Jul 18, 15:00  
Optimal insurance contract under ambiguity. Applications in extreme events.  
Insurance contracts are efficient risk management techniques to operate and reduce losses. However, very often, the underlying probability model for losses  on the basis of which premium is computed  is not completely known. Furthermore, in the case of extreme climatic events, the lack of data increases the epistemic uncertainty of the model. In this talk we propose a method to incorporate ambiguity into the design of an optimal insurance contract. Due to coverage limitations in this market, we focus on the limited stoploss contract, given by $I(x)=min(max(xd_1),d_2)$, with deductible $d_1$ and cap $d_2$. Therefore, we formulate an optimization problem for finding the optimal balance between the contract parameters that minimize some risk functional of the final wealth. To compensate for possible model misspecification, the optimal decision is taken with respect to a set of nonparametric models. The ambiguity set is built using a modified version of the wellknown Wasserstein distance, which results to be more sensitive to deviations in the tail of distributions. The optimization problem is solved using a distributionally robust optimization setup. We examine the dependence of the objective function as well as the deductible and cap levels of the insurance contract on the tolerance level change. Numerical simulations illustrate the procedure.  

Fontana, Claudio (U. Paris VII); Gümbel, Sandrine (U. Freiburg)  Mon, 2. Jul 18, 11:00  
Term structure models for multiple curves with stochastic discontinuities  
In this talk, we propose a novel approach to the modelling of multiple yield curves. Adopting the HJM philosophy, we model term structures of forward rate agreements (FRA) and OIS bonds. Our approach embeds most of the existing approaches and additionally allows for stochastic discontinuities. In particular, this last feature has an important motivation in interest rate markets, which are affected by political events and decisions occurring at predictable times. We study absence of arbitrage using results from the recent literature on large financial markets and discuss special cases and examples. This talk is based on joint work with Zorana Grbac, Sandrine Gümbel and Thorsten Schmidt.  

Schachermayer, Walter (U. Wien)  Mon, 2. Jul 18, 10:00  
TBA  

Rainer, Catherine (U. Brest)  Mon, 2. Jul 18, 9:00  
On continuous time games with asymmetric information  
I'll try in this talk to present the main ideas on zerosum continuous time games where one of the two players has some private information (for instance when only one player observes a Brownian motion): how to formalize these games, the associated HamiltonJacobiIsaacsequation and the analyse of the optimal revelation in terms of an optimization problem over a set of martingales. In a second time I'll present the last developments in this area.  

Ollett, Andrew (U. Chicago)  Seminar Room Zemanek, TU Wien, Favoritenstrasse 911, 1040 Wien  Wed, 13. Jun 18, 15:00 
Different Deontic Concepts in Mimamsa  

Cummins, Patrick (Cornell University)  Seminar Room Zemanek, TU Wien, Favoritenstrasse 911, 1040 Wien  Wed, 13. Jun 18, 14:00 
Obligation as Linguistic Category in Prabhakara's Hermeneutics of Deontology  

Guhe, Eberhard (U. Fudan)  Seminar Room Zemanek, TU Wien, Favoritenstrasse 911, 1040 Wien  Wed, 13. Jun 18, 10:00 
Ross's Paradox and the NavyaNyaya Interpretation of Injunctions  

Patil, Parimal (U. Harvard)  Seminar Room Zemanek, TU Wien, Favoritenstrasse 911, 1040 Wien  Wed, 13. Jun 18, 9:00 
The Cognition of Commands in NavyaNyaya  

Parent, Xavier (U. Luxembourg)  Seminar Room Zemanek, TU Wien, Favoritenstrasse 911, 1040 Wien  Tue, 12. Jun 18, 16:30 
A RuleBased Deontic Reasoner  

Modgil, Sanjay (King's College London)  Seminar Room Zemanek, TU Wien, Favoritenstrasse 911, 1040 Wien  Tue, 12. Jun 18, 15:00 
Logic, Dialogue and Moral Reasoning  

Brick, David (U. Yale)  Seminar Room Zemanek, TU Wien, Favoritenstrasse 911, 1040 Wien  Tue, 12. Jun 18, 14:00 
Arguments Regarding Sati from Classical Hindu Law  

McCrea, Lawrence (U. Cornell)  Seminar Room Zemanek, TU Wien, Favoritenstrasse 911, 1040 Wien  Tue, 12. Jun 18, 10:00 
Contextual Factors in the Interpretation of Prohibitions  

Gabbay, Dov (King's College London)  Seminar Room Zemanek, TU Wien, Favoritenstrasse 911, 1040 Wien  Tue, 12. Jun 18, 9:00 
Principles of Talmudic Logic  Sample Export to Modern AI  

Sartor, Giovanni (U. Bologna)  Seminar Room Zemanek, TU Wien, Favoritenstrasse 911, 1040 Wien  Mon, 11. Jun 18, 17:00 
Defeasible Legal Argumentation  

Baaz, Matthias (TU Wien)  Seminar Room Zemanek, TU Wien, Favoritenstrasse 911, 1040 Wien  Mon, 11. Jun 18, 15:45 
Logical Aspects of Legal Reasoning  

Katsaounis, Theodoros (U. FORTH c/o KAUST)  WPI, OMP 1, Seminar Room 08.135  Fri, 25. May 18, 10:00 
TBA  

Skordis, Constantinos (CEICO)  WPI, OMP 1, Seminar Room 08.135  Thu, 24. May 18, 14:30 
TBA  

Zhao, Xiaofei (U. Rennes1)  WPI, OMP 1, Seminar Room 08.135  Thu, 24. May 18, 10:00 
TBA  

Zhang, Yong (WPI c/o U. Wien)  WPI, OMP 1, Seminar Room 08.135  Thu, 24. May 18, 9:30 
TBA  

Uhlemann, Cora (DAMTP Cambridge)  WPI, OMP 1, Seminar Room 08.135  Wed, 23. May 18, 16:00 
TBA  

Rampf, Cornelius (U. Heidelberg)  WPI, OMP 1, Seminar Room 08.135  Wed, 23. May 18, 15:00 
TBA  

Gosenca, Mateja (U.Sussex)  WPI, OMP 1, Seminar Room 08.135  Wed, 23. May 18, 10:30 
TBA  

Athanassoulis, Agis (U. Dundee)  WPI, OMP 1, Seminar Room 08.135  Wed, 23. May 18, 10:00 
TBA  

Kopp, Michael  WPI, OMP 1, Seminar Room 08.135  Tue, 22. May 18, 14:30 
TBA  

Hahn, Oliver (Observatoire Nice)  WPI, OMP 1, Seminar Room 08.135  Tue, 22. May 18, 14:00 
TBA  

Mauser, Norbert J. (WPI c/o U.Wien)  WPI, OMP 1, Seminar Room 08.135  Tue, 22. May 18, 13:30 
TBA  

David Muraki (Simon Fraser Univ, BC)  WPI, OMP 1, Seminar Room 08.135  Mon, 7. May 18, 15:00 
Mysterious Holes in the Sky & A Theory for the Motion of Cloud Edges  
A holepunch cloud is a curious and rare atmospheric feature where an aircraft, descending or ascending through a thin cloud layer, leaves behind a growing circular hole of clear air. Observed since the early days of aviation, only in 2011 was this holepunch phenomenon simulated in a fullphysics numerical weather model. Although the initiation process has long been explained by ice crystal formation, the continued growth of the hole, even up to an hour after its birth, remained a bit of a fluid dynamical mystery. We begin by excluding some of the ``obvious" reasons by tweaking the physics in the numerical simulations (fake weather!). We then attribute the expansion of the hole to the presence of an expanding wavefront. The leading edge of this wave is a front of phase change, where cloudy air is continually evaporated and so expands the hole. Our explanation has led us towards the development of a more general theory for an understanding of how atmospheric waves can evolve the shape of clouds. This work is in collaboration with R Rotunno (NCAR), H Morrison (NCAR), R Walsh (SFU) and H Lynn (SFU).  

Bouin, Emeric (U. ParisDauphine)  OMP 1, Sky Lounge (12th floor)  Fri, 20. Apr 18, 14:50 
Hypocoercivity without confinement  
In this talk, we will present some recent results on decay to zero for linear kinetic models with weak or without space confinement. Joint with Mouhot, Mischler, Dolbeault, Schmeiser.  

Peter Markowich (WPI c/o U. Wien & KAUST)  OMP 1, Sky Lounge (12th floor)  Fri, 20. Apr 18, 14:00 
Discrete and continuum modeling of biological network formation  
Motivated by recent papers describing rules for natural network formation in discrete settings, we propose an ellipticparabolic system of partial differential equations. The model describes the pressure field due to Darcy’s type equation and the dynamics of the conductance network under pressure force effects with a diffusion rate representing randomness in the material structure. After a short overview of the principles of discrete network modeling, we show how to derive the corresponding macroscopic (continuum) description. The highly unusual structure of the resulting PDE system induces several interesting challenges for its mathematical analysis. We give a short overview of the tools and tricks that can be used to overcome them. In particular, we present results regarding the existence of weak solutions of the system, based on recent results on elliptic regularity theory. Moreover, we study the structure and stability properties of steady states that play a central role to understand the pattern capacity of the system. We present results of systematic numerical simulations of the system that provide further insights into the properties of the networktype solutions.  

Cuesta, Carlotta (U. Basque Country)  OMP 1, Sky Lounge (12th floor)  Fri, 20. Apr 18, 11:25 
Some aspects of a nonlocal regularisation of scalar conversation laws  
We consider a regularisation of a scalar conservation law where the viscous term is a Caputo type fractional derivative of order between 1 and 2. We shall first focus on some recent results on the study travelling wave solutions of the Kortewegde VriesBurgers equation with such nonlocal viscous term, the third order one being local and linear. This model equation arises in the analysis of a shallow water flow by performing formal asymptotic expansions associated to the tripledeck regularisation (which is an extension of classical boundary layer theory). We show rigorously the existence of these waves in the case of a genuinely nonlinear flux and for the case of a non genuinely nonlinear one, we give results on the existence of the waves that do not satisfy the entropy condition. We shall also discuss the vanishing viscosity limit when the third order term is not present.  

Raoul, Gael (X Palaiseau)  OMP 1, Sky Lounge (12th floor)  Fri, 20. Apr 18, 10:05 
Wasserstein estimates and macroscopic limits in a model from ecology  
We are interested in evolutionary biology models for sexual populations. The sexual reproductions are modelled through the socalled Infinitesimal Model, which is similar to an inelastic Boltzmann operator. This kinetic operator is then combined to selection and spatial dispersion operators. In this talk, we will show how the Wasserstein estimates that appear naturally for the kinetic operator can be combined to estimates on the other operators to study the qualitative properties of the solutions. In particular, this approach allows us to recover a wellknown (in populations genetics) macroscopic model.  

Mouhot, Clement (U. Cambridge)  OMP 1, Sky Lounge (12th floor)  Fri, 20. Apr 18, 9:15 
De GiorgiNashMoser and H"ormander theories: new interplays  
We report on recent results and a new line of research at the crossroad of two major theories in the analysis of partial differential equations: the tools developed for studying elliptic or parabolic equations with rough coefficients on the one hand (De Giorgi, Nash, Moser, Krylov, Safonov), and the theory of hypoellipticity (H\"ormander) on the other hand. We discuss recent results about hypoelliptic equations of kinetic type with rough coefficients. We then discuss applications to the Boltzmann and Landau equations and present a program of research about the regularity for these equations, with some open questions.  

Doumic, Marie (WPI & INRIA)  OMP 1, Sky Lounge (12th floor)  Thu, 19. Apr 18, 17:00 
Some entropybased results for linear and nonlinear aggregationfragmentation equations  
Entropybased methods, and in particular the socalled "generalised relative entropy" inequalities, have been developed and successfully applied to structured population equations, and in particular to aggregationfragmentation problems, over the last two decades. In this talk, we study how entropy methods have been recently extended to measure solutions [1] as well as to the convergence towards a periodic limit [2]. We also investigate the longtime dynamics of a family of nonlinear nucleationaggregation equations, for which specific entropy functionals may be built [3]. Ref: [1] Thomasz Debiec, Marie Doumic, Piotr Gwizada, Emil Wiedemann, Relative entropy method for measure solutions of a structured population model, 2018 [2] Etienne Bernard, Marie Doumic, Pierre Gabriel, Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts, 2016 [3] Juan Calvo, Marie Doumic, Benot Perthame, Longtime asymptotics for polymerization models, 2017  

Manhart, Angelika (NYU Courant)  OMP 1, Sky Lounge (12th floor)  Thu, 19. Apr 18, 16:10 
Traveling Waves in Cell Populations  
Transportreaction equations are abundant in the description of movement of motile organisms. In this talk I will focus on a system of coupled transportreaction equations that arises from an agestructuring of a species of turning individuals. The highlight consists of the explicit construction and characterization of counterpropagating traveling waves, patterns which have been observed in bacterial colonies, e.g. in earthdwelling myxobacteria. Fascinatingly, while the wave profiles do not change, the wave composition does and the fractions of reversible and nonreversible bacteria form waves traveling in the opposite direction. Stability analysis reveals conditions for wave formation as well as for pulsatingintime spatially constant solutions.  

Oelz, Dietmar (U. Queensland)  OMP 1, Sky Lounge (12th floor)  Thu, 19. Apr 18, 14:50 
Microtubule dynamics, kinesin1 sliding and dynein action drive growth of cell processes  
Intracellular transport is driven by molecular motors which pull cargo vesicles along cytoskeletal filaments. In a collaborative study combining experiments and Brownian Dynamics simulations we investigate cellular morphogenesis of neuron cells, namely establishment and growth of axons and dendrites, which is both driven by kinesin and dynein motors. We find that the growth of cellular processes depends critically on dynamical instability, i.e. alternating growing and shrinking, of microtubule fibres.  

Small, Victor J. (IMBA)  OMP 1, Sky Lounge (12th floor)  Thu, 19. Apr 18, 14:00 
Moving cells and pathogens with actin: from structure to mathematical models  
Cell movement plays an essential role in diverse processes, not least during embryonic development and wound repair. Armies of mobile immune cells are likewise engaged in the defence of the body against invading pathogens. Cell movement has been a popular playground for mathematicians and there has been no shortage of theoretical models of how cells extend a thin sheet, a socalled “lamellipodium” at the cell front to initiate migration. Our recent application of electron tomography in studies of migrating cells provided the first complete structure of the branched actin networks that make up lamellipodia. These findings coincided with the timely collaboration with the group of Christian Schmeiser and the subsequent development of a realistic mathematical simulation of the actinmediated protrusion process. Actinbased protrusion is also used by certain viruses, which usurp the motile machinery of cells to spread their infection. These viruses move in cells by generating a comet tail of actin at their rear. Using again electron tomography we were able to determine, for the first time, the structural organization of actin comet tails. This structural information was then utilized in collaboration with the Schmeiser group to develop a new, more realistic mathematical model of pathogen propulsion. In conclusion, the fortuitous and timely interest of Christian Schmeiser in the cytoskeleton resulted in a productive and fruitful, interdisciplinary collaboration.  

Gasser, Ingenuin (U. Hamburg)  OMP 1, Sky Lounge (12th floor)  Thu, 19. Apr 18, 11:25 
A few examples of alternative energy power stations: modelling, simulation and optimisation  
We discuss power stations based on solar thermal energy, on condensation and on pressure retarded osmosis. In all cases we aim to consider the complete power station and to optimize the net power output. This is done with respect to system parameters and also in the operational phase. Mathematically this relies on fluid dynamical models with a special emphasis on energy, its production mechanisms and the related energy losses.  

Nouri, Anne (U. Marseille)  OMP 1, Sky Lounge (12th floor)  Thu, 19. Apr 18, 10:05 
Bose condensates in interaction with excitations. Twocomponent spacedependent models close to equilibrium  
We consider models for Bose gases in the socalled 'hightemperature range' below the temperature where BoseEinstein condensation sets in. The first model is of nonlinear twocomponent type and vanishing force term, consisting of a kinetic equation with periodic boundary conditions for the distribution function of a gas of excitations interacting with a Bose condensate, which is described by the GrossPitaevskii equation. Results on wellposedness and long time behavior are proved in a Sobolev space setting close to equilibrium. The second model has a nonvanishing force term and is linearized around a spacehomogenous equilibrium.  

Calvez, Vincent (ENS Lyon)  OMP 1, Sky Lounge (12th floor)  Thu, 19. Apr 18, 9:15 
Equilibria in quantitative genetic models  
I will describe recent results obtained in the asymptotic analysis of quantitative genetic models. I will focus on the adaptation of a population to a moving fitness optimum. Our methodology is able to handle agestructured populations, either reproducing in an asexual way or with a sexual mode of reproduction (namely Fisher's infinitesimal model).  

Burger, Martin (WWU Münster)  OMP 1, Sky Lounge (12th floor)  Wed, 18. Apr 18, 16:15 
“Propagation of gradient flow structures from microscopic to macroscopic models”  
In this talk we will discuss the propagation of gradient flow structures from microscopic models in statistical mechanics such as overdamped particle dynamics or interacting particle systems on lattices to macroscopic partial differential equations. The key insight is that microscopic models can be formulated as linear Markov chains in highdimensional spaces, e.g. via Liouville equations, for which recent work by Maas, Mielke and others has provided a rather complete picture. The propagation to macroscopic models is then carried out  at least formally  by constructing a metric structure on an associated infinite hierarchy of equations, resembling the BBGKY hierarchy in kinetic theory, and studying meanfield or other limits in this setup.  

Zubelli, Jorge (IMPIA)  OMP 1, Sky Lounge (12th floor)  Wed, 18. Apr 18, 14:50 
A Nonintrusive Stratified Resampler for Regression Monte Carlo with Applications to ReactionDiffusion Equations  
Stochastic dynamic programming equations are classic equations arising in the resolution of nonlinear evolution equations, like in stochastic control. In this talk we address a technique to solve certain dynamic programming equations associated to a given Markov chain $X$, using a regressionbased Monte Carlo algorithm. More specifically, we assume that the model for $X$ is not known in full detail and only a root sample $X^1,\dots,X^M$ of such process is available. By a stratification of the space and a suitable choice of a probability measure, we design a new resampling scheme that allows to compute local regressions (on basis functions) in each stratum. The combination of the stratification and the resampling allows to compute the solution to the dynamic programming equation (possibly in large dimension) using only a relatively small set of root paths. To assess the accuracy of the algorithm, we establish nonasymptotic error estimates in L2 of the chosen measure. Our numerical experiments illustrate the good performance, even with as low as 20 to 40 root paths. This talk is based on joint work with Emmanuel Gobet and Gang Liu (E. Polytechnique, Paris) published in SIAM J. Numer. Anal., 56(1), 50?77. 2018.  

Ascher, Uri (U. British Columbia)  OMP 1, Sky Lounge (12th floor)  Wed, 18. Apr 18, 14:00 
Numerical Methods in Visual Computing: what we can learn from each other  
Visual computing is a wide area that includes computer graphics and image processing, where the "eyeballnorm" rules. I will briefly discuss two case studies involving numerical methods and analysis applied to this area. The first case study involves motion simulation and calibration of soft objects such as plants, skin, and cloth. The governing elastodynamics PDE system, discretized in space already at the variational level using corotated FEM, leads to a large, expensive to assemble, dynamical system in time, where the damped motion may mask highly oscillatory stiffness. An exponential differencing method will be described, in search for more quantitative computations. The second case study involves some image processing problems where there is a premium for local approaches that do not necessarily use underlying PDEs. I will demonstrate and discuss.  

Poelchau, Michael (U. Freiburg)  MariaTheresienPlatz, 1010 Vienna, Lecture Hall of Natural History Museum  Wed, 11. Apr 18, 11:45 
Shooting into Stone  What we learned from the MEMIN Project  

Alac, Ruken (U. Sydney)  MariaTheresienPlatz, 1010 Vienna, Lecture Hall of Natural History Museum  Wed, 11. Apr 18, 11:30 
Modeling of Pantasma impact crater using Badlands software with Monte Carlo method  

Rae, Auriol (Imperial College London)  MariaTheresienPlatz, 1010 Vienna, Lecture Hall of Natural History Museum  Wed, 11. Apr 18, 11:15 
Combining observations of shock metamorphism with numerical Impact simulations: Insights into complex crater formation  

Collins, Gareth (Imperial College London)  MariaTheresienPlatz, 1010 Vienna, Lecture Hall of Natural History Museum  Wed, 11. Apr 18, 10:55 
A brief introduction to numerical Impact modelling  

Goderis, Steven (U. Brussel)  MariaTheresienPlatz, 1010 Vienna, Lecture Hall of Natural History Museum  Wed, 11. Apr 18, 10:10 
Recent advances in tracing meteoritic contributions to the Earth's crust  

Deutsch, Alex (U. Münster)  MariaTheresienPlatz, 1010 Vienna, Lecture Hall of Natural History Museum  Wed, 11. Apr 18, 9:55 
A simple cooking recipe for dating impact events  

Pittarello, Lidia (U. Wien)  MariaTheresienPlatz, 1010 Vienna, Lecture Hall of Natural History Museum  Wed, 11. Apr 18, 9:40 
Shock metamorphic effects in a common Mineral: shocked plagioclase in nature and experiments  

Fritz, Jörg (Saalbau Weltraum Projekt)  MariaTheresienPlatz, 1010 Vienna, Lecture Hall of Natural History Museum  Wed, 11. Apr 18, 9:25 
Shock metamorphism of meteorites: A record of Impact cratering events in the planetary system  

Timo Lang  OMP 1, Sky Lounge (12th floor)  Wed, 28. Feb 18, 17:10 
Remarks on the Exponential Rules in Linear Logic  
Abstract  

Kaustuv Chaudhuri, Leonardo Lima and Giselle Reis  OMP 1, Sky Lounge (12th floor)  Wed, 28. Feb 18, 16:45 
Formalized Metatheory of Sequent Calculi for Substructural Logics  
Abstract  

Giuseppe Greco, Fei Liang and Alessandra Palmigiano  OMP 1, Sky Lounge (12th floor)  Wed, 28. Feb 18, 16:20 
Measurable Kleene Algebras and Structural Control  
Abstract  

Carlos Olarte, Kaustuv Chaudhuri, Joelle Despeyroux and Elaine Pimentel  OMP 1, Sky Lounge (12th floor)  Wed, 28. Feb 18, 15:15 
Hybrid Linear Logic, Revisited  
Abstract  

Elaine Pimentel  OMP 1, Sky Lounge (12th floor)  Wed, 28. Feb 18, 14:20 
A unified view of modal and substructural logics  

Samuel Balco, Giuseppe Greco, Alexander Kurz, M. Andrew Moshier, Alessandra Palmigiano and Apostolos Tzimoulis  OMP 1, Sky Lounge (12th floor)  Wed, 28. Feb 18, 12:15 
Proper Display Calculus for Firstorder Logic  
Abstract  

Matthias Baaz  OMP 1, Sky Lounge (12th floor)  Wed, 28. Feb 18, 11:45 
Fast Cutelimination for Intuitionistic Logic  
Abstract  

Marianna Girlando, Sara Negri and Nicola Olivetti  OMP 1, Sky Lounge (12th floor)  Wed, 28. Feb 18, 11:25 
Internal and Labelled Sequent Calculi: An Equivalence Result for Conditional Logic V  
Abstract  

Andrea Aler Tubella and Alessio Guglielmi  OMP 1, Sky Lounge (12th floor)  Wed, 28. Feb 18, 11:00 
Subatomic Proof Systems  
Abstract  

Lutz Straßburger  OMP 1, Sky Lounge (12th floor)  Wed, 28. Feb 18, 9:55 
On the Normalization of Combinatorial Proofs for Classical and Intuitionistic Logic  
Abstract  

Alwen Tiu  OMP 1, Sky Lounge (12th floor)  Wed, 28. Feb 18, 9:00 
A proof theory for dual nominal quantifiers  
Abstract  

Nissim Francez and Michael Kaminski  OMP 1, Sky Lounge (12th floor)  Tue, 27. Feb 18, 16:45 
Structural Rules for Multivalued Logics  
Abstract  

Arnon Avron  OMP 1, Sky Lounge (12th floor)  Tue, 27. Feb 18, 16:20 
Purely Relevant Logics with Contraction and Its Converse  
Abstract  

Luca Tranchini and Gianluigi Bellin  OMP 1, Sky Lounge (12th floor)  Tue, 27. Feb 18, 15:55 
A Refutation Calculus for Intuitionistic Logic  
Abstract  

Luigi Santocanale and Maria Joâo Gouveia  OMP 1, Sky Lounge (12th floor)  Tue, 27. Feb 18, 14:50 
Mix ⋆  Autonomous Quantales and the Continuous Weak Bruhat Order  
Abstract  

Michele Pra Baldi, Stefano Bonzio and Tommaso Moraschini  OMP 1, Sky Lounge (12th floor)  Tue, 27. Feb 18, 14:25 
Logics of Variable Inclusion  
Abstract  

Petr Cintula, José GilFérez, Tommaso Moraschini and Francesco Paoli  OMP 1, Sky Lounge (12th floor)  Tue, 27. Feb 18, 14:00 
An Abstract Approach to Consequence Relations II  
Abstract  

Stefano Bonzio, Andrea Loi and Luisa Peruzzi  OMP 1, Sky Lounge (12th floor)  Tue, 27. Feb 18, 11:50 
Dualities for Plonka Sums of Algebras  
Abstract  

Stefano Aguzzoli, Matteo Bianchi and Diego Valota  OMP 1, Sky Lounge (12th floor)  Tue, 27. Feb 18, 11:25 
The Classification of All the Subvarieties of DNMG  
Abstract  

Nick Galatos and Adam Pøenosil  OMP 1, Sky Lounge (12th floor)  Tue, 27. Feb 18, 11:00 
On an Equivalence between Integral and Involutive Residuated Structures  
Abstract  

José GilFérez, Peter Jipsen, George Metcalfe and Constantine Tsinakis  OMP 1, Sky Lounge (12th floor)  Tue, 27. Feb 18, 9:55 
The Amalgamation Property for Semilinear Commutative Idempotent Residuated Lattices  
Abstract  

Francesco Paoli  OMP 1, Sky Lounge (12th floor)  Tue, 27. Feb 18, 9:00 
The Archimedean Property: New Horizons and Perspectives Joint work with Antonio Ledda and Constantine Tsinakis  
Abstract  

Federico Aschieri, Agata Ciabattoni and Francesco A. Genco  OMP 1, Sky Lounge (12th floor)  Mon, 26. Feb 18, 17:20 
Logicbased Concurrent ëCalculi  

Giuseppe Primiero  OMP 1, Sky Lounge (12th floor)  Mon, 26. Feb 18, 16:55 
A Substructural Modal Type Theory to Handle Mobility Failures in Distributed Computing  
Abstract  

Matteo Maffei  OMP 1, Sky Lounge (12th floor)  Mon, 26. Feb 18, 16:00 
Security and Privacy by Typing in Cryptographic Systems  
Abstract  

Jorge A. Pérez  OMP 1, Sky Lounge (12th floor)  Mon, 26. Feb 18, 14:45 
The Challenge of Typed Expressiveness in Concurrency  
Abstract  

Philip Wadler  OMP 1, Sky Lounge (12th floor)  Mon, 26. Feb 18, 14:00 
Propositions as Sessions  
Abstract  

Vijay D'Silva, Alessandra Palmigiano, Apostolos Tzimoulis and Caterina Urban  OMP 1, Sky Lounge (12th floor)  Mon, 26. Feb 18, 11:50 
A prooftheoretic approach to abstract interpretation  
Abstract  

LarcheyWendling; Dominique  OMP 1, Sky Lounge (12th floor)  Mon, 26. Feb 18, 11:25 
Mechanising Undecidability Results in Coq: Elementary Linear Logic and Boolean BI  
Abstract  

Ramanayake, Revantha  OMP 1, Sky Lounge (12th floor)  Mon, 26. Feb 18, 11:00 
Syntactic Decidability and Complexity Upper Bound for the Logic of Bunched Implication BI  

Galmiche, Didier, Kimmel, Pierre, Pym, David  OMP 1, Sky Lounge (12th floor)  Mon, 26. Feb 18, 9:55 
An Epistemic Resource Logic Based on Boolean BI  
Abstract  

Pym, David  OMP 1, Sky Lounge (12th floor)  Mon, 26. Feb 18, 9:00 
Logic as a modelling technology: resource semantics, systems modelling, and security  
Abstract  

Fritz R.S. Diorico (TU Wien)  WPI, OMP 1, Seminar Room 08.135  Fri, 23. Feb 18, 10:00 
Articial Gauge Fields in Quantum Systems  
In this talk, I will present an overview/review of progress in articial gauge fields in quantum systems. I will start with the underlying first principles with the seminal paper of Berry, the Berry or Geometric phase. Following a few month after its publication Wilczek and Zee concluded with Berry's results, that nonAbelian gauges fields can naturally emerge from the adiabatic development of simple quantum systems. I will mainly focus on how ultracold atomic systems can be prepared such that a mapping to a ultracold atoms behaving like charged particles in a magnetic field. The induced gauge field whether abelian or nonAbelian introduces a space dependent coupling between the dressed states of the ultracold atoms. This provides motivation for extending MCTDHX to tackle quantum systems with artificial gauge fields where the spatial dynamics of the dressed states or pseudospins can be studied in great detail. This could open up interesting physics that could potentially be observed in the experiment.  

Fernández–Pacheco, Amalio (Cavendish Lab, Cambridge)  ErnstMachHS, 2. Stock Fak. Physik, Strudlhofgasse 4/Boltzmanngasse 5  Mon, 29. Jan 18, 16:00 
"Investigation of threedimensional magnetic nanostructures for applications in spintronics"  
In this talk, I will show our recent work on 3D magnetic nanostructures for applications in spintronics. We are developing 3D nanoprinting methods based on focused electron beams [2]. In particular, we have achieved great control over the growth of 3D magnetic nanowires for domain wall studies [3]. Advanced magnetic microscopy experiments reveal the magnetic state and magnetisation reversal mechanism of the wires, dominated by their geometry and metallic composition [4]. Recent results also show how controllable domain wall motion along the whole space becomes now possible [5]. This has been realised by development of new methods for 3D nanoprinting and magnetooptical detection of 3D nanostructures. During the talk, I will discuss novel methodologies to characterise 3D nanomagnets, including magnetooptical, electron and Xray microscopy. I will also highlight key challenges and opportunities of 3D nanomagnetism.  

Golse, Francois (CNRS X Palaiseau)  WPI, OMP 1, Seminar Room 08.135  Fri, 22. Dec 17, 14:30 
From quantum Nbody problem to Vlasov via „optimal transport“  

Germain, Pierre (NYU Courant)  WPI, OMP 1, Seminar Room 08.135  Fri, 22. Dec 17, 10:00 
Recent mathematical progress on weak turbulence”  
I will present two recent rigorous results on weak turbulence: the first one is on the local wellposedness of the kinetic wave equation (with A. Ionescu and M.B. Tran). And the second one on the derivation of the kinetic wave equation from the nonlinear Schrodinger equation (work in progress, with T. Buckmaster, Z. Hani, and J. Shatah).  

Uhlemann, Cora (U. Cambridge)  WPI, OMP 1, Seminar Room 08.135  Thu, 21. Dec 17, 15:00 
Finding closure  what SchrödingerPoisson can teach us about cumulant hierarchies  
Since dark matter almost exclusively interacts gravitationally, the dynamics of its phase space distribution is described by VlasovPoisson. One key property of VlasovPoisson is that it corresponds to an infinite tower of coupled equations for its cumulants. Hence, determining the timeevolution of dark matter density and velocity demands solving the full cumulant hierarchy. While the perfect pressureless fluid model is the only consistent truncation, it cannot describe the dynamics in the multistreaming regime. Given this inadequacy of truncations for the cumulant hierarchy, I suggest to take a closer look at closure schemes that rely on recurrence. To this end, I will introduce SchrödingerPoisson as theoretically motivated and phenomenologically viable approximation to VlasovPoisson. I will show how SchrödingerPoisson generates cumulants at all orders consistently and hence can serve as inspirational example for finding closure schemes.  

Diamond, Patrick (UC San Diego)  WPI, OMP 1, Seminar Room 08.135  Thu, 21. Dec 17, 9:30 
QuasiGeostrophic Fluids and Vlasov Plasmas: Parallels and Intersections  
This talk explores connections and contrasts between the nonlinear dynamics of two prototypical systems in plasmas and fluids. The first is the quasigeostrophic fluid, which evolves by conservative advection of potential vorticity. The QG system is the minimal model for largescale atmospheric waves and the jet stream (zonal flow). The second is the Vlasov–Poisson system, in which the Vlasov equation describes the conservative advection of a phase space density. Many interesting connections between these two systems already have been noted. This talk will expand the list and suggest directions for future crossfertilization .  

Gürcan, Özgür (U. PMC Paris)  WPI, OMP 1, Seminar Room 08.135  Wed, 20. Dec 17, 14:30 
Dynamics of a shell model of bounced averaged gyrokinetic Vlasov Equation  
Development of a shell model for a bounced averaged gyrokinetic Vlasov equation is presented. First, the linear dynamics is compared with a linear solver based on solving the linear dispersion relation numerically. Then the nonlinear dynamics is studied by analyzing the wavenumber spectrum of quadratic conserved quantities. The resulting spectra seems to show a cascade spectrum at high k and predatorprey like oscillations in low k. Future perspectives including a logarithmically discretized three dimensional version of the model, which is 2D in space and 1D in energy, is discussed.  

Brenier, Yann (CNRS X Palaiseau):  WPI, OMP 1, Seminar Room 08.135  Wed, 20. Dec 17, 9:30 
On the MAK reconstruction method for the early universe  
I will report on some very recent progress made on the MAK method for the numerical reconstruction of the early universe (in particular by Bruno Lévy and JeanDavid Benamou), based either on the geometric algorithm of Mérigot for the MongeAmpère equation or on the entropic regularization method (going back to Schrödinger in the 30s) for the optimal mass transport problem with quadratic cost.  

Lesur, Maxime (U. Lorraine)  WPI, OMP 1, Seminar Room 08.135  Tue, 19. Dec 17, 14:30 
Plasma turbulence and transport dominated by nonlinear kinetic effects  
In hot plasmas, collisions are so rare that microscopic vortexlike structures develop in the phasespace of the particle distribution: coupling both real space and velocity (or energy) space. In this work, we focus on magnetic confinement fusion plasmas (in toroidal geometry). We base our approach on a reduced kinetic model [1, 2], akin to the VlasovPoisson model. Our numerical simulations indicate the nonlinear selforganisation, within the turbulence, of finescale velocityspace (or energyspace) structures, which can drive most of the macroscopic radial transport in some regimes.  

Nguyen, Toan (U. Pennsylvania)  WPI, OMP 1, Seminar Room 08.135  Tue, 19. Dec 17, 9:30 
Longtime estimates for VlasovMaxwell in the nonrelativistic limit  
I will present a joint work with D. HanKwan and F. Rousset on establishing long time estimates for VlasovMaxwell systems near stable homogeneous equilibria, which are valid for times of an arbitrarily large polynomial order of the speed of light in the nonrelativistic limit.  

Colombi, Stephane (I.Astrophysique Paris)  WPI, OMP 1, Seminar Room 08.135  Mon, 18. Dec 17, 15:30 
Phasespace structure of dark matter protohalos: pre and postcollapse regimes  
During this talk I'll discuss the formation of primordial dark matter halos from smooth initial conditions. To simplify furthermore the context, we shall consider structures seeded by 3 sine waves of various amplitudes. Phasespace evolution of these objects will be studied from the computational point of view, by using a state of the art Vlasov solver, and the theoretical point of view, by comparing the numerical results to predictions of Lagrangian perturbation theory. While these latter are in principle only calculable prior to collapse, extension to multistreaming regime will be discussed, with actual implementation in the 1D cosmological case of "postcollapse" Lagrangian perturbation theory.  

Rampf, Cornelius (U. Heidelberg)  WPI, OMP 1, Seminar Room 08.135  Mon, 18. Dec 17, 14:00 
Shellcrossing in quasionedimensional flow  
Blowup of solutions for the cosmological fluid equations, often dubbed shellcrossing or orbit crossing, denotes the breakdown of the singlestream regime of the colddarkmatter fluid. At this instant, the velocity becomes multivalued and the density singular. Shellcrossing is well understood in one dimension (1D), but not in higher dimensions. This talk is about quasionedimensional (Q1D) flow that depends on all three coordinates but differs only slightly from a strictly 1D flow, thereby allowing a perturbative treatment of shellcrossing using the EulerPoisson equations written in Lagrangian coordinates. The signature of shellcrossing is then just the vanishing of the Jacobian of the Lagrangian map, a regular perturbation problem. In essence the problem of the first shellcrossing, which is highly singular in Eulerian coordinates, has been desingularized by switching to Lagrangian coordinates, and can then be handled by perturbation theory. Allorder recursion relations are obtained for the timeTaylor coefficients of the displacement field, and it is shown that the Taylor series has an infinite radius of convergence. This allows the determination of the time and location of the first shellcrossing, which is generically shown to be taking place earlier than for the unperturbed 1D flow. The time variable used for these statements is not the cosmic time t but the linear growth time $tau sim t^{2/3}$. For simplicity, calculations are restricted to an Einsteinde Sitter universe in the Newtonian approximation, and tailored initial data are used. However it is straightforward to relax these limitations, if needed.  

Ivanovici, Oana (CNRS Nice)  WPI, OMP 1, Seminar Room 08.135  Wed, 25. Oct 17, 16:30 
Dispersion estimates for the wave equation outside a strictly convex obstacle in 3D  
We consider the linear wave equation outside a compact, strictly convex obstacle in R^3 with smooth boundary and we show that the linear wave flow satisfies the dispersive estimates as in R^3 (which is not necessarily the case in higher dimensions).  

Banica, Valeria (U.Evry)  WPI, OMP 1, Seminar Room 08.135  Wed, 25. Oct 17, 15:00 
1D cubic NLS with several Diracs as initial data and consequences  
We solve the cubic nonlinear Schrödinger equation on $mathbb R$ with initial data a sum of Diracs. Then we describe some consequences for a class of singular solutions of the binormal flow, that is used as a model for the vortex filaments dynamics in 3D fluids and superfluids. This is a joint work with Luis Vega.  

Collot, Charles (U.Nice)  WPI, OMP 1, Seminar Room 08.135  Wed, 25. Oct 17, 10:30 
Shock formation for Burgers equation with transversal viscosity  
This talk is about singularity formation for solutions to $$ (*) partial_{t}u+upa_x upa_{yy}u=0, (x,y) in mathbb R^2 $$ which is a simplified model of Prandtl's boundary layer equation. Note that it reduces to Burgers equation for $y$independent solutions $u(t,x,y)=v(t,x)$. We will first recast the wellknown shock formation theory for Burgers equation using the framework of selfsimilar blowup. This will provide us with an analytic framework to study the effect of the transversal viscosity. The main result (still work in progress) is the construction and precise description of singular solutions to $(*)$. This is joint work with T.E. Ghoul and N. Masmoudi.  

Zaag, Hatem (U.Paris 13)  WPI, OMP 1, Seminar Room 08.135  Wed, 25. Oct 17, 9:00 
Blowup solutions for two nonvariational semilinear parabolic systems  
We consider two nonvariational semilinear parabolic systems, with different diffusion constants between the two components. The reaction terms are of power type in the first system. They are of exponential type in the second. Using a formal approach, we derive blowup profiles for those systems. Then, linearizing around those profiles, we give the rigorous proof, which relies on the twostep classical method: (i) the reduction of the problem to a finitedimensional one, then, (ii) the proof of the latter thanks to Brouwer's lemma. In comparison with the standard semilinear heat equation, several technical problems arise here, and new ideas are needed to overcome them. This is a joint work with T. Ghoul and V.T. Nguyen from NYU Abu Dhabi.  

Lan, Yang (U.Basel)  WPI, OMP 1, Seminar Room 08.135  Tue, 24. Oct 17, 16:30 
On asymptotic dynamics for $L^2$critical gKdV with saturated perturbations  
We consider the $L^2$ critical gKdV equation with a saturated perturbation. In this case, all $H^1$ solution are global in time. Our goal is to classify the asymptotic dynamics for solutions with initial data near the ground state. Together with a suitable decay assumption, there are only three possibilities: (i) the solution converges asymptotically to a solitary wave, whose $H^1$ norm is of size $gamma^{2/(q1)}$, as $gammarightarrow0$; (ii) the solution is always in a small neighborhood of the modulated family of solitary waves, but blows down at $+infty$; (iii) the solution leaves any small neighborhood of the modulated family of the solitary waves. This extends the result of classification of the rigidity dynamics near the ground state for the unperturbed $L^2$ critical gKdV (corresponding to $gamma=0$) by Martel, Merle and Rapha"el. It also provides a way to consider the continuation properties after blowup time for $L^2$ crtitical gKdV equations.  

Merle, Frank (IHES & U. Cergy Pontoise)  WPI, OMP 1, Seminar Room 08.135  Tue, 24. Oct 17, 15:00 
Different notion of nondispersive solutions for hyperbolic problems  
We will see various notion of nondispersive solution in the case of the energy criticl wave equation and applications.  

Munoz, Claudio (U. Chile Santiago)  WPI, OMP 1, Seminar Room 08.135  Tue, 24. Oct 17, 10:30 
Local decay estimates for nonlinear equations in the energy space  
In this talk we will discuss some recent improvements on wellknown decay estimates for nonlinear dispersive and wave equations in 1D with supercritical decay, or no decay at all. Using Virial estimates, we will get local decay where standard dispersive techniques are not available yet. These are joint works with M.A. Alejo, M. Kowalczyk, Y. Martel, F. Poblete, and J.C. Pozo.  

Lenzman, Enno (U.Basel)  WPI, OMP 1, Seminar Room 08.135  Tue, 24. Oct 17, 9:00 
EnergyCritical HalfWave Maps: Solitons and Lax Pair Structure  
We discuss some essential features of solitons for the energycritical halfwave maps equation. Furthermore, we will present a Lax pair structure and explain its applications to understanding the dynamics. The talk is based on joint work with P. Gérard (Orsay) and A. Schikorra (Pittsburgh).  

Visciglia, Nicola (U.Pisa)  WPI, OMP 1, Seminar Room 08.135  Mon, 23. Oct 17, 16:30 
Large data scattering for gKdV  
By combining the KenigMerle approach with a suitable inequality proved by Tao we deduce that solutions to gKdV, in the L^2supercitical regime, scatter to free waves for large times.  

Vega, Luis (BCA Bilbao)  WPI, OMP 1, Seminar Room 08.135  Mon, 23. Oct 17, 15:30 
Selfsimilar solutions of the Binormal Flow: a new approach  
I shall present some recent results obtained with F. de la Hoz about the selfsimilar solutions of the Binormal Flow, also known as the Vortex Filament Equation. Some connections with the transfer of energy in the case when the filament is a regular polygon will be also made.  

Szeftel, Jeremie (UMPC Paris)  WPI, OMP 1, Seminar Room 08.135  Mon, 23. Oct 17, 14:00 
The nonlinear stability of Schwarzschild  
I will discuss a joint work with Sergiu Klainerman on the stability of Schwarzschild as a solution to the Einstein vacuum equations with initial data subject to a certain symmetry class.  

Michael Kniely  Seminar Room 08.135  Wed, 18. Oct 17, 0:00 
On two problems in the field of semiconductor materials and photovoltaics  
The first part of the talk is concerned with a semiconductor model including trapped states in an intermediate energy band. We will introduce a reactiondriftdiffusion system and employ the entropy approach in order to obtain an entropyentropy production (EEP) inequality. In particular, we shall focus on the derivation of the EEPinequality. Exponential convergence to the equilibrium is then a consequence of this EEPestimate. An interesting feature of our results is the fact that the EEPconstant, and hence the convergence rate, is independent of the average lifetime of an electron in a trapped state. In the second part of the talk, we will investigate a material design problem in the context of photovoltaics. We employ a quantummechanical model for a prescribed distribution of positive charges and the corresponding density of negative charges. By a lightinduced excitation, the electronic system may end up in an excited state possessing a different electronic structure. Our goal is to maximize the resulting spatial charge transfer as a function of the underlying nuclear charge distribution. A general existence proof regarding an optimal nuclear density as well as numerical results for a chain of atoms will be presented.  

Saut, JeanClaude  WPI, OMP 1, Seminar Room 08.135  Fri, 22. Sep 17, 9:30 
Existence of solitary waves for internal waves in twolayers systems  
We establish the existence of solitary waves for two classes of twolayers systems modeling the propagation of internal waves. More precisely we consider the BoussinesqFull dispersion system and the Intermediate Long Wave (ILW) system together with its BenjaminOno (B0) limit. This is work in progress with Jaime Angulo Pava (USP)  

Barros, Ricardo  WPI, OMP 1, Seminar Room 08.135  Thu, 21. Sep 17, 14:30 
Large amplitude internal waves in threelayer flows  
Large amplitude internal waves in a threelayer flow confined between two rigid walls will be examined in this talk. The mathematical model under consideration arises as a particular case of the multilayer model proposed by Choi (2000) and is an extension of the twolayer MCC (MiyataChoiCamassa) model. The model can be derived without imposing any smallness assumption on the wave amplitudes and is wellsuited to describe internal waves within a strongly nonlinear regime. We will investigate its solitarywave solutions and unveil some of their properties by carrying out a critical point analysis of the underlying dynamical system.  

Klein, Christian  WPI, OMP 1, Seminar Room 08.135  Thu, 21. Sep 17, 11:00 
Numerical study of PDEs with nonlocal dispersion  

Haspot, Boris  WPI, OMP 1, Seminar Room 08.135  Thu, 21. Sep 17, 9:30 
Global wellposedness of the EulerKorteweg system for small irrotational data  
The EulerKorteweg equations are a modification of the Euler equations that takes into account capillary effects. In the general case they form a quasilinear system that can be recast as a degenerate Schr ̈odinger type equation. Local wellposedness (in subcritical Sobolev spaces) was obtained by BenzoniDanchinDescombes in any space dimension, however, except in some special case (semilinear with particular pressure) no global well posedness is known. We prove here that under a natural stability condition on the pressure, global wellposedness holds in dimension d ¡Ý 3 for small irrotational initial data. The proof is based on a modified energy estimate, standard dispersive properties if d ¡Ý 5, and a careful study of the nonlinear structure of the quadratic terms in dimension 3 and 4 involving the theory of space time resonance.  

Rousset, Frederic  WPI, OMP 1, Seminar Room 08.135  Wed, 20. Sep 17, 15:30 
Large time behavior of asymptotic models for waterwaves  
We will discuss modified scattering properties, for small Solutions and/or in the vicinity of a solitary waves for model dispersive equations in dimension one. We will mainly focus on the modified Korteweg de Vries equation and the cubic Nonlinear Schrodinger equation with potential. Joint works with P. Germain and F. Pusateri.  

Iguchi, Tatsuo  WPI, OMP 1, Seminar Room 08.135  Wed, 20. Sep 17, 14:00 
IsobeKakinuma model for water waves as a higher order shallow water approximation  
We justify rigorously an IsobeKakinuma model for water waves as a higher order shallow water approximation in the case of a flat bottom. It is known that the full water wave equations are approximated by the shallow water equations with an error of order $delta^2$, where $delta$ is a small nondimensional parameter defined as the ratio of the typical wavelength to the mean depth. The GreenNaghdi equations are known as higher order approximate equations to the water wave equations with an error of order $delta^4$. In this talk I report that the IsobeKakinuma model is a much higher approximation to the water wave equations with an error of order $delta^6$.  

Burtea, Cosmin  WPI, OMP 1, Seminar Room 08.135  Wed, 20. Sep 17, 11:00 
Long time existence results for the abcd Bousssinesq systems  
In this talk we will review some long time existence results for the abcdBoussinesq systems. We will discuss both the Sobolev and the nonlocalized, boretype initial data cases. The main idea in order to get a priori estimates is to symmetrize the family of systems of equations verified by the frequencies of magnitude 2^{j} of the unknowns for each j¡Ý0. For the boretype case, an additional decomposition of the initial data into lowhigh frequencies is needed in order to tackle the infiniteenergy aspect of these kind of data.  

Groves, Mark  WPI, OMP 1, Seminar Room 08.135  Wed, 20. Sep 17, 9:30 
Fully localised solitary gravitycapillary water waves (joint work with B. Buffoni and E. Wahlén)  
We consider the classical gravitycapillary waterwave problem in its usual formulation as a threedimensional freeboundary problem for the Euler equations for a perfect fluid. A solitary wave is a solution representing a wave which moves in a fixed direction with constant speed and without change of shape; it is fully localised if its profile decays to the undisturbed state of the water in every horizontal direction. The existence of fully localised solitary waves has been predicted on the basis of simpler model equations, namely the KadomtsevPetviashvili (KP) equation in the case of strong surface tension and the DaveyStewartson (DS) system in the case of weak surface tension. In this talk we confirm the existence of such waves as solutions to the full waterwave problem and give rigorous justification for the use of the model equations.  

Duchêne, Vincent  WPI, OMP 1, Seminar Room 08.135  Tue, 19. Sep 17, 14:30 
A full dispersion model for the propagation of long gravity waves  
We will motivate and study a model for the propagation of surface gravity waves, which can be viewed as a fully nonlinear bidirectional Whitham equation. This model belongs to a family of systems of GreenNaghdi type with modified frequency dispersion. We will discuss the wellposedness of such systems, as well as the existence of solitary waves. The talk will be based on a work in collaboration with Samer Israwi and Raafat Talhouk (Beirut) and another in collaboration with Dag Nilsson and Erik Wahlén (Lund)  

Ehrnstrom, Mats  WPI, OMP 1, Seminar Room 08.135  Tue, 19. Sep 17, 11:00 
Smallamplitude solitary waves for the fulldispersion KadomtsevPetviashvili equation  
Using constrained minimisation and a decomposition in Fourier space, we prove that the KadomtsevPetviashvili (KPI) equation modified with the exact dispersion relation from the gravitycapillary waterwave problem admits a family of small solitary solutions, approximating these of the standard KPI equation. The KPI equation, as well as its fully dispersive counterpart, describes gravitycapillary waves with strong surface tension. This is joint work with Mark Groves, Saarbrücken  

Lannes, David  WPI, OMP 1, Seminar Room 08.135  Tue, 19. Sep 17, 9:30 
The shoreline problem for the nonlinear shallow water and GreenNaghdi equations  
The nonlinear shallow water equations and the GreenNaghdi equations are the most commonly used models to describe coastal flows. A natural question is therefore to investigate their behavior at the shoreline, i.e. when the water depth vanishes. For the nonlinear shallow water equations, this problem is closely related to the vacuum problem for compressible Euler equations, recently solved by JangMasmoudi and CoutandShkoller. For the GreenNaghdi equation, the analysis is of a different nature due to the presence of linear and nonlinear dispersive terms. We will show in this talk how to address this problem.  

Jie Gao  HS 1  Fri, 8. Sep 17, 9:00 
New challenges in distributed sensing, processing and query of spatial data  
The vision of networked sensors in a ubiquitous manner has motivated the development of new algorithms on distributed sensing, processing and query of spatially and temporally separated data in the past 15 years. As smart sensing continues to spread in everyday living space, new challenges in the frontier of data privacy emerge. In this talk I would like to discuss new problems and solutions on distributed sensing and processing of location and trajectory data, which protect personally sensitive information.  

Daniel Delling  HS 1  Thu, 7. Sep 17, 13:30 
Route planning in Transportation Networks  from Research to practice  
The last 15 years have seen astonishing progress in the performance of shortest path algorithms for transportation networks. In particular, for road networks, modern algorithms can be up to seven orders of magnitude faster than standard solutions. Since these algorithms enable several new applications, many of them have found their way into systems serving hundreds of millions of users every day. This talk highlights key techniques, discusses their impact on the industry, and provides an outlook on upcoming challenges.  

Kurk Pruhs  HS 1  Thu, 7. Sep 17, 9:00 
The Itinerant List Update Problem  
I will introduce a variation of the online List Update Problem, which we call the Itinerant List Update Problem (ILU). The main difference between ILU and the standard list update problem is that in ILU the read head is not required to return to a home position between accesses. The motivation for considering ILU arises from track management within Domain Wall Memory (DWM), a promising new memory technology. I will explain DWM technology, discuss how ILU differs algorithmically from the standard list update problem, and explain what we know about the offline and online versions of ILU. This is joint work with Neil Olver, Kevin Schewior, Rene Sitters and Leen Stougie.  

David Mount  HS 1  Wed, 6. Sep 17, 13:30 
Approximation algorithms for geometric proximity problems  
I will present an overview of recent developments in the design of efficient approximation algorithms for geometric proximity problems. These include polytope membership, nearest neighbor searching, Euclidean minimum spanning trees, lowcomplexity polytope approximation, and coresets. I will discuss how new sampling techniques arising from classical concepts such as Delone sets, Macbeath regions, and the Hilbert geometry have led to a number of new results, which are simple, general, implementable, and provably close to optimal.  

Fabrizio Grandoni  Wed, 6. Sep 17, 9:00  
A measure and conquer approach for the analysis of exact algorithms  
Branchandreduce is one of the most common techniques to design exact (exponentialtime) algorithms for NPhard problems. The basic idea is to branch on a collection of “smaller” subproblems which are solved recursively. The traditional way to upper bound the running time of such algorithms is to lower bound the decrease of the “size” of each subproblem with respect to the original one. Here the size of a subproblem is traditionally measured according to the target parameter in terms of which one wishes to express the final running time (e.g., the number of nodes or edges in the input graph, the number of clauses in a CNF formula, etc.). The basic idea behind the Measure and Conquer technique is to use a nonstandard measure of subproblems size, in order to implicitly exploit configurations where an “expensive” branching step leads to a “simpler” collection of subproblems. A smartly designed measure can lead to a dramatic reduction of the running time bound (without changing the algorithm!). In this talk I will illustrate Measure and Conquer with a few examples coming from my past work on this topic and from some more recent developments.  

Babak Falsafi  HS 1  Tue, 5. Sep 17, 13:30 
The clouds have taken over, but algorithms are here to save the day  
Cloud providers are building infrastructure at unprecedented speeds. We have witnessed the emergence of datacentric information technology in almost every aspect of our life from commerce, healthcare, entertainment, governance to scientific discovery. The demand for processing, communicating and storing data has grown faster than conventional growth in digital platforms. Meanwhile the conventional silicon technologies we have relied on for the past several decades leading to the exponential growth in IT have slowed down. In light of this increase in demand on datacentric IT and the diminishing returns in platform scalability, our future increasingly relies on algorithms to save the day and enable a continued growth in IT. In this talk, I will motivate the grand challenges in scaling digital platforms and datacentric technologies, then present opportunities for handinhand collaboration of algorithms and platforms.  

David Woodruff  HS 1  Mon, 4. Sep 17, 13:30 
Sketching for geometric problems  
I will give an overview of the technique of sketching, or randomized data dimensionality reduction, and its applications to fundamental geometric problems such as projection (regression) onto flats and more general objects, as well as low rank approximation and clustering applications.  

Alexander Lorz (KAUST and Université Pierre et Marie Curie)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Sat, 29. Jul 17, 16:20 
Mathematics meets oncology: from Adaptive evolution to Zebrafish  

James Greene (Rutgers University)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Sat, 29. Jul 17, 15:40 
The role of induced drug resistance in cancer chemotherapy  

Lisa Gabler (Medical University, Vienna)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Sat, 29. Jul 17, 15:10 
Coexpression networkbased identification of molecular subtypes in cancer  

John King (University of Nottingham)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Sat, 29. Jul 17, 14:10 
Mathematical modeling of biological tissue growth  

Dominik Wodarz (University of California, Irvine)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Sat, 29. Jul 17, 13:30 
Oncolytic virus therapy: Dynamics of virus spread at low infection multiplicities  

Min Tang (Shanghai Jiao Tong University)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Sat, 29. Jul 17, 11:10 
The role of intracellular pathways on the E.coli population dynamics  

Maria LukácováMedvidová (University of Mainz)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Sat, 29. Jul 17, 10:30 
Mathematical and numerical modelling of cancer invasion  

DanaAdriana Botesteanu (University of Maryland)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Sat, 29. Jul 17, 9:40 
Modeling cancer cell growth dynamics in vitro in response to antimitotics  

Christoph Bock (Center for Molecular Medicine, Vienna)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Sat, 29. Jul 17, 9:00 
Bioinformatics for personalized medicine: Looking beyond the genome  

Bernhard Englinger (Medical University, Vienna)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Fri, 28. Jul 17, 17:00 
Mathematical models to predict intracellular drug distribution – Do they work?  

Michael Breitenbach (University of Salzburg)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Fri, 28. Jul 17, 16:10 
The human NADPH oxidase, Nox4, its S. cerevisiae ortholog, Yno1, and its role in regulating the actin cytoskeleton  

Natalia Komarova (University of California, Irvine)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Fri, 28. Jul 17, 15:30 
Stochastic Calculus of Stem Cells  

Thomas Mohr (Medical University, Vienna)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Fri, 28. Jul 17, 14:40 
Deciphering gene coexpression networks in tumor endothelium  

Michael Speicher (Medical University, Graz)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Fri, 28. Jul 17, 14:00 
Inferring expressed genes by wholegenome sequencing of plasma DNA  

Heyrim Cho (University of Maryland)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Fri, 28. Jul 17, 11:30 
Modeling the chemotherapyinduced selection of drugresistant traits during tumor growth  

Anna MarciniakCzochra (University of Heidelberg)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Fri, 28. Jul 17, 10:50 
Mathematical Modeling of Clonal Dynamics in Acute Leukemias  

Michael Medvedev (Kansas)  WPI, OMP 1, Seminar Room 08.135  Fri, 28. Jul 17, 10:00 
Quasinonlinear theory of the Weibel instability  
Astrophysical and highenergydensity laboratory plasmas often have largeamplitude, subLarmorscale electromagnetic fluctuations excited by various kineticstreaming or anisotropydriven instabilities. The Weibel (or the filamentation) instability is particularly important because it can rapidly generate strong magnetic fields, even in the absence of seed fields. Particles propagating in collisionless plasmas with such smallscale magnetic fields undergo stochastic deflections similar to Coulomb collisions, with the magnetic pitchangle diffusion coefficient representing the effective "collision" frequency. We show that this effect of the plasma "quasicollisionality" can strongly affect the growth rate and evolution of the Weibel instability in the deeply nonlinear regime. This result is especially important for understanding cosmicraydriven turbulence in an upstream region of a collisionless shock of a gammaray burst or a supernova. We demonstrate that the quasicollisions caused by the fields generated in the upstream suppress the instability slightly but can never shut it down completely. This confirms the assumptions made in the selfsimilar model of the collisionless foreshock.  

Michael Bergmann (Medical University, Vienna)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Fri, 28. Jul 17, 9:50 
The understanding of the DNA damage response in solid tumors and the development of oncolytic influenza viruses  

Benoit Perthame (Université Pierre et Marie Curie)  HS 13, 2nd floor of Fak.Mathematik Uni Wien  Fri, 28. Jul 17, 9:10 
Modeling of living tissues and free boundary asymptotics  

Denis StOnge (Princeton)  WPI, OMP 1, Seminar Room 08.135  Thu, 27. Jul 17, 16:00 
Plasma dynamo  

Dmitri Uzdensky (UC Boulder)  WPI, OMP 1, Seminar Room 08.135  Thu, 27. Jul 17, 10:30 
Nonthermal particle acceleration in relativistic collisionless magnetic reconnection  
As a fundamental process converting magnetic to plasma energy in highenergy astrophysical plasmas, relativistic magnetic reconnection is a leading explanation for the acceleration of particles to the ultrarelativistic energies necessary to power nonthermal emission (especially Xrays and gammarays) in pulsar magnetospheres and pulsar wind nebulae, coronae and jets of accreting black holes, and gammaray bursts. An important objective of plasma astrophysics is therefore the characterization of nonthermal particle acceleration (NTPA) effected by reconnection. Reconnectionpowered NTPA has been demonstrated over a wide range of physical conditions using large twodimensional (2D) kinetic simulations. However, its robustness in realistic 3D reconnection  in particular, whether the 3D relativistic driftkink instability (RDKI) disrupts NTPA  has not been systematically investigated, although pioneering 3D simulations have observed NTPA in isolated cases. Here we present the first comprehensive study of NTPA in 3D relativistic reconnection in collisionless electronpositron plasmas, characterizing NTPA as the strength of 3D effects is varied systematically via the length in the third dimension and the strength of the guide magnetic field. We find that, while the RDKI prominently perturbs 3D reconnecting current sheets, it does not suppress particle acceleration, even for zero guide field; fully 3D reconnection robustly and efficiently produces nonthermal powerlaw particle spectra closely resembling those obtained in 2D. This finding provides strong support for reconnection as the key mechanism powering highenergy flares in various astrophysical systems. We also show that strong guide fields significantly inhibit NTPA, slowing reconnection and limiting the energy available for plasma energization, yielding steeper and shorter powerlaw spectra.  

Vladimir Zhdankin (UC Boulder)  WPI, OMP 1, Seminar Room 08.135  Thu, 27. Jul 17, 10:00 
Particle acceleration in relativistic kinetic turbulence  
We present results from particleincell simulations of driven turbulence in magnetized, collisionless, and relativistic pair plasmas. We find that the fluctuations are consistent with the classical k −5/3 ¡Ñ magnetic energy spectrum at fluid scales and a steeper k −4 ¡Ñ spectrum at subLarmor scales, where k¡Ñ is the wave vector perpendicular to the mean field. We demonstrate the development of a nonthermal, powerlaw particle energy distribution f(E)¡E−¥á, with an index ¥á that decreases with increasing magnetization and increases with an increasing system size (relative to the characteristic Larmor radius). Our simulations indicate that turbulence can be a viable source of energetic particles in highenergy astrophysical systems, such as pulsar wind nebulae, if scalings asymptotically become insensitive to the system size.  

Jonathan Squire (Caltech)  WPI, OMP 1, Seminar Room 08.135  Wed, 26. Jul 17, 16:00 
Resonant instabilities: dustgas coupling and others?  
It is shown that grains streaming through a fluid are generically unstable if their velocity, projected along some direction, matches the phase velocity of a fluid wave. This can occur whenever grains stream faster than a fluid wave. The wave itself can be quite generalsound waves, magnetosonic waves, epicyclic oscillations, and BruntV\"ais\"al\"a oscillations each generate instabilities, for example. A simple expression for this "resonant drag instability" (RDI) growth rate is derived. This expression (i) illustrates why such instabilities are so virulent and generic, and (ii) allows for simple analytic computation of RDI growth rates and properties for different fluid systems. As examples, we introduce several new instabilities, which could see application across a variety of astrophysical systems from protoplanetary disks to galactic outflows.  

Archie Bott (Oxford)  WPI, OMP 1, Seminar Room 08.135  Wed, 26. Jul 17, 10:00 
When are plasmas collisional?  

Nuno Loureiro (MIT)  WPI, OMP 1, Seminar Room 08.135  Tue, 25. Jul 17, 16:00 
Fullykinetic versus reducedkinetic modelling of collisionless plasma turbulence Pulsedpower driven magnetic reconnection experiments  
We report the results of a direct comparison between different kinetic models of collisionless plasma turbulence in two spatial dimensions. The models considered include a first principles fullykinetic (FK) description, two widely used reduced models [gyrokinetic (GK) and hybridkinetic (HK) with fluid electrons], and a novel reduced gyrokinetic approach (KREHM). Two different ion beta (â i ) regimes are considered: 0.1 and 0.5. For â i =0.5 , good agreement between the GK and FK models is found at scales ranging from the ion to the electron gyroradius, thus providing firm evidence for a kinetic Alfv'en cascade scenario. In the same range, the HK model produces shallower spectral slopes, presumably due to the lack of electron Landau damping. For â i =0.1 , a detailed analysis of spectral ratios reveals a slight disagreement between the GK and FK descriptions at kinetic scales, even though kinetic Alfv'en fluctuations likely still play a significant role. The discrepancy can be traced back to scales above the ion gyroradius, where the FK and HK results seem to suggest the presence of fast magnetosonic and ion Bernstein modes in both plasma beta regimes, but with a more notable deviation from GK in the lowbeta case. The identified practical limits and strengths of reducedkinetic approximations, compared here against the fullykinetic model on a casebycase basis, may provide valuable insight into the main kinetic effects at play in turbulent collisionless plasmas, such as the solar wind.  

Francois Rincon (Toulouse)  WPI, OMP 1, Seminar Room 08.135  Tue, 25. Jul 17, 10:00 
Some thoughts on theoretical problems and appoaches in dynamo theory  

Nuno Loureiro (MIT)  WPI, OMP 1, Seminar Room 08.135  Mon, 24. Jul 17, 16:45 
MHD turbulence + magnetic reconnection  
The current understanding of magnetohydrodynamic (MHD) turbulence envisions turbulent eddies which are anisotropic in all three directions. In the plane perpendicular to the local mean magnetic field, this implies that such eddies become currentsheetlike structures at small scales. We analyze the role of magnetic reconnection in these structures and conclude that reconnection becomes important at a scale ¥ë¡LS −4/7L, where SL is the outerscale (L) Lundquist number and ¥ë is the smallest of the fieldperpendicular eddy dimensions. This scale is larger than the scale set by the resistive diffusion of eddies, therefore implying a fundamentally different route to energy dissipation than that predicted by the Kolmogorovlike phenomenology. In particular, our analysis predicts the existence of the subinertial, reconnection interval of MHD turbulence, with the estimated scaling of the Fourier energy spectrum E(k¡Ñ)¡ðk−5/2¡Ñ, where k¡Ñ is the wave number perpendicular to the local mean magnetic field. The same calculation is also performed for high (perpendicular) magnetic Prandtl number plasmas (Pm), where the reconnection scale is found to be ¥ë/L¡S−4/7LPm−2/7.  

Alex Schekochihin (Oxford)  WPI, OMP 1, Seminar Room 08.135  Mon, 24. Jul 17, 16:00 
MHD turbulence in 2017: end of the road? ++kinetic extensions  

Yohei Kawazura (Oxford)  WPI, OMP 1, Seminar Room 08.135  Mon, 24. Jul 17, 10:30 
Hybrid GKisothermal electrons code + ion heating calculations  

Lev Arzamasskiy (Princeton)  WPI, OMP 1, Seminar Room 08.135  Mon, 24. Jul 17, 10:00 
Hybridkinetic simulations of solar wind turbulence  

David Hatch (UT Austin)  WPI, OMP 1, Seminar Room 08.135  Thu, 20. Jul 17, 16:00 
Flow Shear Suppression of Pedestal TurbulenceA First Principles Theoretical Framework  
A combined analytic and computational gyrokinetic approach is developed to address the question of the scaling of pedestal turbulent transport with arbitrary levels of E×B shear. Due to strong gradients and shaping in the pedestal, the instabilities of interest are not curvaturedriven like the core instabilities. By extensive numerical (gyrokinetic) simulations, it is demonstrated that pedestal modes respond to shear suppression very much like the predictions of a basic analytic decorrelation theory. The quantitative agreement between the two provides us with a new dependable, first principles (physics based) theoretical framework to predict the efficacy of shear suppression in burning plasmas that lie in a lowshear regime not accessed by present experiments.  

Denis StOnge (Princeton)  WPI, OMP 1, Seminar Room 08.135  Wed, 19. Jul 17, 16:30 
The Dimits Shift in a OneField Fluid Model  
The twodimensional TerryHorton equation is shown to exhibit the Dimits shift when suitably modified to capture both the nonlinear enhancement of zonal/driftwave interactions and the existence of residual RosenbluthHinton states. This phenomena persists through numerous simplifications of the equation, including a quasilinear approximation as well as a fourmode truncation. Analytic progress on the truncated system is reported, focused on determining the growth rates of zonal flows and calculating the upper bound of the Dimits shift. The results for the truncated system are then used to estimate the Dimits shift of the fully nonlinear system. A new understanding is thus developed on the fundamental nature of the Dimits shift, both on its operation and its eventual termination.  

Justin Ball (EPFLausanne)  WPI, OMP 1, Seminar Room 08.135  Wed, 19. Jul 17, 10:00 
Optimized updown asymmetry to drive fast intrinsic rotation in tokamaks  
Breaking the updown symmetry of the tokamak poloidal crosssection can significantly increase the spontaneous rotation due to turbulent momentum transport. In this work, we optimize the shape of flux surfaces with both tilted elongation and tilted triangularity in order to maximize this drive of intrinsic rotation. Nonlinear gyrokinetic simulations demonstrate that adding optimallytilted triangularity can double the momentum transport of a tilted elliptical shape. This work indicates that tilting the elongation and triangularity in an ITERlike device can reduce the energy transport and drive intrinsic rotation with an Alfv\'{e}n Mach number on the order of 1% . This rotation is four times larger than the rotation expected in ITER and is sufficient to stabilize MHD instabilities. It is shown that this optimal shape can be created using the shaping coils of several experiments.  

Alessandro Geraldini (Oxford)  WPI, OMP 1, Seminar Room 08.135  Tue, 18. Jul 17, 16:00 
Gyrokinetic treatment of a grazing angle magnetic presheath  
We develop a gyrokinetic treatment for ions in the magnetic presheath, close to the plasmawall boundary. We focus on magnetic presheaths with a small magnetic field to wall angle, $\alpha \ll 1$ (in radians). Characteristic lengths perpendicular to the wall in such a magnetic presheath scale with the typical ion Larmor orbit size, ${\rho }_{{\rm{i}}}$. The smallest scale length associated with variations parallel to the wall is taken to be across the magnetic field, and ordered $l={\rho }_{{\rm{i}}}/\delta $, where $\delta \ll 1$ is assumed. The scale lengths along the magnetic field line are assumed so long that variations associated with this direction are neglected. These orderings are consistent with what we expect close to the divertor target of a tokamak. We allow for a strong component of the electric field ${\bf{E}}$ in the direction normal to the electron repelling wall, with strong variation in the same direction. The large change of the electric field over an ion Larmor radius distorts the orbit so that it is not circular. We solve for the lowest order orbits by identifying coordinates, which consist of constants of integration, an adiabatic invariant and a gyrophase, associated with periodic ion motion in the system with $\alpha =\delta =0$. By using these new coordinates as variables in the limit $\alpha \sim \delta \ll 1$, we obtain a generalised ion gyrokinetic equation. We find another quantity that is conserved to first order and use this to simplify the gyrokinetic equation, solving it in the case of a collisionless magnetic presheath. Assuming a Boltzmann response for the electrons, a form of the quasineutrality equation that exploits the change of variables is derived. The gyrokinetic and quasineutrality equations give the ion distribution function and electrostatic potential in the magnetic presheath if the entrance boundary condition is specified.  

Silvia Espinosa (MIT)  WPI, OMP 1, Seminar Room 08.135  Tue, 18. Jul 17, 10:00 
Pedestal radial flux measuring method to prevent impurity accumulation  
The use of highz wall materials attempts to shift the fusion challenge from heat handling to impurity removal. We demonstrate that not only the impurity density inout asymmetry but also the poloidal flow has a major impact on the radial impurity flux direction. This realization provides the first method of measuring the flux from available diagnostics, without the need of a computationally demanding kinetic calculation of the full bulk ion response. Moreover, it affords insight into optimal tokamak operation to avoid impurity accumulation while allowing free fueling.  

Iván Calvo (CIEMAT)  WPI, OMP 1, Seminar Room 08.135  Mon, 17. Jul 17, 16:00 
The effect of tangential drifts on neoclassical transport in stellarators close to omnigeneity  
In general, the orbitaveraged radial magnetic drift of trapped particles in stellarators is nonzero due to the threedimensional nature of the magnetic field. Stellarators in which the orbitaveraged radial magnetic drift vanishes are called omnigeneous, and they exhibit neoclassical transport levels comparable to those of axisymmetric tokamaks. However, the effect of deviations from omnigeneity cannot be neglected in practice, and it is more deleterious at small collisionalities. For sufficiently low collision frequencies (below the values that define the $1/nu $ regime), the components of the drifts tangential to the flux surface become relevant. This article focuses on the study of such collisionality regimes in stellarators close to omnigeneity when the gradient of the nonomnigeneous perturbation is small. First, it is proven that closeness to omnigeneity is required to actually preserve radial locality in the driftkinetic equation for collisionalities below the $1/nu $ regime. Then, using the derived radially local equation, it is shown that neoclassical transport is determined by two layers located at different regions of phase space. One of the layers corresponds to the socalled $sqrt{nu }$ regime and the other to the socalled superbananaplateau regime. The importance of the superbananaplateau layer for the calculation of the tangential electric field is emphasized, as well as the relevance of the latter for neoclassical transport in the collisionality regimes considered in this paper. In particular, the role of the tangential electric field is essential for the emergence of a new subregime of superbananaplateau transport when the radial electric field is small. A formula for the ion energy flux that includes the $sqrt{nu }$ regime and the superbananaplateau regime is given. The energy flux scales with the square of the size of the deviation from omnigeneity. Finally, it is explained why below a certain collisionality value the formulation presented in this article ceases to be valid.  

Elizabeth Paul (Maryland)  WPI, OMP 1, Seminar Room 08.135  Mon, 17. Jul 17, 10:00 
Rotation and Neoclassical Ripple Transport in ITER  
Neoclassical transport in the presence of nonaxisymmetric magnetic fields causes a toroidal torque known as neoclassical toroidal viscosity (NTV). The toroidal symmetry of ITER will be broken by the finite number of toroidal field coils and by test blanket modules (TBMs). The addition of ferritic inserts (FIs) will decrease the magnitude of the toroidal field ripple. 3D magnetic equilibria in the presence of toroidal field ripple and ferromagnetic structures are calculated for an ITER steadystate scenario using the Variational Moments Equilibrium Code (VMEC). Neoclassical transport quantities in the presence of these error fields are calculated using the Stellarator FokkerPlanck Iterative Neoclassical Conservative Solver (SFINCS). These calculations fully account for E r , flux surface shaping, multiple species, magnitude of ripple, and collisionality rather than applying approximate analytic NTV formulae. As NTV is a complicated nonlinear function of E r , we study its behavior over a plausible range of E r . We estimate the toroidal flow, and hence E r , using a semianalytic turbulent intrinsic rotation model and NUBEAM calculations of neutral beam torque. The NTV torque due to TF ripple without ferritic components is found to be comparable in magnitude to the turbulent and NBI torques, though their radial profiles differ. The NTV from the n=18 ripple dominates that from lower n perturbations of the TBMs. With the inclusion of FIs, the magnitude of NTV torque is reduced by about 75% near the edge. We present comparisons of several models of tangential magnetic drifts on superbananaplateau transport at small E r , and we consider the scaling of calculated NTV torque with ripple magnitude.  

Nina Lange (University of Sussex, UK)  OskarMorgensternPlatz 1, Lecture Room 13, 2nd floor  Thu, 6. Jul 17, 15:45 
Risk premia in forward freight agreements  
We investigate the risk premium in cash settled forward contracts on the Baltic Exchange Indices – the socalled Forward Freight Agreements – in the dry bulk shipping markets. We estimate multiple spot price models using Markov Chain Monte Carlo. Using a structurepreserving measure change, we then calibrate the risk premium of traded FFA contracts. Finally we link the risk premium to explanatory variables like e.g., oil prices, demand and supply for shipping and the state of the global economy. Joint work with Jonas Lager and Nikos Nomikos.  

Iben Cathrine Simonsen (University of Oslo, Norway)  OskarMorgensternPlatz 1, Lecture Room 13, 2nd floor  Thu, 6. Jul 17, 15:15 
The Heston stochastic volatility model in Hilbert space  
We extend the Heston stochastic volatility model to a Hilbert space framework. The stochastic variance process is defined as a tensor product of a Hilbertvalued OrnsteinUhlenbeck process with itself. We compute the dynam ics of this process under certain conditions, and project it down to the real line to compare it with the onedimensional Heston variance process. The stochastic volatility process is defined by a Cholesky decomposition of the variance process. We define another Hilbertvalued OrnsteinUhlenbeck process with Wiener noise perturbed by this stochastic volatility, and compute the characteristic functional of this process. Joint work with Fred Espen Benth.  

Troels Sønderby Christensen (NEAS and University of Aal borg, Denmark)  OskarMorgensternPlatz 1, Lecture Room 13, 2nd floor  Thu, 6. Jul 17, 14:45 
Stabilizing revenue using wind power futures  an empirical study of the German market  
The newly introduced wind power futures on the European Energy Exchange have brought interesting opportunities for energy market players in Germany. In this paper, we analyze the benefits of wind power futures in the context of both the buyer’s and the seller’s side. From the buyer’s side, we con sider gasfired power plants. To increase the competitiveness of such plants, we propose a simple yet powerful spotbased trading strategy taking advantage of wind power futures. The purpose of the trading strategy is twofold: 1) increase the revenue of running the gasfired power plant, and 2) minimize the variance of the revenue generated from the strategy using wind power futures. To fa cilitate optimal hedging decisions, we employ ARMAGARCH models for the marginal behavior of electricity price, gas price, and wind power production, and a mixed vine copula for the dependency between the variables. We find that significant benefits can be achieved by employing a spottrading strategy as opposed to a strategy acting in the forward market (conditional on the for ward spark spread being positive). More importantly, using wind power futures reduces the variance of the spottrading strategy significantly. From the seller’s side, we have the wind mill owners who are facing a quite volatile revenue due to their exposure to joint price and volumetric risk, which they wish to minimize. By performing a similar analysis as in the case of the gasfired power plants, we again find that wind power futures are beneficial. Joint work with Anca Pircalabu.  

Rüdiger Kiesel (University of DuisburgEssen, Germany)  OskarMorgensternPlatz 1, Lecture Room 13, 2nd floor  Thu, 6. Jul 17, 14:00 
Empirics and analytics for intraday power markets  
We will give an introduction to shortterm electricity markets. We will start with the relation of dayahead and intraday prices on the EPEX for deliveries in Germany/Austria. In the sequel we will focus on analyzing the intraday market. We will discuss empirical properties of intraday power markets and point out development in recent years. Furthermore, we study the optimal liquidation problem for traders in intraday power markets.  

Jan Palczewski (University of Leeds, UK)  OskarMorgensternPlatz 1, Lecture Room 13, 2nd floor  Thu, 6. Jul 17, 11:15 
Regresslater Monte Carlo for optimal inventory control with applications in energy  
We develop a MonteCarlo based numerical method for solving discrete time stochastic optimal control problems with inventory. These are optimal control problems in which the control affects only a deterministically evolving inventory process on a compact state space while the random underlying pro cess manifests itself through the objective functional. We propose a Regress Later modification of the traditional Regression Monte Carlo which allows to decouple inventory levels in two successive time steps and to include in the basis functions of the regression the dependence on the inventory levels. We develop a backward construction of trajectories for the inventory which enables us to use policy iteration of LongstaffSchwartz type avoiding nested simulations.Our al gorithm improves on the grid discretisation procedure largely used in literature and practice, and on the recently proposed control randomisation by Kharroubi et al. (2014). We validate our approach on two numerical examples: one is a benchmark problem of energy arbitrage used to compare different methods available in literature, the other is a highdimensional problem of the manage ment of a battery with the purpose of assisting the operations of a wind turbine in providing electricity to a group of buildings in a cost effective way. Joint work with Alessandro Balata.  

Dylan Possamai (University of ParisDauphine, France)  OskarMorgensternPlatz 1, Lecture Room 13, 2nd floor  Thu, 6. Jul 17, 10:15 
Volatility demand management for electricity: a moral hazard approach  
In this work, we propose a model of electricity demand management through a principalagent problem, allowing to obtain almost explicit optimal compensations for the consumer. We then illustrate our findings through several numerical experiments, putting the emphasis on the practical implementation of the contracts. (Joint work with Rene Aid and Nizar Touzi).  

Delphine Lautier (University of ParisDauphine, France)  OskarMorgensternPlatz 1, Lecture Room 13, 2nd floor  Thu, 6. Jul 17, 9:00 
Equilibrium relations between the spot and futures markets for commodi ties: an infinite horizon model  
We give new insights into the theory of the dynamic behavior of com modity prices with an infinite horizon rational expectations equilibrium model for spot and futures commodity prices. Numerical simulations of the model emphasize the heterogeneity that exists in the behavior of commodity prices by showing the link between the physical characteristics of a market and some stylized facts of commodity futures prices. They show the impact of storage costs on both the variability of the basis and on the Samuelson effect. Finally, the simulations of the model show that an increase in the speculative activity on commodity futures markets has an overall positive effect on risk premia. However, not all of the agents benefit from it.  

Erik Hove Karlsen (University of Oslo, Norway)  OskarMorgensternPlatz 1, Lecture Room 13, 2nd floor  Wed, 5. Jul 17, 15:45 
Approximation of Volterra type processes  
In this paper we find an approximation to a nonsemimartingale Volterratype process by semimartingales, and furthermore, in the setting of gen eralized LebesgueStieltjes integration, we find an approximation to the pathwise stochastic integral with this nonsemimartingale process as noise. A link to the Itˆo integral and an algorithm for numerical simulation are presented. Joint work with Giulia Di Nunno.  

Anca Pircalabu (NEAS and University of Aalborg, Denmark)  OskarMorgensternPlatz 1, Lecture Room 13, 2nd floor  Wed, 5. Jul 17, 15:15 
A regimeswitching copula approach to modeling dayahead prices in coupled electricity markets  
The recent price coupling of many European electricity markets has triggered a fundamental change in the interaction of dayahead prices, challeng ing additionally the modeling of the joint behavior of prices in interconnected markets. We propose a regimeswitching ARGARCH copula to model pairs of dayahead electricity prices in coupled European markets. While capturing key stylized facts empirically substantiated in the literature, this model easily allows us to 1) deviate from the assumption of normal margins and 2) include a more detailed description of the dependence between prices. We base our empirical study on four pairs of prices, namely GermanyFrance, Germany Netherlands, NetherlandsBelgium and GermanyWestern Denmark. We find that the marginal dynamics are better described by the flexible skew t distribu tion than the benchmark normal distribution. Also, we find significant evidence of tail dependence in all pairs of interconnected areas we consider. As appli cations of the proposed empirical model, we consider the pricing of financial transmission rights and the forecasting of tail quantiles. In both applications, we highlight the effects of the distributional assumptions for the margins and the tail dependence. Joint work with Fred Espen Benth.  

Tiziano Vargiolu (University of Padova, Italy)  OskarMorgensternPlatz 1, Lecture Room 13, 2nd floor  Wed, 5. Jul 17, 14:00 
Capacity markets and the pricing of reliability options  
The growing penetration of nonprogrammable renewable sources, like solar and wind, introduced in the latest years market uncertainties in the quan tity of electricity produced, which can possibly originate price spikes. Capacity markets have exactly the purpose of providing new potential capacity when that present in the market is already allocated and there is a sudden drop in supply (due for example to unexpected adverse weather events). In this talk we will present the different capacity remuneration mechanisms, and analyze in more detail the socalled reliability option, which is a call option sold by producers to transmit system operators. This option has the important advantage of shaving possible price peaks, but its correct pricing require nontrivial techniques.  

Roberto Baviera (Politecnico di Milano, Italy)  OskarMorgensternPlatz 1, Lecture Room 13, 2nd floor  Wed, 5. Jul 17, 11:15 
Stoploss and leverage in optimal statistical arbitrage with an application to energy market  
In this paper we develop a statistical arbitrage trading strategy with two key elements in high frequency trading: stoploss and leverage. We con sider, as in Bertram (2009), a meanreverting process for the security price with proportional transaction costs; we show how to introduce stoploss and lever age in an optimal trading strategy. We focus on repeated strategies using a selffinancing portfolio. For every given stoploss level we derive analytically the optimal investment strategy consisting of optimal leverage and market en try/exit levels. First we show that the optimal strategy a la Bertram depends on the probabilities to reach entry/exit levels, on average FirstPassageTimes and on average FirstExitTimes from an interval. Then, when the underlying log price follows an OrnsteinUhlenbeck process, we deduce analytical expressions for average FirstExitTimes and we write the longrun return of the strategy as an elementary function of the stoploss. Finally we describe how to apply the strategy to a generic continuous meanreverting process. Following industry practice of pairs trading we consider two examples of pairs in the energy futures’ market. We report in detail the analysis for two spreads on HeatingOil and GasOil futures in a year and a half sample of halfhour market prices. Joint work with Tommaso Santagostino Baldi.  

Noor ’Adilah Ibrahim (University of Oslo, Norway)  OskarMorgensternPlatz 1, Lecture Room 13, 2nd floor  Wed, 5. Jul 17, 10:45 
Stochastic modelling of photovoltaic power generation  
In recent years, renewable energy has gained importance in producing power in many markets. The aim of this article is to model photovoltaic (PV) production for three transmission operators in Germany. PV power can only be generated during sun hours and the cloud cover will determine its overall production. Therefore, we propose a model that takes into account the sun intensity as a seasonal function. We model the deseasonalized data by an au toregressive process to capture the stochastic dynamics in the data. We present two applications based on our suggested model. First, we build a relationship between electricity spot prices and PV production where the higher the volume of PV production, the lower the power prices. As a further application, we discuss virtual power plant derivatives and energy quanto options. Joint work with Fred Espen Benth.  

Carlo Sgarra (Politecnico di Milano, Italy)  OskarMorgensternPlatz 1, Lecture Room 13, 2nd floor  Wed, 5. Jul 17, 10:15 
A Branching Process Approach to Power Markets  
Energy markets, and in particular, electricity markets, exhibit very peculiar features. The historical series of both futures and spot prices include seasonality, meanreversion, spikes and small fluctuations. After the pioneer ing paper by Schwartz, where an OrnsteinUhlenbeck dynamics is assumed to describe the spot price behavior, several different approaches have been inves tigated in order to describe the price evolution. A comprehensive presentation of the literature until 2008 is offered in the book by Benth, SaltyteBenth and Koekebakker [8]. High frequency trading, on the other hand, introduced some new features in commodity prices dynamics: in the paper by Filimonov, Bic chetti, Maystre and Sornette [11] evidence is shown of endogeneity and struc tural regime shift, and in order to quantify this level the branching ratio is adopted as a measure of this endogenous impact and a Hawkes processes dy namics is assumed as a reasonable modeling framework taking into account the selfexciting properties [1]. The purpose of the present paper is to pro pose a new modeling framework including all the above mentioned features, still keeping a high level of tractability. The model considered allows to obtain the most common derivatives prices in closed or semiclosed form. Here with semiclosed we mean that the Laplace transform of the derivative price admits an explicit expression. The models we are going to introduce can describe the prices dynamics in two different forms, that can be proved to be equivalent: the first is a representation based on random fields, the second is based on Continuous Branching Processes with Immigration (CBI in the following). The idea of adopting a random fields framework for power prices description is not new: O.E. BarndorffNielsen, F.E. Benth and A. Veraart introduced the Ambit Fields to this end, showing how this approach can provide a very flexible and still tractable setting for derivatives pricing [2], [3]. A model based on CBI has been proposed recently by Y. Jiao, C. Ma and S. Scotti in view of short interest rate modeling, and in that paper it was shown that, with a suitable choice of the L´evy process driving the CBI dynamics, the model can offer a significant extension of the popular CIR model [12]. The model we propose extends in different ways some relevant models al ready available in the literature. It belongs to the class of arithmetic models (following the classification proposed by F.E. Benth, J. SalthytheBenth and S. Koekebakker), and the driving processes are L´evy processes with positive jumps, i.e. subordinators, so it extends the model proposed by F.E. Benth, J. Kallsen and T. MeyerBrandis [6] by formulating the dynamics via a random field ap proach, which allows to include some selfexciting features. On the other hand, the random field approach highlights some similarities with the Ambit Field based models introduced by O.E. BarnorffNielsen, F.E. Benth and A. Veraart [3]; the main difference between the model proposed in this paper and the Ambit Fieldbased models consists in the character of the extra dimension appearing in the random field adopted: while in the Ambit Field setting the parameter of this dimension is a time parameter, in the present setting this will be a pa rameter of space type. This main difference will be reflected moreover in the integration domain of the integrals defining the dynamics. The features of our modeling approach just outlined, allow to introduce the so called selfexciting properties in a simple and natural way and, although the pricing formulas for basic contracts like forward will exhibit very small changes with respect to those obtained for the previous models, the present model will exhibit a substantially different risk premium term structure. The presentation will be organized as follows: in Section 2 we’ll introduce the market model we are going to consider, while in Section 3 we shall discuss the relations between our model and the CBI processes. In Section 4 we’ll present some closed formulas for Futures and Option prices when the underlying dynamics is assumed to be given by the model introduced. Section 5 includes a theoretical analysis of the jumps behavior and the selfexciting property. In Section 6 we’ll provide some suggestions about estimation methods for the same model. In this last section, in particular, we are going to highlight the main issues and to propose a theoretical statistical approach. In particular, we are going to derive the maximum likelihood estimator for the parameters of the intensity process. By following the ideas presented in [7] and in [13], the first step to perform will be to deseasonalise the data. The second step, definitely less trivial, is to split the components Y1 and Y2 emerging from the data. This issue is well analyzed in [7] and [13] and their approach is directly applicable to our framework. Then, we first focus on the process Y1, sometimes called the base signal. Following [7], we look for the ergodic distribution of Y1 fitting the data. By recalling that the ergodic distribution of a CIR diffusion is of Gamma type [10], our model is in agreement with the previous literature (see subsection 5.4.2 in[7]) and we obtain the estimated parameters values for the driving processes. Joint work with Ying Jiao, Chunhua Ma and Simone Scotti. References [1] Bacry, E., Mastromatteo, J. and Muzy, J.F. Hawkes Processes in Finance, PREPRINT (2015). [2] BarndorffNielsen, O.E., Benth, F.E. and Veraart, A. (2013): Modelling en ergy spot prices by volatility modulated L´evy driven Volterra processes, Bernoulli, 19, 803845. [3] BarndorffNielsen, O.E., Benth, F.E. and Veraart, A. (2014): Modelling Electricity Futures by Ambit Fields, Advances in Applied Probability, 46 (3), 719745. [4] BarndorffNielsen, O.E. and Shephard, N. (2000): Modelling by L´evy Pro cesses for Financial Econometrics, in L´evy Processes Theory and Applications, eds. Barndorff Nielsen, Mikosch and Resnick, Boston, Birkhauser. [5] Benth F. E., Cartea A. and Kiesel R. (2008): Pricing forward contracts in power markets by the certainty equivalence principle: explaining the sign of the market risk premium, Journal of Banking and Finance, 32, 20062021. [6] Benth, F. E., Kallsen J. and MeyerBrandis T. (2007): A NonGaussian Ornstein Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing, Appl. Math. Finance, 14(2), 153169. [7] Benth, F. E., Kiesel, R. and Nazarova A. (2012): A critical empirical study of three electricity price models, Energy Economics, 34, 15891616. [8] Benth, F. E., SalthyteBenth J. and Koekebakker S. (2008): Stochastic Mod elling of Electricity and Related Markets , World Scientific, Singapore. [9] Benth, F. E. and Sgarra C. (2012): The Risk Premium and the Esscher Transform in Power Markets, Stoch. Anal. Appl., 30(1), 2043. [10] Cox, J., Ingersoll, J. and Ross, S. (1985): A theory of the term structure of interest rate. Econometrica 53, 385408. [11] Filimonov, V., Bicchetti, D., Maystre, N., Sornette, D. (2015):Quantifica tion of the High Level of Endogeneity and Structural Regime Shifts in Com modity Markets, preprint. [12] Jiao, Y., Ma, C., Scotti, S. (2016): AlphaCIR Model with Branching Processes in Sovereign Interest Rate Modelling, preprint, hal01275397v2. [13] MeyerBrandis, T. and Tankov, P. (2008): Multifactor jumpdiffusion mod els of electricity prices. International Journal of Theoretical and Applied Fi nance, 11(5), 503528.  

John Moriarty (Queen Mary University, London, UK)  OskarMorgensternPlatz 1, Lecture Room 13, 2nd floor  Wed, 5. Jul 17, 9:00 
Energy imbalance market call options and the valuation of storage  
The use of energy storage to balance electric grids is increasing and, with it, the importance of operational optimisation from the twin viewpoints of cost and system stability. In this paper we assess the real option value of balancing reserve provided by an energylimited storage unit. The contractual arrangement is a series of Americanstyle call options in an energy imbalance market (EIM), physically covered and delivered by the store, and purchased by the power system operator. We take the EIM price as a general regular one dimensional diffusion and impose natural economic conditions on the option parameters. In this framework we derive the operational strategy of the storage operator by solving two timing problems: when to purchase energy to load the store (to provide physical cover for the option) and when to sell the option to the system operator. We give necessary and sufficient conditions for the finiteness and positivity of the value function – the total discounted cash flows generated by operation of the storage unit. We also provide a straightforward procedure for the numerical evaluation of the optimal operational strategy (EIM prices at which power should be purchased) and the value function. This is illustrated with an operational and economic analysis using data from the German Amprion EIM. (Joint work with Jan Palczewsk (University of Leeds)).  

Marco Piccirilli (University of Padova, Italy)  OskarMorgensternPlatz 1, Lecture Room 13, 2nd floor  Tue, 4. Jul 17, 15:45 
Additive energy forward curves in a HeathJarrowMorton framework  
In energy markets forward contracts can be of two types: in our ter minology, forwards and swaps. Who sells a swap contract commits to deliver over a certain period, for instance, power, while by forward we mean the classi cal financial agreement settled on a maturity date. Our purpose is to design a HeathJarrowMorton framework for an additive, meanreverting, multidimen sional market consisting of forward contracts of any maturity date or delivery period. The main assumption is that forward prices can be represented as affine functions of a universal source of randomness. In a Brownian setting, we are able to completely characterize the models which do not allow for arbitrage opportunities. We study the possibility of introducing more general L´evy com ponents either driving the dynamics of prices or in the context of a stochastic volatility model. Joint work with Fred Espen Benth and Tiziano Vargiolu.  

Rune Hjorth Nielsen (NEAS and University of Aalborg, Denmark)  OskarMorgensternPlatz 1, Lecture Room 13, 2nd floor  Tue, 4. Jul 17, 15:15 
Simulations of short term power prices: capturing the intraday structure of the German power dayahead auction  
This presentation is on the simulation of the hourbased German dayahead power auction, where I apply vector autoregressive (VAR) models, in order to capture the effects of the market infrastructure of the dayahead auction. This approach ensures that the correct intraday correlation structure is simulated, which will be important for valuing assets with production timing issues (e.g. pumped storages and batteries), thereby creating a more suitable simulation alternative to classic Brownian motion based stochastic simulation for these flexible assets. In order to handle the large dimensionality of the data created by the VAR approach, lasso and elasticnet shrinkages are applied, as well as their adaptive versions. The assessment of these methods is done by performing a classic forecast quality assessment, combined with an evaluation of the (often asymptotic) simulation relevant properties of each model. After estimating the model parameters, simulation from the fitted model is carried out using a block bootstrap. Sanity checks of the appropriateness of the forecasting approach are presented, highlighting both the advantages of the model and the points where future work is necessary.  

Ana Busic (INRIA Paris, France)  OskarMorgensternPlatz 1, Lecture Room 13, 2nd floor  Tue, 4. Jul 17, 14:00 
Distributed demand control in power grids and ODEs for Markov decision processes  
Renewable energy sources such as wind and solar have a high degree of unpredictability and time variation. As a result, balancing supply and demand in real time is becoming ever more challenging and the power grids need greater flexibility on many levels. The proposed approach addresses this challenge by harnessing the inherent flexibility in demand of many types of loads. We develop a distributed control theory and algorithms for automated demand dispatch, which can be used by grid operators as ancillary service to regulate demand supply balance. The proposed approach uses local control solutions that a) take into account local measurements, constraints, and preferences, and b) lead to a controllable inputoutput model for the aggregate dynamics. The local control problem can be defined by a family of Markov decision processes, parameterized by a weighting factor that appears in the onestep reward function. This talk introduces a new methodology for solving an entire family of MDPs. In our application to demand control, the focus will be on a family of averagecost optimal control models in which the onestep reward function is defined by KullbackLeibler divergence with respect to nominal dynamics. The proposed ODE methodology can be seen as a generalization of the linearly solvable MDP framework of Todorov to the case with exogenous disturbances, such as weather or customer behavior.  

Matteo Basei (University of ParisDiderot, France)  OskarMorgensternPlatz 1, Lecture Room 13, 2nd floor  Tue, 4. Jul 17, 11:15 
The coordination of centralised and distributed generation  
This paper analyses the interaction between centralised carbon emis sive technologies and distributed intermittent nonemissive technologies. In our model, there is a representative consumer who can satisfy her electricity demand by investing in distributed generation (solar panels) and by buying power to a centralised firm at a price he set up. Distributed generation is intermittent and induces an externality cost to the consumer. The firm provides nonrandom electricity generation subject to carbon price and to transmission costs. The objective of the consumer is to satisfy her demand while minimising investment costs, payment to the firm and intermittency cost. The objective of the firm is to satisfy consumer’s residual demand while minimising investment costs, de mand deviation costs and maximising payment from the consumer. Investment decisions are formulated as McKeanVlasov control problems with stochastic coefficients. We provide explicit, modelfree solutions to the optimal decision problems faced by each player, the solution of the Pareto optimum and the Stackelberg equilibrium where the firm is the leader. We find that, from the social planner point of view, carbon price or transmission costs are necessary to justify a positive share of distributed capacity in the longterm, whatever the re spective investment costs of both technologies are. The Stackelberg equilibrium is far from the Pareto equilibrium, leading to a much larger share of distributed energy and to a much higher price for centralised energy. Joint work with Rene Aid, Imen Ben Tahar and Huyen Pham  

Gabriele D’Amore (Sapienza University of Rome, Italy)  OskarMorgensternPlatz 1, Lecture Room 13, 2nd floor  Tue, 4. Jul 17, 10:45 
Predictability information criterion for selecting stochastic pricing models  
Pricing models of derivative instruments usually fail to provide reli able results when risks rise and financial crises occur. More advanced stochastic pricing models try to improve the fitting results adding risk factors and/or pa rameters to the models, incurring the risk of overfitted results. Drawing on these observations, it is proposed a generalisation of the Akaike information criterion suitable to evaluate forecasting power of alternative stochastic pricing models for any fixed arbitrary forecasting timehorizon. The Predictability Informa tion Criterion (PIC) differs from the classical criteria for evaluating statistical models as it assumes that the random variable to study can ( or cannot) be par tially predictable, which makes it particularly suitable for studying stochastic pricing models coherently with the semimartingale definition of the price pro cess. On the basis of this assumption the criterion measures and compares the uncertainty of the predictions of two different alternative models when prices are (or are not) predictable. We conclude with a focus on Crude Oil market by comparing GBM and OU stochastic processes that are generally used for modeling West Texas Intermediate (WTI) oil spot price returns in derivative pricing models.  

Michael Coulon (University of Sussex, UK)  OskarMorgensternPlatz 1, Lecture Room 13, 2nd floor  Tue, 4. Jul 17, 10:15 
Spread option implied correlation and the optimal choice of strike con vention  
By means of Malliavin Calculus we construct an optimal linear strike convention for exchange options under stochastic volatility models. This convention allows us to minimize the difference between the model and implied correlations between the two underlying assets in the spread. Moreover, we show that this optimal convention does not depend on the specific stochastic volatility model. Numerical examples are given. Joint work with Elisa Alos.  

Nadia Oudjane (EDF, France)  OskarMorgensternPlatz 1, Lecture Room 13, 2nd floor  Tue, 4. Jul 17, 9:00 
Advanced numerical methods for nonlinear PDEs and perspectives of applications for energy management control problems  
With the emergence of renewable energies (as wind or solar genera tion), local generation systems are rapidly multiplying integrating renewables, batteries or more conventional plants (such as gas turbines or hydro plants). The impact of random factors (such as demand, energy prices, wind, luminosity etc.) on the management of such local generation systems are significant. Hence, an important issue is to be able to manage efficiently such microgrids in presence of uncertainties. Mathematically, the related optimization problem can be stated in terms of a stochastic control problem which can be reduced to a nonlinear Partial Differential Equation (PDE), known as HamiltonJacobiBellman (HJB) equation. The presentation focuses on recent forward numerical schemes based on generalized FokkerPlanck representations for nonlinear PDEs in high space dimension. In the specific case of mass conservative PDEs, it is well known that the solution can be probabilistically represented as the marginal densities of a Markov diffusion nonlinear in the sense of Mckean. Then one can design forward interacting particle schemes to approximate numerically the PDEs solu tion. We present some extensions of this kind of representation and interacting particle scheme associated to a large class of PDEs including the case when they are nonconservative, non integrable with various kind of nonlinearities. (Joint work with Anthony Le Cavil, (HSBC, Paris) and Francesco Russo, (ENSTA ParisTech)  

Blakie Blair  WPI, OMP 1, Seminar Room 08.135  Fri, 23. Jun 17, 11:00 
Selfbound droplets of a dipolar BoseEinstein condensate  
Recent experiments with BoseEinstein condensates of dysprosium [1] and erbium [2] atoms have observed the formation of droplets that can preserve their form, even in the absence of any external confinement [3]. These droplets occur when the longranged dipoledipole interaction between the atoms dominates over the shortranged contact interaction. In this regime meanfield theory predicts that the condensate is unstable to collapse, however the LeeHuangYang corrections to the meanfield energy [3] can stabilize the system as one or many finite sized droplets. I will discuss our current understanding of these droplets, and introduce a new type of nonlinear Schrodinger equation used to describe their equilibrium and dynamical properties.  
Note: Click here for further information  

Yong Zhang  WPI, OMP 1, Seminar Room 08.135  Thu, 22. Jun 17, 14:00 
“Numerical methods/analysis for Schrödinger equations and micromagnetism”  
We present some mathematical methods occurring in the modeling and simulation of Nonlinear Schrödinger equations and nonlocal potentials. We focus on GrossPitaevskii equations describing Bose Einstein Condensates and stray field calculations in micromagnetism.  

François Golse  WPI, OMP 1, Seminar Room 08.135  Thu, 22. Jun 17, 10:00 
A convergence rate estimate for the semiclassical limit with Lipschitz continuous force field  
We propose an explicit bound for the convergence rate in the semiclassical limit for the Schrödinger equation which holds for potentials with Lipschitz continuous gradient. This bound is based on an analogue of the Wasserstein metric used in optimal transportation, adapted to measuring the distance between a quantum and a classical density.  

Olivier Pinaud (Colorado State University)  WPI, OMP 1, Seminar Room 08.135  Wed, 21. Jun 17, 14:00 
Waves in random media and applications  
We will review some results concerning uncertainties in the derivation of kinetic equations from wave propagation in random media, that is modeled by a wave or a Schroedinger equation. Kinetic equations usually describe quadratic quantities in the wavefield such as the energy or wavewave correlations, and can be used to solve some imaging problems in complex media.  

Shi Jin (University of WisconsinMadison and Shanghai Jiao Tong University)  WPI, OMP 1, Seminar Room 08.135  Wed, 21. Jun 17, 10:00 
Semiclassical computational methods for oscillatory and uncertain quantum dynamics with bandcrossings  
Bandcrossing is a quantum dynamical behavior that contributes to important physics and chemistry phenomena such as quantum tunneling, Berry connection, charge transfer, chemical reaction etc. In this talk, we will discuss some recent works in developing semiclassical methods for bandcrossing in surface hopping. For such systems we will also introduce an nonlinear geometric optics method based "asymptoticpreserving" method that is accurate uniformly for all wave numbers, including the problem with random uncertain band gaps.  

Mohammed Lemou  WPI, OMP 1, Seminar Room 08.135  Tue, 20. Jun 17, 15:30 
"Averaging techniques and application to numerical methods for highly oscillatory Vlasov and KleinGordon models"  
A brief description of averaging theory for highlyoscillatory problems will be first presented with an emphasis on the socalled classical and stroboscopic averaging methods. Then I will present two general strategies to construct efficient numerical schemes for a class of highly oscillatory PDEs: the soobtained numerical schemes have a uniform accuracy with respect to the frequency. Two applications will be considered: the Vlasov kinetic equation with strong magnetic field and the KleinGordon equation in the nonrelativistic regime.  

Olof Runborg (Mathematik Institution, Stockholm)  WPI, OMP 1, Seminar Room 08.135  Tue, 20. Jun 17, 10:00 
Uncertainty Quantification for High Frequency Wave Propagation  
We consider the wave equation with highly oscillatory initial data, where there is uncertainty in the wave speed, initial phase and/or initial amplitude. To estimate quantities of interest (QoI) related to the solution $u^\varepsilon$ and their statistics, we combine a highfrequency method based on Gaussian beams with sparse stochastic collocation. In the talk we will discuss how the rate of convergence for the stochastic collocation and the complexity of evaluating the QoI depend on the short wavelength $\varepsilon$. We find in particular that QoIs based on local averages of $\vert u^\varepsilon\vert ^2$ can give fast convergence rates, despite the fact that $u^\varepsilon$ is highly oscillatory in both physical and stochastic space.  

Cuesta Carlota  WPI, OMP 1, Seminar Room 08.135  Mon, 19. Jun 17, 15:00 
Analysis of travelling waves in a nonlocal Kortewegde VriesBurgers equation arising in a twolayer shallowwater model  
We study travelling wave solutions of a Kortewegde VriesBurgers equation with a nonlocal diffusion term. This model equation arises in the analysis of a shallow water flow by performing formal asymptotic expansions associated to the tripledeck regularisation (which is an extension of classical boundary layer theory). The resulting nonlocal operator is of fractional differential type with order between 1 and 2. Travelling wave solutions are typically analysed in relation to shock formation in the full shallow water problem. We show rigorously the existence of these waves in the case of a quadratic nonlinearity. The travelling wave problem for the classical KdVBurgers equation is usually analysed via a phaseplane analysis, which is not applicable here due to the presence of the nonlocal diffusion operator. Instead, we apply fractional calculus results available in the literature and a Lyapunov functional. In addition we discuss the monotonicity of the waves in terms of a control parameter and prove their dynamic stability in case they are monotone. We also discuss some partial results concerning the existence of travelling waves in the case of a cubic nonlinearity. This existence problem and the monotonicity of the waves in the quadratic case for a small dispersion term in relation with the diffusive one are still open problems, for this reason we have also developed numerical schemes in order to support our conjectures. We will discuss in a second part of the talk, a pseudospectral method that approximates the initial value problem. The basic idea is, using an algebraic map, to transform the whole real line into a bounded interval where we can apply a Fourier expansion. Special attention is given to the correct computation of the fractional derivative in this setting. Interestingly, there is a connection of the mapping method to fractional calculus, that we will also mention.  

Jinkai Li  WPI, OMP 1, Seminar Room 08.135  Fri, 16. Jun 17, 11:00 
Some mathematical analyses on two dynamical models for atmosphere with moisture (with Sabine Hittmeir, Rupert Klein, Edriss S. Titi)  
In this talk, we will present some recent mathematical results, mainly the global wellposedness and convergence of the relaxation limit, on two kinds of dynamical models for the atmosphere with moisture. In the rst part of this talk, which is a joint work with Edriss S. Titi [1], we will consider a tropical atmosphere model introduced by Frierson, Majda, and Pauluis (Commum. Math. Sci. 2004); for this model, we will present the global wellposedness of strong solutions and the strong convergence of the relaxation limit, as the relaxation time " tends to zero. It will be shown that, for both the nitetime and instantaneousrelaxation systems, the H1 regularities on the initial data are sucient for both the global existence and uniqueness of strong solutions, but slightly more regularities than H1 are required for both the continuous dependence and strong convergence of the relaxation limit. In the second part of this talk, which is a joint work with Sabine Hittmeir, Rupert Klein, and Edriss S. Titi [2], we will consider a moisture model for warm clouds used by Klein and Majda (Theor. Comput. Fluid Dyn. 2006), where the phase changes are allowed, and we will present the global wellposedness of this system. [1] Jinkai Li; Edriss S. Titi: A tropical atmosphere model with moisture: global well posedness and relaxation limit, Nonlinearity, 29 (2016), 2674{2714. [2] Sabine Hittmeir; Rupert Klein; Jinkai Li; Edriss S. Titi: Global wellposedness for passively transported nonlinear moisture dynamics with phase changes, arXiv:1610.00060  

Manuel Baumgartner  WPI, OMP 1, Seminar Room 08.135  Fri, 16. Jun 17, 10:00 
Diffusional Growth in Clouds (with Peter Spichtinger)  
Diusional growth is the most important growth mechanism for newly formed cloud droplets and ice crystals. Nonlinear diusion equations control the transport of water vapor towards the cloud particles. Although the solution of these diusion equations is circumvented in numerical cloud models, it remains computationally expensive to include the details of diusional growth due to severe timestep restrictions. Moreover, as soon as ice crystals are present in a cloud consisting mostly of cloud droplets, the Wegener BergeronFindeisen process becomes active and the ice crystals grow at the expense of the cloud droplets. In the rst part of the talk, we discuss the aspect of locality of the WegenerBergeron Findeisen process, i.e. an ice crystal does only aect its immediate vicinity. Its presence decouples the diusional growth behavior of nearby droplets from environmental conditions. We show some simulation results and a possible way to include locality in the context of bulkmicrophysics. The second part considers the case of a liquid cloud. In the context of numerical models, the microphysical details of the diusional growth and the timestep restrictions are eectively avoided through the technique of saturation adjustment. We will show some of these techniques and analyze an air parcel model containing activation of new droplets using asymptotics.  

Matthias Hieber  WPI, OMP 1, Seminar Room 08.135  Fri, 16. Jun 17, 9:00 
Thermodynamical Consistent Modeling and Analysis of HeatConducting Fluids  
In this talk, we derive and discuss thermodynamically consistent models for heatconduction fluids. Our approach is based on the entropy principle.  

Annette Muller  WPI, OMP 1, Seminar Room 08.135  Thu, 15. Jun 17, 15:30 
The DSI as an indicator for diabatic processes across the scales  
In atmospheric ows, the Dynamic State Index (DSI) indicates local deviations from a steady wind solution. This steady wind solution is based on the primitive equations under adiabatic and inviscid conditions. Hence, from theoretical point of view, atmospheric dynamics is regarded relative to a solution derived from uid mechanic's rst principles. Thus, this parameter provides a tool to capture diabatic processes. The DSI can be designed for dierent uid mechanical models on distinguished scales, we will introduce a DSIQG for the quasigeostrophic ow, a DSIRo for the Rossby model and DSImois that is based on the equations of motions including moisture processes.  

Wojciech W. Grabowski  WPI, OMP 1, Seminar Room 08.135  Thu, 15. Jun 17, 14:00 
Modeling condensation in cloudscale models  
Condensation of water vapor to form and grow cloud droplets is the most fundamental process of cloud and precipitation formation. It drives cloud dynamics through the release of latent heat and determines the strength of convective updrafts. Cloudscale models simulate condensation by applying two drastically dierent methods. The rst one is the bulk condensation where condensation/evaporation is assumed to always maintain saturated conditions. The second approach involves prediction of the incloud super or subsaturation and can be used in models that predict not only condensate mass but also relevant features of the droplet size distribution (e.g., models with the 2moment microphysics or with the bin microphysics). This presentation will address the question whether the dierence between the two approaches has a noticeable impact on convective dynamics. Model simulations with the bin microphysics for shallow nonprecipitating convection and with the doublemoment bulk microphysics for deep convection will be discussed to document the dierences in cloud eld simulations applying the two methodologies. For the shallow convection, the dierences in cloud eld simulated with bulk and bin schemes come not from small dierences in the condensation, but from more signicant dierences in the evaporation of cloud water near cloud edges as a result of entrainment and mixing. For the deep convection, results show a signicant dynamical impact of nite supersaturations and a strong microphysical eect associated with uppertropospheric anvils. Implications of these results for modeling convective dynamics will be discussed and a possible intermediate modeling methodology will be suggested.  

Piotr Smolarkiewicz  WPI, OMP 1, Seminar Room 08.135  Thu, 15. Jun 17, 11:00 
Finitevolume integrators for cloudresolving simulations of global atmospheric flows  
This work extends to moistprecipitating dynamics a recently documented highperformance nitevolume integrators for simulating global allscale atmospheric ows (doi:10.1016/j.jcp. 2016.03.015). A key objective of the current development is a seamless coupling of the conservation laws for moist variables engendered by cloud physics with the semiimplicit, nonoscillatory forwardintime integrators already proven for dry dynamics. The representation of the water substance and the associated processes in weather and climate models can vary widely in formulation details and complexity levels. The adopted representation assumes a canonical warmrain" bulk microphysics parametrisation, recognised for its minimal physical intricacy while accounting for the essential mathematical complexity of cloudresolving models. A key feature of the presented numerical approach is global conservation of the water substance to machine precision  implied by the local conservativeness and positivity preservation of the numerics  for all water species including water vapour, cloud water, and precipitation. The moist formulation assumes the compressible Euler equations as default, but includes reduced anelastic equations as an option. The theoretical considerations are illustrated with a benchmark simulation of a tornadic thunderstorm on a reduced size planet, supported with a series of numerical experiments addressing the accuracy of the associated water budget.  

Rupert Klein  WPI, OMP 1, Seminar Room 08.135  Thu, 15. Jun 17, 10:00 
The role of multiscale convection in hurricane intensication  
Paeschke et al (2012) showed analytically how nonaxisymmetric external diabatic forcing of a tilted vortex in dry air can amplify or attenuated the ow depending on the relative orientation of vortex tilt and the "heating dipole". Here we include a bulk moist microphysics closure and describe how boundary layer processes and multiscale deep moist convection can interact to produce this eect selfconsistently.  

Tom Dörffel  WPI, OMP 1, Seminar Room 08.135  Thu, 15. Jun 17, 9:00 
Intensification of atmospheric vortices through asymmetric diabatic heating (with Ariane Papke, Rupert Klein)  
The dynamics of atmospheric vortices such as tropical storms, hurricanes and midlatitude cyclones is driven by a variety of interacting scales. [1] developed an asymptotic theory for the dynamics of strongly tilted atmospheric vortices in the gradientwind regime, embedded into a synopticscale geostrophic background eld. One central outcome of the theory is the evolution equation for the nearly axisymmetric primary circulation. It predicts that Fouriermode 1 of asymmetric diabatic heating/ cooling patterns can spin up or spin down a vortex depending on the relative arrangement of the heating dipole relative to the vortex tilt. Based on this methodology further investigations led to the conclusion that this theory is generalizable to Rossby numbers of order 1 and higher, i.e. cyclostrophic balance. Accompaning the asymptotics numerical experiments are conducted to test the theory within an anelastic model [2]. In this talk we present the latest results showing consistency of numerical simulations and theoretical predictions. [1] E. Paschke, P. Marschalik, A. Z. Owinoh and R. Klein, Motion and structure of at mospheric mesoscale baroclinic vortices: dry air and weak environmental shear, J. Fluid Mech. 701: 137{170, (2012) [2] J. M. Prusa, P. K. Smolarkiewicz and A. A. Wyszogrodzki, EULAG, a computational model for multiscale ows, Comput. Fluids 37: 1193{1207 (2008)  

Boualem Khouider  WPI, OMP 1, Seminar Room 08.135  Wed, 14. Jun 17, 17:00 
A zonally symmetric model for the monsoonHadley circulation with stochastic convective forcing  
Idealized models of reduced complexity are important tools to understand key processes underlying a complex system. In climate science in particular, they are important for helping the community improve our ability to predict the eect of climate change on the earth system. Climate models are large computer codes based on the discretization of the uid dynamics equations on grids of horizontal resolution in the order of 100 km, whereas unresolved processes are handled by subgrid models. For instance, simple models are routinely used to help understand the interactions between smallscale processes due to atmospheric moist convection and largescale circulation patterns. Here, a zonally symmetric model for the monsoon circulation is presented and solved numerically. The model is based on the Galerkin projection of the primitive equations of atmospheric synoptic dynamics onto the rst modes of vertical structure to represent free tropospheric circulation and is coupled to a bulk atmospheric boundary layer (ABL) model. The model carries bulk equations for water vapor in both the free troposphere and the ABL, while the processes of convection and precipitation are represented through a stochastic model for clouds. The model equations are coupled through advective nonlinearities, and the resulting system is not conservative and not necessarily hyperbolic. This makes the design of a numerical method for the solution of this system particularly dicult. We develop a numerical scheme based on the operator timesplitting strategy, which decomposes the system into three pieces: a conservative part and two purely advective parts, each of which is solved iteratively using an appropriate method. The conservative system is solved via a central scheme, which does not require hyperbolicity since it avoids the Riemann problem by design. One of the advective parts is a hyperbolic diagonal matrix, which is easily handled by classical methods for hyperbolic equations, while the other advective part is a nilpotent matrix, which is solved via the method of lines. Validation tests using a synthetic exact solution are presented, and formal secondorder convergence under grid renement is demonstrated. Moreover, the model is tested under realistic monsoon conditions, and the ability of the model to simulate key features of the monsoon circulation is illustrated in two distinct parameter regimes. This is joint work with Michale De La Chevrotiare.  

Olivier Pauluis  WPI, OMP 1, Seminar Room 08.135  Wed, 14. Jun 17, 16:00 
Thermodynamic analysis of atmospheric motions  
In this talk, I will show how to extract thermodynamic cycles from high resolution simulations of atmospheric ows. On the one hand, thermodynamic processes are typically analyzed in terms of the behavior of individual parcel trajectories. On the other hand, most atmospheric ows are associated with innitely many turbulent lagrangian trajectories. The Mean Air Flow As Lagrangian Dynamics Approximation (MAFALDA) has been recently developed to address this problem. It MAFALDA, the ow is rst averaged in isentropic coordinates, typically pressure and equivalent potential temperature, and the mean ow is then treated as a set of thermodynamic cycles. This oer a systematic procedure to analyze the thermodynamic transformation in atmospheric ows, which is applied here to compare the thermodynamics behavior of convection and hurricanes.  

Sam Stechmann  WPI, OMP 1, Seminar Room 08.135  Wed, 14. Jun 17, 15:00 
Precipitating QuasiGeostrophic Equations and Minimal Cloud Mi crophysics  
Two simplied models are presented for precipitating atmospheric dynamics. First, a minimal version of cloud microphysics is presented. The time scales of all microphysical processes are assumed to be fast, and the resulting microphysics has only one parameter, the terminal velocity of falling rain drops. It is shown that, despite its simplicity, this minimal microphysics scheme can reproduce distinct canonical modes of convective organization (scattered convection and a squall line) under appropriate environmental conditions. This suggests that the essential physical processes underlying moist convection are simply phase changes and falling rain drops. Second, a precipitating version of the quasigeostrophic (QG) equations is presented. The precipitating QG (PQG) equations include phase changes between water vapor and liquid water, which arise as Heaviside nonlinearities in the new PQG PDEs. Finally, we present an initial application of the PQG equations, in a linearized setting that can be solved analytically, to understanding meridional moisture transport by baroclinic eddies.  

Didier Bresch  WPI, OMP 1, Seminar Room 08.135  Tue, 13. Jun 17, 14:00 
Mathematical analysis of relevant compressible geophysical models  
In this talk, we talk about mathematical results related to compressible uid systems with applications to geophysical flows. We focus on pressure laws, viscosity e ects, bifluid flows description. Some singular limits are also discussed.  

Didier Bresch  WPI, OMP 1, Seminar Room 08.135  Tue, 13. Jun 17, 11:00 
Mathematical analysis of relevant compressible geophysical models  
In this talk, we talk about mathematical results related to compressible uid systems with applications to geophysical flows. We focus on pressure laws, viscosity e ects, bifluid flows description. Some singular limits are also discussed.  

Olivier Pauluis  WPI, OMP 1, Seminar Room 08.135  Tue, 13. Jun 17, 9:00 
Tutorial 2: Thermodynamic cycles and heat engines  
The atmosphere can be describe as a heat engine that continuously generates kinetic energy by transporting energy from a warm source, i.e. the Earth surface, to a cold sink, i.e the colder troposphere. However, the ability of the atmosphere to generate kinetic energy is strongly reduced by the hydrological cycle. We will analyze how the impacts of moist processes can be a quantied in terms of a Gibbs penalty associated with the evaporation of water in unsaturated air and its removal as liquid water.  

Rupert Klein (FU Berlin)  OskarMorgensternPlatz 1, Hörsaal 4, ground floor.  Mon, 12. Jun 17, 17:00 
How Mathematics helps structuring climate discussions  
Mathematics in climate research is often thought to be mainly a provider of techniques for solving the continuum mechanical equations for the ows of the atmosphere and oceans, for the motion and evolution of Earth's ice masses, and the like. Three examples will elucidate that there is a much wider range of opportunities. Climate modellers often employ reduced forms of "the continuum mechanical equations" to eciently address their research questions of interest. The rst example discusses how mathematical analysis can provide systematic guidelines for the regime of applicability of such reduced model equations. Meteorologists dene "climate", in a narrow sense, as "the statistical description in terms of the mean and variability of relevant quantities over a period of time" (World Meteorological Society, http://www.wmo.int; see the website for a broader sense denition). Now, climate researchers are most interested in changes of the climate over time, and yet there is no unique, welldened notion of "time dependent statistics". In fact, there are restrictive conditions which data from time series need to satisfy for classical statistical methods to be applicable. The second example describes recent developments of analysis techniques for time series with nontrivial temporal trends. Modern climate research has joined forces with economy and the social sciences to generate a scientic basis for informed political decisions in the face of global climate change. One major type of problems hampering progress of the related interdisciplinary research consists of often subtle language barriers. The third example describes how mathematical formalization of the notion of "vulnerability" has helped structuring related interdisciplinary research eorts.  

Didier Bresch  WPI, OMP 1, Seminar Room 08.135  Mon, 12. Jun 17, 15:45 
Mathematical analysis of relevant compressible geophysical models  
In this talk, we talk about mathematical results related to compressible uid systems with applications to geophysical flows. We focus on pressure laws, viscosity eects, bifluid flows description. Some singular limits are also discussed.  

Olivier Pauluis  WPI, OMP 1, Seminar Room 08.135  Mon, 12. Jun 17, 14:05 
Tutorial 1: Thermodynamic properties of cloudy air  
In this tutorial, I will review the thermodynamic properties cloudy air and how they are typically treated in numerical models. This will include the concepts of saturation, equation of state for moist air, moist entropy and potential temperature of many kinds. We will then discuss the implications for buoyancy and convective processes.  

Human Rezaei (Inra JouyenJosas, France)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Thu, 8. Jun 17, 15:20 
Prion quasispecies and molecular basis of autoperpetuation of Prion structural information.  
Davy Martin1, Joan Torrent i Mas1, Stéphanie Prigent1, Mathieu Mezache2, Marie DoumicJauffret2, Vincent Béringue1 and Human Rezaei1* 1. National Institute for Agricultural Research (INRA), Pathological Macroassemblies and Prion Pathology group (MAP2), UR892, Virologie Immunologie Moléculaires, JouyenJosas, 78350F, France 2. Sorbonne Universités, Inria, UPMC Univ Paris 06, Lab. J.L. Lions UMR CNRS 7598, Paris, France The prion phenomenon is based on autonomous structural information propagation towards single or multiple protein conformational changes. Since this last decade the prion concept referring to the transmission of structural information has been extended to several regulation systems and pathologies including Alzheimer and Parkinson’s diseases. The unified theory in Prion replication implies structural information transference (SIT) from the prion to a nonprion conformer through a mechanism also called improperly, with regards to biophysical considerations “seeding” phenomenon. Therefore considering prion replication as a structural information transduction from a donor (i.e. template) to an acceptor (i.e. substrate) through a transduction interface a new questioning arises: what are molecular mechanisms of the autoperpetuation of the Prion structural information and its faithfulness? Considering the Prion propagation as more or less faithful perpetuation of structural information, in the present work, we explored the concept of prion quasispecies (i.e. existence of prion heterogeneous assemblies) and highlighted the existence of prion network, which has an autopoietic behaviour (autoreplicative). Our observations strongly suggest that specific criteria in term of: protein structure, delayprocess and thermokinetics should be collated before a system become dissipative and autopoietic.  

Sara MerinoAceituno (Imperial College, London, United Kingdom)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Thu, 8. Jun 17, 14:30 
A new flocking model through body attitude coordination  
We present a new model for multiagent dynamics where each agent is described by its position and body attitude: agents travel at a constant speed in a given direction and their body can rotate around it adopting different configurations. Agents try to coordinate their body attitudes with the ones of their neighbours. This model is inspired by the Vicsek model. The goal of this talk will be to present this new flocking model, its relevance and the derivation of the macroscopic equations from the particle dynamics. In collaboration with Pierre Degond (Imperial College London) and Amic Frouvelle (Université Paris Dauphine).  

Alexander K. Buell (Institute of Physical Biology, University of Düsseldorf)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Thu, 8. Jun 17, 13:50 
Kinetic and thermodynamic analysis of peptide selfassembly  
In this talk I will discuss various aspects of the kinetics and thermodynamics of the self assembly of peptides into amyloid fibrils and crystals. I will present a theoretical framework that allows to determine free energy barriers and entropies from kinetic data of amyloid fibril growth [1,2]. I will contrast the kinetic behaviour of longer, amyloid forming sequences with that of aromatic dipeptides that form crystals, rather than amyloid fibrils [3,4]. Furthermore, I will present the phenomenon of autocatalytic secondary nucleation, whereby new amyloid fibrils nucleate on the surface of existing ones [5,6]. In particular, I will show how this phenomenon manifests itself in kinetic measurements of protein aggregation, and how biosensing can be used to explore its molecular origin [6,7]. [1] A. K. Buell, J. R. Blundell, C. M. Dobson, M. E. Welland, E. M. Terentjev, and T. P. Knowles, Phys. Rev. Lett. 104, 228101 (2010). [2] A. K. Buell, A. Dhulesia, D. A. White, T. P. J. Knowles, C. M. Dobson, and M. E. Welland, Angew. Chem. Int. Ed Engl. 51, 5247 (2012). [3] T. O. Mason, T. C. T. Michaels, A. Levin, E. Gazit, C. M. Dobson, A. K. Buell, and T. P. J. Knowles, J. Am. Chem. Soc. 138, 9589 (2016). [4] T. O. Mason, A. Levin, C. M. Dobson, E. Gazit, T. P.J. Knowles and A. K. Buell, JACS under revision, (n.d.). [5] A. K. Buell, C. Galvagnion, R. Gaspar, E. Sparr, M. Vendruscolo, T. P. J. Knowles, S. Linse, and C. M. Dobson, Proc. Natl. Acad. Sci. 111, 7671 (2014). [6] R. Gaspar, G. Meisl, A. K. Buell, L. Young, C. F. Kaminski, T. P. J. Knowles, E. Sparr, and S. Linse, Q. Rev. Biophys. 50, (2017). [7] A. Šariæ, A. K. Buell, G. Meisl, T. C. T. Michaels, C. M. Dobson, S. Linse, T. P. J. Knowles, and D. Frenkel, Nat. Phys. 12, 874 (2016).  

Yi Yin (Inria Paris and Univ. Pierre et Marie Curie, France)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Thu, 8. Jun 17, 12:00 
Automated quantification of amyloid fibrils morphological features based on image analysis of transmission electron microscopies  
Yi Yin*, 1, Stéphanie Prigent1, Joan Torrent, Dirk Drasdo1, Human Rezaei, and Marie Doumic1 1. INRIA Paris, and Sorbonne Universités UPMC Univ. Paris 6, Laboratoire JacquesLouis Lions, Paris, France, * yi.yin@inria.fr Protein aggregation into fibrils is a key process in amyloid diseases and also in other biological processes. The quantification of fibrils’ morphology and molecular structures is urgently needed in understanding of the key mechanisms and properties of fibrils. In this study, we propose an automated image analysis procedure to extract and quantify fibril morphological features from transmission electron microscopy (TEM) images. Fibrils are segmented by a ‘maximum entropy’ thresholding method and then the ‘fast marching’ skeletonization is applied to detect the fibril centerlines. The individual information of each fibril is gathered based on the fibril segmentation and extracted centerline, including the length (following the curvature of the fibrils, which are rarely straight lines), the varying width along the length, the curvature, as well as the number, position and length of branches. The intricate overlapping and branching structures are identified based on the angles between fibril segments. The proposed method was tested on experiments on the prion protein (PrP), which also allows us to explain in detail the parameters needed for the image analysis. Our method has high estimation accuracy (e.g. width estimation as shown in the figure). The results from different mutants of the PrP protein fibrils showed the potential of the method in fibrils classification through a statistical analysis. Romain  

Frédéric Halgand (University ParisSud, France)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Thu, 8. Jun 17, 11:20 
Prion protein conformational landscape studied by mass spectrometry and ion mobility  
Guillaume van der Rest, Human, Rezaei, Frédéric Halgand, Université Paris Sud, Laboratoire de Chimie Physique Prion protein is involved in deadly neurodegenerative diseases. Its pathogenicity is linked to its structural conversion (ahelix to bstrand transition). However, recent studies suggest that prion protein can follow a plurality of conversion pathways which hints towards different conformers that might coexist in solution. We therefore decided to screen the ovine and human PrP monomers using ion mobility coupled to mass spectrometry following electrospray ionization. After a short presentation of ion mobility for studying ionized proteins in the gas phase, we will briefly discuss issues with the collision cross section calibration procedure that we have encountered when using travelling wave ion mobility. We will also discuss the development of an automated data extraction pipeline for which we developed a Python/Qt script base interface. Infusion of monomeric PrP solutions have shown that at least three PrP conformers are observed in the gas phase. PrP monomers are known to lead to the formation of oligomeric species in specific conditions (temperature, pH and buffer), which are not compatible with mass spectrometry. We have therefore developed a sizeexclusion chromatography IMSMS setup with the aim to study the oligomers produced in these conditions. The development of this SECIMSMS methodology will be presented as well as its application for calibration with standard protein complexes. Although we did not achieve resolution of the large (O1 ~36mer) oligomeric species, optimization of the experimental parameters led to the observation of the small (O3) oligomeric species. One key observation in this process was that the abundance of the gas phase monomeric conformers changed upon the oligomerization process. First results allow us to interpret this as an effect of monomer concentration on the ratio of conformers present in solution, which is observed only in specific buffer conditions.  

Magali Tournus (University of Marseille, France)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Thu, 8. Jun 17, 10:10 
Estimating the division rate and kernel in the fragmentation equation.  
We consider the pure fragmentation fragmentation equation and address the question of estimating the fragmentation parameters (division rate and fragmentation kernel) from measurements of the size distribution at various times. Under the assumption of a polynomial division rate and a selfsimilar fragmentation kernel, we use the wellknown asymptotic behaviour of the solution to guarantee the wellposedness of our inverse problem and provide a representation formula for the fragmentation kernel. The tools used are the Mellin transform and the WienerHopf method. Motivations for studying this problem and applications to amyloid fibril breakage will be described in the talk of W.F. Xue.  

WeiFeng Xue (University of Kent at Canterbury, United Kingdom)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Thu, 8. Jun 17, 9:30 
Nanoscale properties of amyloid fibril fragments  
A number of devastating human disorders, for example Alzheimer's disease (AD), Hungtington's diseases, type 2 diabetes and transmissible spongiform encephalopathies (TSEs), are associated with the abnormal folding and assembly of proteins. The net result of this misfolding is the formation of large insoluble protein deposits and small toxic and transmissible protein particles in a state called amyloid. What are the molecular mechanisms that govern the amyloid fibrils’ potential to seed the formation of new aggregates, to propagate the amyloid state as prion particles, and to damage cells in amyloidassociated diseases? We have developed AFM imaging approaches that are capable of resolving the fibril particle concentrations, their length distributions, as well as their toxic and infective potential to cells. With these approaches, we have shown that the diseaseassociated properties of amyloid can be linked to small nanosized amyloid particles created through the breakage of amyloid fibrils. The approaches we have developed offer new opportunities to determine, quantify, and predict the course and the consequences in amyloid assembly of cytotoxic, infectious as well as functional amyloid systems.  

Nicola Vettore, Institute of Physical Biology, University of Düsseldorf, Germany  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Wed, 7. Jun 17, 17:15 
Temperature dependence of amyloid fibril stability studied through equilibrium denaturation  
Nicola Vettore and Alexander K. Buell, Institute of Physical Biology, University of Düsseldorf Amyloid fibrils are thermodynamically very stable [1], but the origin of their enhanced stability with respect to the native state has not yet been elucidated in molecular detail. The high stabilities of amyloid fibrils render the study of their equilibrium behaviour challenging. One way to approach this issue, in direct analogy to the study of protein folding equilibria is denaturation with commonly used denaturants, such as GdmCl or Urea. A theoretical framework to extract from such measurements the free energy difference between the fibril state and the soluble state, based on Oosawa's linear polymerisation model, was proposed in [2]. Here we present experimental results of amyloid fibril equilibrium denaturation measured via capillary fluorescence over a wide range of temperatures. The data highlight how the influence of temperature seems of primary importance not only for the kinetics of fibril formation, but also for the thermodynamic stability of the fibrillar structures. We will also present our attempts to describe the temperaturedependence of fibril stability within a general thermodynamic framework. [1] A. J. Baldwin, T. P. J. Knowles, G. G. Tartaglia, A. W. Fitzpatrick, G. L. Devlin, S. L. Shammas, C. A. Waudby, M. F. Mossuto, S. Meehan, S. L. Gras, J. Christodoulou, S. J. AnthonyCahill, P. D. Barker, M. Vendruscolo, and C. M. Dobson, J. Am. Chem. Soc. 133, 14160 (2011). [2] T. Narimoto, K. Sakurai, A. Okamoto, E. Chatani, M. Hoshino, K. Hasegawa, H. Naiki, and Y. Goto, FEBS Lett. 576, 313 (2004).  

Mathieu Mézache, Inria Paris and Univ. Pierre et Marie C, France  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Wed, 7. Jun 17, 17:15 
An oscillatory kinetic model for the Prion aggregation process. From BelousovZhabotinsky reaction to a Prion polymerisation/depolymerisation chemical system.  
We investigate the oscillatory behaviour of the PrP protein during the polymerization/depolymerization process. In order to modelize this oscillatory process, we study a simplified BelousovZhabotinsky reaction from a kinetic point of view. This simplified oscillatory system of chemical reactions allows us to introduce a modified BeckerDöring system where the trajectories oscillate. A key to have a closed oscillatory polymerization/depolymerization system is to consider different specices of polymers and monomers. We finally present several system where the numerical simulations show a more or less sustained oscillatory behaviour.  

Angélique IgelEgalon, INRA JouyenJosas, France  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Wed, 7. Jun 17, 17:15 
Depolymerization instead of fragmentation spreads the replication unit of prion assemblies  
Reine1, CharlesAdrien Richard1, Tina Knäpple1 Vincent Béringue1* and Human Rezaei1* 1: INRA, UR892, Virologie Immunologie Moléculaires, JouyenJosas 78350, France *: Corresponding authors The prion phenomenon is based on autonomous structural information propagation towards single or multiple protein conformation changes. During this last decade the prion concept referring the transmission of structural information has been extended to several regulation systems and pathologies including Alzheimer and Parkinson’s diseases. Despite intensive investigation, the molecular basis of structural information transmission remains obscure. Templating (i.e. secondary nucleation as vector of structural information) has been proposed as origin of autocatalytic structural information perpetuation. However, the templating process does not consider the spreading process which consists in an exponential amplification of structural information. Active fibril fragmentation (AFF) constitutes a solution for exponential spreading and amplification of the structural information as strongly suggested in fungi prions (Shorter and Lindquist, Mol Cell, 2006). In the present work, we demonstrate that mammalian Prion assemblies (PrPSc) are constituted from an oligomeric elementary brick called suPrP. We show that in physiological conditions Prion assemblies are in equilibrium with suPrP. The existence of such equilibrium as simple depolymerization/condensation process is sufficient to spread the replicative unit through the release of suPrP, followed by its Brownian diffusion and condensation into PrPSc and discards the requirement of fragmentation for prion spreading.  

Marie Doumic (Inria Paris & Wolfgang Pauli Institute, France & Austria)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Wed, 7. Jun 17, 16:15 
Modelling protein polymerisation: results and open questions  
Mathematical modelling of protein polymerisation is a challenging topic, with wide applications, from actin filaments in myocytes (muscle tissues) to the socalled amyloid diseases (e.g. Alzheimer's, Parkinson's or CreuzfeldtJakob's diseases). In this talk, we will give an overview of recent results for both deterministic  where statistical mechanical fluctuations arising from intrinsic noise are negligible  and stochastic approaches, envisaged as giving complementary insights on the still largely mysterious intrinsic mechanisms of polymerisation. A data assimilation approach is developed in parallel of more specific methods for fragmentation estimation. The results we will present are partly joint work with A. Armiento, J. Calvo, S. Eugène, M. Escobedo, P. Moireau, B. Perthame, H. Rezaei, P. Robert, M. Tournus and W.F. Xue.  

Christian Schmeiser (University of Vienna and Wolfgang Pauli Institute, Austria)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Wed, 7. Jun 17, 14:10 
Homeostatic regulation of actin density at the leading edge of lamellipodia  
Some recent contributions to the modeling of the polymerization and depolymerization of actin filaments will be reviewed. Some results of the embedding of these models into the Filament Based Lamellipodium Model will be presented.  

Sascha Martens (Max F. Perutz Laboratories (MFPL), University of Vienna, Austria)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Wed, 7. Jun 17, 11:20 
Mechanism of p62mediated protein aggregation in selective autophagy  
Autophagosomes are double membranebound organelles that are formed de novo during a process called autophagy. Autophagosomes mediate the bulk degradation of cytoplasmic material such as aggregated proteins, dysfunctional or surplus mitochondria and intracellular pathogens. Autophagy is conserved from yeast to human and has been shown to protect the organism from conditions such as starvation, neurodegeneration and infectious diseases. During autophagosome formation initially small membrane structures termed isolation membranes are formed. These isolation membranes expand and thereby gradually enclose cytoplasmic cargo. Finally, isolation membranes close to give rise to mature autophagosomes. After their formation autophagosomes fuse with lysosomes within which their inner membranes and the contents are degraded. Autophagy has the ability to selectively capture and subsequently degrade aggregated and ubiquitinated proteins. This is mediated by the p62 cargo receptor, which is required for the aggregation of these proteins into larger structures. These structures then serve as templates for autophagosome formation. I will present our results from a fully reconstituted system, which enabled us to dissect the interplay between p62 and ubiquitin positive proteins during protein aggregation in selective autophagy.  

Laurent PujoMenjouet (University of Lyon, France)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Wed, 7. Jun 17, 10:10 
Modelling prion dynamics: a fruitful collaboration between mathematicians and biologists  
In a previous work by AlvarezMartinez et al. (2011), the authors pointed out some fallacies in the mainstream interpretation of the prion amyloid formation. It appeared necessary then to propose an original hypothesis able to reconcile the in vitro data with the predictions of a mathematical model describing the problem. The model presented here, has been developed accordingly with the hypothesis that an intermediate onpathway leads to the conformation of the prion protein into an amyloid competent isoform thanks to a structure, called micelles, formed from hydrodynamic interaction. Experimental data have been compared to the prediction of our model leading to a new hypothesis for the formation of infectious prion amyloids. In the last part, we will introduce a new model describing another dangerous liaison: the interaction between prion proteins and Abeta peptides that may lead to Alzheimer’s disease.  

Cassandra Terry, MRC Prion, UCL Institute of Technology, London, United Kingdom  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Wed, 7. Jun 17, 9:30 
Structural characterisation of ex vivo mammalian prions.  
Cassandra Terrya Adam Wenborna Nathalie Grosa Jessica Sellsa Susan Joinera Laszlo L.P. Hosszua M. Howard Tattuma Silvia Panicob Daniel K. Clareb, John Collingea, Helen R. Saibilb and Jonathan D.F. Wadswortha* a, MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK b, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK Prions cause lethal neurodegenerative diseases in mammals, including scrapie in sheep and goats, bovine spongiform encephalopathy (BSE) in cattle and Creutzfeldt–Jakob disease (CJD) in humans. Mammalian prions are hypothesised to be fibrillar or amyloid forms of prion protein (PrP) which selfpropagate by means of seeded protein polymerisation but structures observed had not been definitively correlated with infectivity and the threedimensional structure of prions remained unknown. We developed new methods to obtain pure preparations of intact prions from mouse brain1 and showed that pathogenic PrP is assembled into rodlike assemblies (PrP rods) that faithfully transmit prion strainspecific phenotypes when inoculated into mice. We have utilised the precision of cell culture prion infectivity assays to define the physical relationship between PrP rods and prion infectivity and used electron tomography to define their architecture. Our 3D analysis2 demonstrates that ex vivo infectious PrP rods from different strains observed have a common hierarchical assembly comprising twisted pairs of short fibres with repeating substructure which are markedly different to noninfectious PrP fibrils generated in vitro. References 1. A. Wenborn, C. Terry, N. Gros, S. Joiner, L. D’Castro, S. Panico, J. Sells, S. Cronier, J. Linehan, S. Brandner, H.R. Saibil, J. Collinge, J.D.F Wadsworth, Sci. Rep. A novel and rapid method for obtaining high titre intact prion strains from mammalian brain, 2015, 5, 10062. C. Terry, A. Wenborn, N. Gros, J. Sells, S. Joiner, L.L.P Hosszu, M.H. Tattum, S. Panico, D.K. Clare, J. Collinge, H.R. Saibil, J.D.F Wadsworth. Open Biology. Ex vivo mammalian prions are formed of paired double helical prion protein fibrils, 2016, 6, 160035.  

Romain Yvinec, INRA Tours, France  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Tue, 6. Jun 17, 16:50 
Time scales in a coagulationfragmentation model}  
This work is motivated by protein aggregation phenomena in neurodegenerative diseases. A key observation of invitro spontaneous polymerization experiments of prion protein is the large variability of the socalled 'nucleation time', which is experimentally defined as the lag time before the polymerization of proteins truly starts (typically several hours in a 1020 hours experiment). In this context, we study a stochastic version of a wellknown nucleation model in physics, namely the BeckerDöring model [1]. In this model, aggregates may increase or decrease their size onebyone, by capturing or shedding a single monomer particle. We will present numerical and analytical investigation of the nucleation time defined as a first passage time problem [2, 3]. Finally, we will present limit theorem techniques to study the link from the discrete size BeckerDöring model to a continuous size version (the LifshitzSlyozov model), which may be of importance to study large size aggregates formation. For general coefficients and initial data, we introduce a scaling parameter and show that the empirical measure associated to the BeckerDöring system converges in some sense to the LifshitzSlyozov equation when the scaling parameter goes to 0. When the aggregation is favorable, we derive a meanfield transport PDE limit together with an entrant boundary condition, leading to an effective reduced dynamical model [4]. When the aggregation is initially unfavorable, we shed light on metastable behavior and phase transition phenomena. [1] E. Hingant, R. Y., arXiv:1609.00697 (2016). [2] R. Y., M. R. D'Orsogna, and T. Chou. J. Chem. Phys., 137:244107, (2012). [3] R. Y., S. Bernard, E. Hingant, L. PujoMenjouet, J. Chem. Phys., 144(3):034106, (2016). [4] Julien Deschamps, Erwan Hingant, R.Y., arXiv:1605.08984 (2016).  

Vincent Béringue (Inra JouyenJosas, France)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Tue, 6. Jun 17, 16:10 
Small prion assemblies are involved in prion replication  
Angélique IgelEgalon1¶, Mohammed Moudjou1¶, Florent Laferrière1¶, Tina Knäpple1, Laetitia Herzog1, Fabienne Reine1, Hubert Laude1, Human Rezaei1*, Vincent Béringue1* 1VIM, INRA, Université ParisSaclay, 78350 JouyenJosas, France ¶Equal contributors, *Senior authorship Mammalian prions are proteinaceous pathogens responsible for fatal, neurodegenerative disorders in human and animals. They are formed of misfolded assemblies (PrPSc) of the hostencoded cellular prion protein (PrPC). In the infected species, prions replicate by seeding the conversion and polymerization of host PrPC. Distinct prion strains are recognized within the same hostspecies, exhibiting defined PrPSc biochemical properties and stereotyped biological traits. While strain information is encoded within the conformation of PrPSc assemblies, the storage of the structural information and the molecular requirements for selfperpetuation remain uncertain. In particular, the polymerization steps and its dynamic nature remains mostly hypothetical. It is widely believed that monomeric PrPC is constantly recruited within the forming aggregates allowing PrPSc fibril growth. Fibril fragmentation is supposed to provide further converting seeds, favouring prion exponential replication. Whether this proposed mechanism is versatile or straindependent remains to be determined, as is the real contribution of fragmentation. We have investigated this issue by analysing the dynamic of PrPSc assembling during cellfree prion amplification by protein misfolding cyclic amplification (PMCA). We show that: i) prion amplification occurs through preferential amplification of small oligomeric forms of PrPSc that can further assemble into larger aggregates; ii) disassembling rather than fragmentation sustains the selfperpetuation of the process, iii) different prion strains exhibit similar amplification dynamic. Thus, prion replication may proceed through an assembly/disassembly process.  

Klemens Fellner (University of Graz, Austria)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Tue, 6. Jun 17, 15:00 
Equilibration and QuasiSteadyState Asymptotics of a VolumeSurface ReactionDiffusion Model for Asymmetric Protein Localisation  
The protein Lgl (Lethal giant larvae) is part of a conserved protein complex, which is responsible for the asymmetric localisation of cellfate determinants, for instance, in Drosophila SOP precursor cells. We formulate continuum models, which consider the phosphorylated and the unphosphorylated conformations of Lgl within the cell cytoplasm and on the cell cortex. After presenting illustrative numerical simulations, we prove first the equilibration of the underlying complexbalance volumesurface reactiondiffusion system and perform further a rigorous quasisteadystateapproximation in a fastreaction limit.  

John H Viles, Queen Mary, University of London, United Kingdom  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Tue, 6. Jun 17, 14:20 
Cofibrillisation of truncated isoforms of Amyloidâ and ionchannel formation in Alzheimer’s Disease  
Amyloidâ peptide (Aâ) isoforms of different lengths and aggregation propensities coexist in vivo. These different isoforms are able to nucleate or frustrate the assembly of each other. Nterminal truncated Aâ(1140) and Aâ(1142) make up one fifth of plaque load yet nothing is known about their interaction with fulllength Aâ(140/42). Here we show that in contrast to Cterminal truncated isoforms which do not cofibrillise, deletions of ten residues from the Nterminus of Aâ have little impact on its ability to cofibrillise with the fulllength counterpart. As a consequence Nterminal truncated Aâ will accelerate fibre formation and coassemble into short rodshaped fibres with its fulllength Aâ counterpart. Furthermore we show Cu2+ forms a very tight tetragonal complex with truncated Aâ(1140) with a femtomolar affinity. These observations have implications for the assembly kinetics, morphology and toxicity of all Aâ isoforms. The process by which amyloidâ (Aâ) disrupts synaptic activity, and causes neuronal cell death in Alzheimer’s disease remains poorly understood. A potential mechanism of toxicity is in the ability of Aâ to form, membranespanning ion channels. However, there has been a mismatch between the channel forming properties of Aâ isoforms, 40 and 42 amino acids long, and their known relative pathogenicity. We observe ion channel formation by oligomeric Aâ42, but also show Aâ40 does not form ion channels in cellular membranes. This makes a strong link between ion channel formation and the pathology of Aâ isoforms. Molecules that block these ion channels may represent therapeutic targets. [1] Ion Channel Formation by Amyloidâ42 Oligomers but not Amyloidâ40 in Cellular Membranes DC Bode, MD Baker, JH Viles* (2017) J of Biol Chem 292, 14041413 [2] Truncated Amyloidâ (1140/42) from Alzheimer's Disease Binds Copper2+ with a Femtomolar Affinity and Influences Fibre Assembly J D Barritt, J H. Viles* (2015) J of Biol Chem, 290, 2779127802 [3] The Rapid Exchange of Zinc2+ Enables Trace Levels to Profoundly Influence Amyloidâ Misfolding and Dominates Assembly Outcomes in Cu2+/Zn2+ Mixtures C J Matheou, N D Younan, J H Viles* (2016) J Mol Biol 428, 28322846  

Franca Hoffmann (University of Cambridge)  WPI, OMP 1, Seminar Room 08.135  Fri, 12. May 17, 11:30 
Homogeneous functionals in the faircompetition regime  
We study interacting particles behaving according to a reactiondiffusion equation with nonlinear diffusion and nonlocal attractive interaction. This class of equations has a very nice gradient flow structure that allows us to make links to homogeneous functionals and variations of wellknown functional inequalities (HardyLittlewoodSobolev inequality, logarithmic Sobolev inequality). Depending on the nonlinearity of the diffusion, the choice of interaction potential and the dimensionality, we obtain different regimes. Our goal is to understand better the asymptotic behaviour of solutions in each of these regimes, starting with the faircompetition regime where attractive and repulsive forces are in balance. This is joint work with José A. Carrillo and Vincent Calvez.  

Sabine Hittmeir (Universität Wien)  WPI, OMP 1, Seminar Room 08.135  Thu, 11. May 17, 16:15 
Cross diffusion models in chemotaxis and pedestrian dynamics  
The main feature of the twodimensional KellerSegel model is the blowup behaviour of solutions for supercritical masses. We introduce a regularisation of the fully parabolic system by adding a crossdiffusion term to the equation for the chemical substance. This regularisation provides another helpful entropy dissipation term allowing to prove global existence of weak solutions for any initial mass. For the proof we first analyse an approximate problem obtained from a semidiscretisation and a carefully chosen regularisation by adding higher order derivatives. Compactness arguments are used to carry out the limit to the original system. A similar approach can be used to analyse a pedestrian dynamics model for two groups moving in opposite direction. The evolutionary equations are driven by cohesion and aversion and are formally derived from a 2d lattice based approach. Also numerical simulations illustrating lane formation will be presented. These methods are extended to a crossing pedestrian model, where we additionally analyse the stability of stationary states in the corresponding 1d model.  

Delphine Salort (UPMC Paris 6)  WPI, OMP 1, Seminar Room 08.135  Thu, 11. May 17, 14:45 
Turing instabilities in reactiondiffusion with fast reaction  
In this talk, we consider some specific reactiondiffusion equations in order to understand the equivalence between asymptotic Turing instability of a steady state and backwardness of some parabolic equations or crossdiffusion equations in the formal limit of fat reaction terms. We will see that the structure of the studied equations involves some Lyapunov functions which leads to a priori estimates allowing to pass rigorously for the fast reaction terms in the case without Turing instabilities.  

Andrea Bondesan (Université Paris Descartes)  WPI, OMP 1, Seminar Room 08.135  Thu, 11. May 17, 14:00 
A numerical scheme for the multispecies Boltzmann equation in the diffusion limit: wellposedness and main properties  
We consider the onedimensional multispecies Boltzmann system of equations [2] in the diffusive scaling. Suppose that the Mach and the Knudsen numbers are of the same order of magnitude epsilon > 0 small enough. For each species i of the mixture, we define the macroscopic quantity of matter and flux as the moments 0 and 1 in velocity of the distribution functions f_i, solutions of the Boltzmann system associated to the scaling parameter epsilon. Using the moment method [4], we introduce a proper ansatz for each distribution function f_i in order to recover a MaxwellStefan diffusion limittype as in [1]. In this way we build a suitable numerical scheme for the evolution of these macroscopic quantities in different regimes of the parameter epsilon. We prove some a priori estimates (mass conservation and nonnegativity) and wellposedness of the discrete problem. We also present numerical examples where we observe that the scheme shows an asymptotic preserving property similar to the one presented in [3]. This is a joint work with L. Boudin and B. Grec. References [1] L. Boudin, B. Grec and V. Pavan, The MaxwellStefan diffusion limit for a kinetic model of mixtures with general cross sections, Nonlinear Analysis: Theory, Methods and Applications, 2017. [2] L. Desvillettes, R. Monaco and F. Salvarani, A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions, Eur. J. Mech. B Fluids, 24(2005), 219236. [3] S. Jin and Q. Li, A BGKpenalizationbased asymptoticpreserving scheme for the multispecies Boltzmann equation, Numer. Methods Partial Differential Equations, 29(3), pp. 10561080, 2013. [4] C. D. Levermore, Moment closure hierarchies for kinetic theories, J. Statist. Phys., 83(56):10211065, 1996  

Athmane Bakhta (École Nationale des Ponts et Chaussées)  WPI, OMP 1, Seminar Room 08.135  Thu, 11. May 17, 11:30 
Crossdiffusion equations in a moving domain  
We show globalintime existence of bounded weak solutions to systems of crossdiffusion equations in a one dimensional moving domain. These equations stem from the modelization of the evolution of the concentration of chemical species composing a crystalline solid during a physical vapor deposition process. To this aim, we use the so called boundednessbyentropy technique developed in [1], [2] and [3] based on the formal gradient flow structure of the system. Moreover, we are interested in controlling the fluxes of the different atomic species during the process in order to reach a certain desired final profile of concentrations. This problem is formulated as an optimal control problem to which the existence of a solution is proven. In addition, an investigation of the long time behavior is presented in the case of constant positive external fluxes. Finally, some numerical results and comparison with actual experiments are presented. The material of this talk is a joint work with Virginie Ehrlacher. References [1] M.Burger, M.Di Francesco, JF. Pietschmann and B. Schalke. Non linear cross diffusion with size exclusion. SIAM J. Math Anal 42 (2010). [2] A. Jüngel and Nicola Zamponi boundedness of weak solutions to crossdiffusion systems from population dynamics. arxiv:1404.6054v1 (2014). [3] A. Jüngel. The boundednessbyentropy method for crossdiffusion systems. To appear in Nonlinearity, http://www.asc.tuwien.ac.at/ juengel/ (2015).  

Esther Daus (Université Paris 7  Denis Diderot)  WPI, OMP 1, Seminar Room 08.135  Thu, 11. May 17, 10:15 
Crossdiffusion systems and fastreaction limit  
We investigate the rigorous fastreaction limit from a reactioncrossdiffusion system with known entropy to a new class of crossdiffusion systems using entropy and duality estimates. Performing the fastreaction limit leads to a limiting entropy of the limiting crossdiffusion system. In this way, we are able to obtain new entropies for new classes of crossdiffusion systems. This is a joint work with L. Desvillettes and A. Juengel.  

Thomas Lepoutre (INRIA)  WPI, OMP 1, Seminar Room 08.135  Thu, 11. May 17, 9:30 
Entropy, duality and crossdiffusion  
In this talk, we will describe how to mix entropy structure and duality estimates in order to build global weak solutions to a class of crossdiffusion systems.  

Nicola Zamponi (TU Wien)  WPI, OMP 1, Seminar Room 08.135  Wed, 10. May 17, 16:15 
Analysis of degenerate crossdiffusion population models with volume filling  
A class of parabolic crossdiffusion systems modeling the interaction of an arbitrary number of population species is analyzed in a bounded domain with noflux boundary conditions. The equations are formally derived from a randomwalk lattice model in the diffusion limit. Compared to previous results in the literature, the novelty is the combination of general degenerate diffusion and volumefilling effects. Conditions on the nonlinear diffusion coefficients are identified, which yield a formal gradientflow or entropy structure. This structure allows for the proof of globalintime existence of bounded weak solutions and the exponential convergence of the solutions to the constant steady state. The existence proof is based on an approximation argument, the entropy inequality, and new nonlinear AubinLions compactness lemmas. The proof of the largetime behavior employs the entropy estimate and convex Sobolev inequalities. Moreover, under simplifying assumptions on the nonlinearities, the uniqueness of weak solutions is shown by using the H^{1} method, the Emonotonicity technique of Gajewski, and the subadditivity of the Fisher information.  

Gianni Pagnini (BCAM)  WPI, OMP 1, Seminar Room 08.135  Wed, 10. May 17, 14:45 
Stochastic processes for fractional kinetics with application to anomalous diffusion in living cells  
Fractional kinetics is derived from Gaussian processes when the medium where the diffusion takes place is characterized by a population of lengthscales [1]. This approach is analogous to the generalized grey Brownian motion [2], and it can be used for modeling anomalous diffusion in complex media. In particular, the resulting stochastic process can show subdiffusion with a behavior in qualitative agreement with singleparticle tracking experiments in living cells, such as the ergodicity breaking, p variation, and aging. Moreover, for a proper distribution of the lengthscales, a single parameter controls the ergodictononergodic transition and, remarkably, also drives the transition of the diffusion equation of the process from nonfractional to fractional, thus demonstrating that fractional kinetics emerges from ergodicity breaking [3]. References: [1] Pagnini G. and Paradisi P., A stochastic solution with Gaussian stationary increments of the symmetric spacetime fractional diffusion equation. Fract. Cacl. Appl. Anal. 19, 408–440 (2016) [2] Mura A. and Pagnini G., Characterizations and simulations of a class of stochastic processes to model anomalous diffusion. J. Phys. A: Math. Theor. 41, 285003 (2008) [3] Molina–García D., Pham T. Minh, Paradisi P., Manzo C. and Pagnini G., Fractional kinetics emerging from ergodicity breaking in random media. Phys. Rev. E. 94, 052147 (2016)  

María José Cáceres (Universidad de Granada)  WPI, OMP 1, Seminar Room 08.135  Wed, 10. May 17, 14:00 
Mesoscopic models for neural networks  
In this talk we present some PDE models which describe the activity of neural networks by means of the membrane potential. We focus on models based on nonlinear PDEs of FokkerPlanck type. We study the wide range of phenomena that appear in this kind of models: blowup, asynchronous/synchronous solutions, instability/stability of the steady states ...  

Fellner Klemens (University of Graz)  WPI, OMP 1, Seminar Room 08.135  Fri, 24. Mar 17, 15:10 
Regularity and Equilibration for spatially inhomogeneous coagulationfragmentation models  
We consider results on discrete and continuous coagulation and coagulationfragmentation models. For discrete models, we shall present some recent regularity results concerning smoothness of moments and absence of gelation. For the continuous Smoluchowski equation with constant rates, we shall prove exponential, resp. superlinear convergence to equlibrium. This are joint works with M. Breden, J.A. Canizo, J.A. Carrillo and L. Desvillettes.  

Cañizo José A. (University of Granada, Spain)  WPI, OMP 1, Seminar Room 08.135  Fri, 24. Mar 17, 14:30 
Asymptotic behaviour of the BeckerDöring equations  
We will present some recent results on the long behaviour of the BeckerDöring equations, mainly involving subcritical solutions: speed of convergence to equilibrium (sometimes exponential, sometimes algebraic) and some new uniform bounds on moments. We will also comment on a continuous model that serves as an analogy of the discrete equations, that seems to exhibit a similar longtime behaviour. This talk is based on collaborations with J. Conlon, A. Einav, B. Lods and A. Schlichting.  

Salort Delphine (University Pierre & Marie Curie, Paris, France)  WPI, OMP 1, Seminar Room 08.135  Fri, 24. Mar 17, 11:40 
Fragmentation Equations and FokkerPlanck equations in neuroscience  
In this talk, we present two types of linked partial differential equation models that describe the evolution of an interacting neural network and where neurons interact with one another through their common statistical distribution. We will show, according to the choice of EDP studied, what information can be obtained in terms of synchronization phenomena, qualitative and asymptotic properties of these solutions and what are the specific difficulties on each of these models.  

Banasiak Jacek (University of Pretoria, South Africa)  WPI, OMP 1, Seminar Room 08.135  Fri, 24. Mar 17, 11:10 
Analytic fragmentation semigroups and discrete coagulationfragmentation processes with growth  
In the talk we shall describe how the substochastic semigroup theory can be used to prove analyticity of a class of fragmentation semigroup. This result is applied to discrete fragmentation processes with growth to analyze their long time behaviour and to prove the existence of classical solutions to equations describing such processes combined with coagulation.  

Laurençot Philippe (Institut de Mathématiques de Toulouse, France)  WPI, OMP 1, Seminar Room 08.135  Fri, 24. Mar 17, 10:10 
Selfsimilar solutions to coagulationfragmentation equations  
When the coagulation kernel and the overall fragmentation rate are homogeneous of degree ë and ã > 0, respectively, there is a critical value ëc := ã + 1 which separates two different behaviours: all solutions are expected to be massconserving when ë < ëc while gelation is expected to take place when ë > ëc, provided the mass of the initial condition is large enough. The focus of this talk is the case ë = ëc for which we establish the existence of massconserving selfsimilar solutions. This is partly a joint work with Henry van Roessel (Edmonton).  

Niethammer Barbara (Institut for applied mathematics, Bonn, Germany)  WPI, OMP 1, Seminar Room 08.135  Fri, 24. Mar 17, 9:30 
The coagulation equation: kernels with homogeneity one  
The question whether the longtime behaviour of solutions to Smoluchowski's coagulation equation is characterized by selfsimilar solutions has received a lot of interest within the last two decades. While this issue is by now wellunderstood for the three solvable cases, the theory for nonsolvable kernels is much less developed. For kernels with homogeneity smaller than one existence results for selfsimilar solutions and some partial uniqueness results are available. In this talk I will report on some recent results on the borderline case of kernels with homogeneity of degree one. For socalled class II kernels we can prove the existence of a family of selfsimilar solutions. For class I, or diagonally dominant, kernels, it is known that selfsimilar solutions cannot exist. Formal arguments suggest that the longtime behaviour of solutions is, in suitable variables, to leading order the same as for the Burgers equation. However, in contrast to diffusive regularizations, we obtain phenomena such as instability of the constant solution or oscillatory traveling waves. (Joint work with Marco Bonacini, Michael Herrmann and Juan Velazquez)  

Gwiazda Piotr (Polish academy of sciences, Poland)  WPI, OMP 1, Seminar Room 08.135  Thu, 23. Mar 17, 16:40 
Relative entropy method for measure solutions in mathematical biology  
In the last years there has appeared several applications of relative entropy method for strong measurevalued uniqueness of solutions in physical models (see: e.g. incompressible Euler equation [1], polyconvex elastodynamics [2], compressible Euler equation [3], compressible NavierStokes equation [4]). The topic of the talk will be application of similar techniques to structured population models. Preliminary result in this direction was obtain in [5]. The talk is based on the joint result with Marie DoumicJauffret and Emil Wiedemann. [1] Y. Brenier, C. De Lellis, and L. Sz´ekelyhidi, Jr. Weakstrong uniqueness for measurevalued solutions. Comm. Math. Phys., 305(2):351361, 2011. [2] S. Demoulini, D.M.A. Stuart, and A.E. Tzavaras. Weakstrong uniqueness of dissipative measurevalued solutions for polyconvex elastodynamics. Arch. Ration. Mech. Anal., 205(3):927961, 2012. [3] P. Gwiazda, A. ŒwierczewskaGwiazda, and E. Wiedemann. Weakstrong uniqueness for measurevalued solutions of some compressible fluid models. Nonlinearity, 28(11):38733890, 2015. [4] E. Feireisl, P. Gwiazda, A. ŒwierczewskaGwiazda and E. Wiedemann Dissipative measurevalued solutions to the compressible NavierStokes system, Calc. Var. Partial Differential Equations 55 (2016), no. 6, 55141 [5] P. Gwiazda, E. Wiedemann, Generalized Entropy Method for the Renewal Equation with Measure Data, to appear in Commun. Math. Sci., arXiv:1604.07657  

Van Brunt Bruce (Massey university, New Zealand)  WPI, OMP 1, Seminar Room 08.135  Thu, 23. Mar 17, 16:00 
Analytic solutions to certain equations from a cell division equation  
Click here for further information  

Haas Bénédicte (University of Paris XIII, France)  WPI, OMP 1, Seminar Room 08.135  Thu, 23. Mar 17, 14:40 
The fragmentation equation with shattering  
We consider fragmentation equations with nonconservative solutions, some mass being lost to a dust of zeromass particles as a consequence of an intensive splitting. Under assumptions of regular variation on the fragmentation rate, we describe the large time behavior of solutions. Our approach is based on probabilistic tools: the solutions to the fragmentation equations are constructed via nonincreasing selfsimilar Markov processes that continuously reach 0 in finite time. We describe the asymptotic behavior of these processes conditioned on nonextinction and then deduced the asymptotics of solutions to the equation.  

Bertoin Jean (University of Zürich, Switzerland)  WPI, OMP 1, Seminar Room 08.135  Thu, 23. Mar 17, 14:00 
A probabilistic approach to spectral analysis of growthfragmentation equations (based on a joint work with Alex Watson, Manchester University)  
The growthfragmentation equation describes a system of growing and dividing particles, and arises in models of cell division, protein polymerisation and even telecommunications protocols. Several important questions about the equation concern the asymptotic behaviour of solutions at large times: at what rate do they converge to zero or infinity, and what does the asymptotic profile of the solutions look like? Does the rescaled solution converge to its asymptotic profile at an exponential speed? These questions have traditionally been studied using analytic techniques such as entropy methods or splitting of operators. In this work, we present a probabilistic approach to the study of this asymptotic behaviour. We use a Feynman–Kac formula to relate the solution of the growthfragmentation equation to the semigroup of a Markov process, and characterise the rate of decay or growth in terms of this process. We then identify the spectral radius and the asymptotic profile in terms of a related Markov process, and give a spectral interpretation in terms of the growthfragmentation operator and its dual. In special cases, we obtain exponential convergence.  

Gabriel Pierre (University of VersaillesSaintQuentin, France)  WPI, OMP 1, Seminar Room 08.135  Thu, 23. Mar 17, 11:10 
Long time behaviour of growthfragmentation equations  
Growthfragmentation equations can exhibit various asymptotic behaviours. In this talk we illustrate this diversity by working in suitable weighted L^p spaces which are associated to entropy functionals. We prove that, depending on the choice of the coefficients, the following behaviours can happen: uniform exponential convergence to the equilibrium, nonuniform convergence to the equilibrium, or convergence to periodic solutions. This is a joint work with Etienne Bernard and Marie Doumic.  

Mischler Stéphane (University ParisDauphine, France)  WPI, OMP 1, Seminar Room 08.135  Thu, 23. Mar 17, 10:30 
Long time asymptotic of the solutions to the growthfragmentation equation  
I will discuss the long time asymptotic of the solutions to the growthfragmentation equation, presenting several results and approaches. I will then focus on the spectral analysis and semigroup approach for which I will give some more details about the proof.  

Buszkowski Wojciech (Adam Mickiewicz University)  WPI, OMP 1, Seminar Room 08.135  Wed, 15. Mar 17, 10:00 
Some open problems in substructural logics  
I will focus on several substructural logics, mainly conservative extensions of the Lambek calculus (associative and nonassociative, with and without constants) and point out some basic open problems. Examples: the lower bound of the complexity of the full nonassociative Lambek calculus, the decidability of Pratt's action logic, the decidability of the consequence relation for the nonassociative Lambek calculus with involutive negations, the decidability of the equational theory of latticeordered pregroups. I will briefly discuss what is known in these areas.  

Brotherston James (University College London)  WPI, OMP 1, Seminar Room 08.135  Tue, 14. Mar 17, 10:00 
Biabduction (and Related Problems) in Array Separation Logic  
I describe array separation logic (ASL), a variant of separation logic in which the data structures are either pointers or arrays. This logic can be used, e.g., to give memory safety proofs of imperative array programs. The key to automatically inferring specifications is the socalled "biabduction" problem, given formulas A and B, find formulas X and Y such that A + X = B + Y (and such that A + X is also satisfiable), where + is the wellknown "separating conjunction" of separation logic. We give an NP decision procedure for this problem that produces solutions of reasonable quality, and we also show that the problem of finding a consistent solution is NPhard. Along the way, we study satisfiability and entailment in our logic, giving decision procedures and complexity bounds for both problems. This is joint work with Nikos Gorogiannis (Middlesex) and Max Kanovich (UCL).  

Zhang Yong (WPI c/o Courant & NJIT)  WPI, OMP 1, Seminar Room 08.135  Wed, 8. Mar 17, 13:45 
Analysisbased fast algorithms for convolutiontype nonlocal potential in Nonlinear Schrödinger equation  
Convolutiontype potential are common and important in many science and engineering fields. Efficient and accurate evaluation of such nonlocal potentials are essential in practical simulations.In this talk, I will focus on those arising from quantum physics/chemistry and lightningshield protection, including Coulomb, dipolar and Yukawa potentials that are generated by isotropic and anisotropic smooth and fastdecaying density. The convolution kernel is usually singular or discontinuous at the origin and/or at the far field, and density might be anisotropic, which together present great challenges for numerics in both accuracy and efficiency. The stateofart fast algorithms include Wavelet based Method(WavM), kernel truncation method(KTM), NonUniformFFT based method(NUFFT) and GaussianSumbased method(GSM). Gaussiansum/exponentialsum approximation and kernel truncation technique, combined with finite Fourier series and Taylor expansion, finally lead to a O(NlogN) fast algorithm achieving spectral accuracy. Applications to NLSE are reviewed.  

Blanes Sergio (U. Politècnica de València)  WPI, OMP 1, Seminar Room 08.135  Tue, 7. Mar 17, 17:15 
Time average on the numerical integration of nonautonomous differential equations  
Click here for further information  

Casas Fernando (U. Jaume I Castellón)  WPI, OMP 1, Seminar Room 08.135  Tue, 7. Mar 17, 16:15 
Time dependent perturbation theory in matrix mechanics and time averaging  
Click here for further information  

Lode Axel (U. of Basel)  ATI; Stadionallee 2, 1020 Wien  Thu, 9. Feb 17, 11:00 
The multiconfigurational timedependent Hartree method for indistinguishable particles  overview and application to composite fragmentation of ultracold multicomponent bosons  
In this talk, I will review recent research and progress using the multiconfigurational timedependent Hartree for indistinguishable particles method to obtain highly accurate solutions of the timedependent manybody Schr"odinger equation for interacting, indistinguishable particles. As an example, I will focus on ultracold bosonic particles with internal degrees of freedom described by the multiconfigurational timedependent Hartree for bosons method. For the groundstate of N=100 parabolically confined bosons with two internal states, fragmentation emerges as a function of the separation between the statedependent minima of the two parabolic potentials: for small separations, the bosons occupy only one singleparticle state while for larger separations, two singleparticle states contribute macroscopically. The coherence of the system is maintained within each internal state of the atoms. Between the different internal states, however, correlations are built up and the coherence is lost for larger separations. This is a hallmark of a new kind of fragmentation  "composite fragmentation"  which is absent in bosons without internal structure.  

Golse François (Ecole polytechnique, Paris)  WPI, OMP 1, Seminar Room 08.135  Fri, 16. Dec 16, 14:00 
Quantization of probability densities : a gradient flow approach  
Quantization of probability densities on the Euclidean space refers to the approximation of a probability measure that is absolutely continuous with respect to the Lebesgue measure by convex combination of Dirac measures. The quality of the approximation is measured in terms of a distance metrizing the weak convergence of probability measures, typically a MongeKantorovich (or Vasershtein) distance. The talk with describe a gradient flow approach to the quantization problem in the limit as the number of points goes to infinity. (Work in collaboration with E. Caglioti and M. Iacobelli).  

Ayi Nathalie (U.Nice & INRIA)  WPI, OMP 1, Seminar Room 08.135  Fri, 16. Dec 16, 10:45 
From Newton's law to the linear Boltzmann equation without cutoff  
We provide a rigorous derivation of the linear Boltzmann equation without cutoff starting from a system of particles interacting via a potential with infinite range as the number of particles N goes to infinity under the BoltzmannGrad scaling. The main difficulty in this context is that, due to the infinite range of the potential, a nonintegrable singularity appears in the angular collision kernel, making no longer valid the singleuse of Lanford's strategy. On this talk, I will present how a combination of Lanford's strategy, of tools developed recently by Bodineau, Gallagher and SaintRaymond to study the collision process and of new duality arguments to study the additional terms associated with the infinite range interaction (leading to some explicit weak estimates) overcomes this difficulty.  

Jabin PierreEmmanuel (U. Maryland)  WPI, OMP 1, Seminar Room 08.135  Fri, 16. Dec 16, 9:30 
Mean field limits for 1st order systems with bounded stream functions  
We consider a large systems of first order coupled equations. The system model the interaction ofdiffusive particles through a very rough force field, which can be the derivative of a bounded stream function. Through a new, modified law of large numbers, we are able to give quantitative estimates between any statistical marginal of the discrete solution and the mean field limit. We are also able to extend the method to cover the case of the 2d incompressible NavierStokes system in the vorticity formulation.  

Napiorkowski Marcin (IST, Austria)  WPI, OMP 1, Seminar Room 08.135  Thu, 15. Dec 16, 15:15 
Norm approximation for manybody quantum dynamics  
Starting from the manybody Schroedinger equation for bosons, I will discuss the rigorous derivation of the Hartree equation for the condensate and the Bogoliubov equation for the excited particles. The effective equations allows us to construct an approximation for the manybody wave function in norm. This talk is based on joint works with Phan Thanh Nam.  

Saffirio Chiara (U. Zürich)  WPI, OMP 1, Seminar Room 08.135  Thu, 15. Dec 16, 14:00 
Mean field evolution of fermions with Coulomb interaction  
We will consider the manybody evolution of initially confined fermions in a joint meanfield and semiclassical scaling, focusing on the case of Coulomb interaction. We will show that, for initial states close to Slater determinants and under some conditions on the solution of the timedependent HartreeFock equation, the manybody evolution converges towards the HartreeFock dynamics. This is a joint work with M. Porta, S. Rademacher and B. Schlein.  

Pickl Peter (U. Munich)  WPI, OMP 1, Seminar Room 08.135  Thu, 15. Dec 16, 11:00 
Microscopic Derivation of the Vlasov equation  
The rigorous derivation of the Vlasov equation from Newtonian mechanics of N Coulombinteracting particles is still an open problem. In the talk I will present recent results, where an Ndependent cutoff is used to make the derivation possible. The cutoff is removed as the particle number goes to infinity. Our result holds for typical initial conditions, only. This is, however, not a technical assumption: one can in fact prove deviation from the Vlasov equation for special initial conditions for the system we consider.  

Bardos Claude (Lab. J.L. Lions, Paris & WPI) & Mauser Norbert J. (WPI c/o U.Wien)  WPI, OMP 1, Seminar Room 08.135  Thu, 15. Dec 16, 10:00 
Discussion of some open problems in many particle systems  
Discussion of history, methdods and open problems in mean field limits.  

Tournus Magali (École Centrale de Marseille)  OskarMorgensternPlatz 1, Hörsaal 2, ground floor.  Wed, 23. Nov 16, 14:15 
Scalar conservation laws with heterogeneous flux in the BV framework  
We consider a scalar conservation law with a flux containing spatial heterogeneities of bounded variation, where the number of discontinuities may be infinite. We address the question of existence of an adapted entropy solution in the BV framework. A sufficient key condition guaranteeing existence is identified and new BV estimates are given. This provides the most general BV theory available. Moreover, we show with a counterexample that if this hypothesis is violated, the problem may be illposed in the BV framework.  

Bob Eisenberg (U. Rush Chicago)  WPI, OMP 1, Seminar Room 08.135  Fri, 11. Nov 16, 11:00 
"Ions in Solutions and Channels: the plasma of life"  
All of biology occurs in ionic solutions that are plasmas in both the physical and biological meanings of the word. The composition of these ionic mixtures has profound effects on almost all biological functions, whether on the length scale of organs like the heart or brain, of the length scale of proteins, like enzymes and ion channels. Ion channels are proteins with a hole down their middle that conduct ions (spherical charges like Na+ , K+ , Ca2+ , and Clƒ{ with diameter ~ 0.2 nm) through a narrow tunnel of fixed charge (¡¥doping¡¦) with diameter ~ 0.6 nm. Ionic channels control the movement of electric charge and current across biological membranes and so play a role in biology as significant as the role of transistors in computers: almost every process in biology is controlled by channels, one way or the other. Ionic channels are manipulated with the powerful techniques of molecular biology in hundreds of laboratories. Atoms (and thus charges) can be substituted a few at a time and the location of every atom can be determined in favorable cases. Ionic channels are one of the few living systems of great importance whose natural biological function can be well described by a tractable set of equations. Ions can be studied as complex fluids in the tradition of physical science although classical treatments as simple fluids have proven inadequate and must be abandoned in my view. Ion channels can be studied by PoissonDrift diffusion equations familiar in plasma and semiconductor physics ¡X called Poisson Nernst Planck or PNP in biology. Ions have finite size and so the Fermi distribution must be introduced to describe their filling of volume. The PNPFermi equations form an adequate model of current voltage relations in many types of channels under many conditions if extended to include correlations, and can even describe ¡¥chemical¡¦ phenomena like selectivity with some success. My collaborators and I have shown how the relevant equations can be derived (almost) from stochastic differential equations, and how they can be solved in inverse, variational, and direct problems using models that describe a wide range of biological situations with only a handful of parameters that do not change even when concentrations change by a factor of 107. Variational methods hold particular promise as a way to solve problems outstanding for more than a century because they describe interactions of ¡¥everything with everything¡¦ else that characterize ions crowded into channels. An opportunity exists to apply the well established methods of computational physics to a central problem of computational biology. The plasmas of biology can be analyzed like the plasmas of physics.  

Piotr Gwiazda (U. Warsaw)  OskarMorgensternPlatz 1, Hörsaal 2, ground floor.  Wed, 9. Nov 16, 14:15 
"Mathematical scandal  Euler equations"  
In the recent years a significant attention has been directed again to Euler system, which was derived more than 250 years ago by Euler. The system describes the motion of an inviscid fluid. The main attention has been directed to incompressible fluids. Nevertheless, also the system of compressible fluids is an emerging topic, however still very far from a complete understanding. The classical results of Scheffer and Schnirelman pointed out the problem of nonuniqueness of distributional solutions to incompressible Euler system. However the crucial step appeared to be an application of methods arising from differential geometry, namely the celebrated theorem by Nash and Kuiper. This brought Camillo De Lellis and Laszlo Szekelyhidi Jr. in 2010 to the proof of existence of bounded nontrivial compactly supported in space and time solutions of the Euler equations (obviously not conserving physical energy!), basing on the Baire category method, which was highly nonstandard kind of proof used in the theory of PDEs. Without a doubt this result is a first step towards the conjecture of Lars Onsager, who in his 1949 paper about the theory of turbulence asserted the existence of such solutions for any Hoelder exponent up to 1/3. As a result very much related to the Onsager conjecture one can find the result of P. Constantin, W. E and E. Titi for incompressible flow proving the energy conservation for any Hoelder exponent above 1/3. Our talk is based on several resent results joint with Eduard Feireisl and Emil Wiedemann and concerns various notions of solutions to compressible Euler equations and some systems of a similar structure.  

Vuk Milisic (U. Paris 13)  WPI, OMP 1, Seminar Room 08.135  Fri, 21. Oct 16, 11:00 
"Mathematical modelling of cell adhesion Forces: From delay to fricition, from global to local existence"  
In this talk we present the starting mechanical model of the lamellipodial actincytoskeleton meshwork. The model is derived starting from the microscopic description of mechanical properties of filaments and crosslinks and also of the lifecycle of crosslinker molecules. We introduce a simplified system of equations that accounts for adhesions created by a single point on which we apply a force. We present the nondimensionalisation that led to a singular limit motivating our mathematical study. Then we explain the mathematical setting and results already published. In the last part we present the latest developments: we give results for the fully coupled system with unbounded nonlinear offrates. This leads to two possible regimes: under certain hypotheses on the data there is global existence, out of this range we are able to prove blowup in finite time.  

Chris Rogers (U. Cambridge)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Fri, 23. Sep 16, 17:30 
"Highfrequency data: why are we looking at this?"  
Highfrequency financial data is certainly a `big data' problem, with all of the associated issues: what are the stylized facts of the data? what are we trying to do with the data? what are appropriate models? Industry approaches get the first two of these questions, but do badly on the third. Most academic studies do badly on all three. For example, it is a fairy tale that we can propose a timeinvariant model for the evolution of highfrequency data, estimate the parameters of this model, and then apply the conclusions of an analysis that assumes that the paramters were known with certainty. In this talk, I will try to identify what we might want to do with highfrequency data, critique some existing research agendas, and illustrate a possible way of dealing with the problem of optimally liquidating a given position before a given time.  

Mark Podolskij (U. Aarhus)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Fri, 23. Sep 16, 16:30 
"Testing for the maximal rank of the volatility process in noisy diffusion models"  
In this talk we present a test for the maximal rank of the volatility process in continuous diffusion models observed with noise. Such models are typically applied in mathematical finance, where latent price processes are corrupted by microstructure noise at ultra high frequencies. Using high frequency observations we construct a test statistic for the maximal rank of the time varying stochastic volatility process. We will show the asymptotic mixed normality of the test statistic and obtain a consistent testing procedure. Finally, we demonstrate some numerical and empirical illustrations.  

Albert Menkveld (VU. Amsterdam)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Fri, 23. Sep 16, 15:00 
"HighFrequency Trading around Large Institutional Orders"  
Liquidity suppliers lean against the wind. We analyze whether highfrequency traders (HFTs) lean against large institutional orders that execute through a series of child orders. The alternative is that HFTs go “with the wind” and trade in the same direction. We find that HFTs initially lean against orders but eventually turn around and go with them for longlasting orders. This pattern explains why institutional trading cost is 46% lower when HFTs lean against the order (by one standard deviation) but 169% higher when they go with it. Further analysis supports recent theory, suggesting HFTs “backrun” on informed orders.  

Philip Protter (U. Columbia)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Fri, 23. Sep 16, 14:00 
"High Frequency Trading and Insider Trading"  
The attorney general for New York State, Eric Schneiderman, said at one point that he believed that high frequency trading (in the sense of colocation, that is to say extremely high frequency trading) is used for insider trading. Inspired by his remarks we purport to indicate via a mathematical model how this could come to pass. We use the newly developed theory (by Y. Kchia and this speaker) on the enlargement of filtrations via a stochastic process to show how continual infinitesimal peaks at the order book can beget a type of insider trading, thereby explaining the casual observation of the attorney general.  

Mathieu Rosenbaum (U. Paris VI)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Fri, 23. Sep 16, 11:30 
"How to predict the consequences of a tick value change? Evidence from the Tokyo Stock Exchange pilot program"  
The tick value is a crucial component of market design and is often considered the most suitable tool to mitigate the effects of high frequency trading. The goal of this paper is to demonstrate that the approach introduced in Dayri and Rosenbaum (2015) allows for an ex ante assessment of the consequences of a tick value change on the microstructure of an asset. To that purpose, we analyze the pilot program on tick value modifications started in 2014 by the Tokyo Stock Exchange in light of this methodology. We focus on forecasting the future cost of market and limit orders after a tick value change and show that our predictions are very accurate. Furthermore, for each asset involved in the pilot program, we are able to de ne (ex ante) an optimal tick value. This enables us to classify the stocks according to the relevance of their tick value, before and after its modification. This is joint work with CharlesAlbert Lehalle and Weibing Huang.  

Hung Luong (U. Wien)  WPI, OMP 1, Seminar Room 08.135  Fri, 23. Sep 16, 10:30 
"ZakharovRubenchik/BenneyRoskes system on the background of a line soliton"  
In order to study the transverse (in) stability of a line soliton, we consider the 2d ZakharovRubenchik/BenneyRoskes system with initial data localized by a line soliton. The new terms in perturbed system lead to some diculties, for example, the lack of mass conservation. In this talk, I will present our recent work on this problem. This is a joint work with Norbert Mauser and JeanClaude Saut. 1  

Torben G. Andersen (U. Northwestern)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Fri, 23. Sep 16, 10:00 
"Intraday Trading Invariance in Foreign Exchange Futures"  
Prior work of Andersen, Bondarenko, Kyle and Obizhaeva (2015) establishes that the intraday trading patterns in the Emini S&P 500 futures contract are consistent with the following invariance relationship: The return variation per transaction is loglinearly related to trade size, with a slope coefficient of 2. This association applies both across the intraday diurnal pattern and across days in the time series. The factor of proportionality deviates sharply from prior hypotheses relating volatility to transactions count or trading volume. This paper documents that a similar invariance relation holds for foreign exchange futures. However, the loglinear association is not fixed, but shifts over time reflecting an, all else equal, declining trend in the average trade size. The findings are remarkably robust across the full set of currency contracts explored, providing challenges to market microstructure research to rationalize these tight intraday and intertemporal interactions among key market activity variables. Coauthored with Oleg Bondarenko, University of Illinois at Chicago.  

Felipe Linares (IMPA)  WPI, OMP 1, Seminar Room 08.135  Fri, 23. Sep 16, 9:30 
"On special regularity properties of solutions to the kgeneralized Kortewegde Vries equation"  
We will discuss special regularity properties of solutions to the IVP associated to the kgeneralized KdV equations. We show that for data u0 2 H3=4+(R) whose restriction belongs to Hk((b;1)) for some k 2 Z+ and b 2 R, the restriction of the corresponding solution u(; t) belongs to Hk((;1)) for any 2 R and any t 2 (0; T). Thus, this type of regularity propagates with innite speed to its left as time evolves. This kind of regularity can be extended to a general class of nonlinear dispersive equations. Recently, we proved that the solution ow of the kgeneralized KdV equation does not preserve other kind of regularities exhibited by the initial data u0.  

Pete Kyle (U. Maryland)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Fri, 23. Sep 16, 9:00 
"Dimensional Analysis and Market Microstructure Invariance"  
In this talk we focus on the combination of dimensional analysis, leverage neutrality, and a principle of market microstructure invariance to derive scaling laws expressing transaction costs functions, bidask spreads, bet sizes, number of bets, and other financial variables in terms of dollar trading volume and volatility. The scaling laws are illustrated using data on bidask spreads and number of trades for Russian stocks. These scaling laws provide useful metrics for risk managers and traders; scientific benchmarks for evaluating controversial issues related to high frequency trading, market crashes, and liquidity measurement; and guidelines for designing policies in the aftermath of financial crisis.  

JeanPhilippe Bouchaud (CFM, Paris)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Thu, 22. Sep 16, 18:00 
"The square root law of Price Impact and the intrinsic fragility of financial markets"  
We will review the accumulating empirical evidence for an approximately squareroot impact of a metaorder. Interestingly, this squareroot law appears to be universal, i.e. to a large extent ndependent of markets (futures, equities, volatility, Bitcoin), microstructure and epochs (pre and post HFT). This suggests that this law must originate from a simple and robust statistical mechanism. We propose a dynamical theory of the latent market liquidity that predicts that the average supply/demand profile is V shaped and vanishes around the current price, leading to the squareroot impact. This result only relies on mild assumptions about the order flow and on diffusive prices. We test our arguments numerically using a minimal model of order flow and provide further theoretical predictions that can be compared to further experimental observations. Our scenario suggests that markets are intrinsically prone to liquidity crises and puts in perspective the recent debate on the role of HFT liquidity.  

Frank Hatheway (NASDAQ)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Thu, 22. Sep 16, 17:00 
"We have all become HighFrequency Traders: What are some implications?"  
Competitive and regulatory forces in the U.S. have resulted in almost all equity executions being handled using sophisticated electronic trading systems. Empirical evidence from Nasdaq shows that order submission patterns once restricted to proprietary trading firms, the prototypical High Frequency Trader, are now observed in orders originating from almost all types of market participants. One aspect of the widespread automation of trading is that the use of "price taker" algorithms has become increasingly prevalent. The implications for the market where each algorithm's order placement decision is dependent on other algorithms' order placement decisions is not well understood. Some consequences of widespread "price taking" behavior are seen every trading day as well as on occasional events such as the May 6, 2010 and August 24, 2015 market breaks. The public policy discussion around market structure needs a better understanding of how the automated price setting mechanism works under the current structure and would work under future alternative market structure designs.  

Francois Golse (U.Ecole Polytechnique)  WPI, OMP 1, Seminar Room 08.135  Thu, 22. Sep 16, 15:30 
"The MeanField Limit for the Quantum NBody Problem: Uniform in Convergence Rate"  
The Hartree equation can be derived from the Nbody Heisenberg equation by the meanfield limit assuming that the particle number N tends to infinity. The first rigorous result in this direction is due to Spohn (1980) (see also [BardosGolseMauser, Meth. Applic. Anal. 7:275294, (2000)] for more details), and is based on analyzing the Dyson series representing the solution of the BBGKY hierarchy in the case of bounded interaction potentials.This talk will (1) provide an explicit convergence rate for the Spohn method, and (2) interpolate the resulting convergence rate with the vanishing h bound obtained in [GolseMouhotPaul, Commun. Math. Phys. 343:165205 (2016)] by a quantum variant of optimal transportation modulo O(h) terms. The final result is a bound for a MongeKantorovichtype distance between the Husimi transforms of the Hartree solution and of the first marginal of the Nbody Heisenberg solution which is independent of h and vanishes as N tends to infinity. (Work in collaboration with T. Paul and M. Pulvirenti).  

Terrence Hendershott (UC. Berkeley)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Thu, 22. Sep 16, 15:30 
"Price Discovery Without Trading: Evidence from Limit Orders"  
Adverse selection in financial markets is traditionally measured by the correlation between the direction of market order trading and price movements. We show this relationship has weakened dramatically with limit orders playing a larger role in price discovery and with highfrequency traders’ (HFTs) limit orders playing the largest role. HFTs are responsible for 60–80% of price discovery, primarily through their limit orders. HFTs’ limit orders have 50% larger price impact than nonHFTs’ limit orders, and HFTs submit limit orders 50% more frequently. HFTs react more to activity by nonHFTs than the reverse. HFTs react more to messages both within and across stock exchanges.  

Mathieu Colin (U. Bordeaux I)  WPI, OMP 1, Seminar Room 08.135  Thu, 22. Sep 16, 14:30 
"Stability properties for a MaxwellSchrödinger System"  
The aim of this talk is to present some qualitative properties of a coupled MaxwellSchrödinger system. First, I will describe conditions for the existence of minimizers with prescribed charge in terms of a coupling constant e. Secondly, I will study the existence of ground states for the stationary problem, the uniqueness of ground states for small e and finish with the orbital stability for the quadratic nonlinearity. This is a joint work with Tatsuya Watanabe.  

Thierry Foucault (HEC Paris)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Thu, 22. Sep 16, 14:30 
"Data Abundance and Asset Price Informativeness"  
Investors can acquire either raw or processed information about the payoff of risky assets. Information processing filters out the noise in raw information but it takes time. Hence, investors buying processed information trade with a lag relative to investors buying raw information. As the cost of raw information declines, more investors trade on it, which reduces the value of processed information, unless raw information is very unreliable. Thus, a decline in the cost of raw information can reduce the demand for processed information and, for this reason, the informativeness of asset prices in the long run.  

Rama Cont (Imperial College London)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Thu, 22. Sep 16, 12:00 
"Algorithmic trade execution and intraday market Dynamics"  
''Optimal execution'' are typically derived assuming an exogenous Price process which is unaffected by the trading behaviour of market participants. On the other hand, in intraday price behavior in electronic markets reveals evidence of the price impact of algorithmic order flow, an extreme example being the 'Flash Crashes' repeatedly observed in such markets. We propose a simple model for analyzing the feedback effects which arise in a market where participants use market signals to minimize the impact of their trade execution. We show that commonly used execution algorithms which aim at reducing market impact of trades can actually lead to unintended synchronization of participants' order flows, increase their market impact and generate large « selfexciting » intraday swings in volume and volatility. We show that such bursts may occur even in absence of large orders, and lead to a systematic underperformance of 'optimal execution' strategies. These results call for a critical assessment of "optimal execution" algorithms and point to a notion of order flow toxicity distinct from information asymmetry or adverse selection.  

Evelyne Miot (U. Grenoble Alpes)  WPI, OMP 1, Seminar Room 08.135  Thu, 22. Sep 16, 11:30 
"Collision of vortex Filaments"  
In this talk we will present some results on the dynamics of vortex filaments according to a model introduced by Klein, Majda and Damodaran, focusing on the issue of collisions. This is a joint work with Valeria Banica and Erwan Faou.  

Oana Ivanovici (U. Nizza)  WPI, OMP 1, Seminar Room 08.135  Thu, 22. Sep 16, 10:30 
"Dispersion for the wave and the Schrödinger Equations outside strictly convex Domains and counterexamples"  
We consider the linear wave equation and the linear Schr dingier equation outside a compact, strictly convex obstacle in R^d with smooth boundary. In dimension d = 3 we show that for both equations, the linear flow satises the (corresponding) dispersive estimates as in R^3. For d>3, if the obstacle is a ball, we show that there exists at least one point (the Poisson spot) where the dispersive estimates fail. This is joint work with Gilles Lebeau.  

Jonathan Brogaard (U. Washington)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Thu, 22. Sep 16, 10:30 
"HighFrequency Trading Competition"  
Using a firmidentified limitorder book dataset we show that competition among highfrequency trading firms (HFT) influences liquidity. HFT entries increase liquidity. The reverse is true for exits. Market participants’ behavioral changes are consistent with competitive pressure. HFT entries increase total HFT market share and take market share from incumbents. After HFT entry (exit), incumbent HFT spreads tighten (widen). Trading revenue suggests competition reduces HFT firm profitability. Impacts are larger in markets with fewer incumbents. The results show that part of the value of HFT comes from its competitiveness.  

Thomas Duyckaerts (U. Paris XIII)  WPI, OMP 1, Seminar Room 08.135  Thu, 22. Sep 16, 9:30 
"Dynamics of the energycritical wave equation"  
It is conjectured that bounded solutions of the focusing energycritical wave equation decouple asymptotically as a sum of a radiation term and a finite number of solitons . In this talk, I will review recent works on the subject, including the proof of a weak form of this conjecture (joint work with Hao Jia, Carlos Kenig and Frank Merle)  

Andrei Kirilenko (Imperial College London)  SkyLounge, 12th floor of OskarMorgensternPlatz 1, 1090 Vienna  Thu, 22. Sep 16, 9:30 
"Latency in Automated Trading Systems"  
Time in an automated trading system does not move in a constant deterministic fashion. Instead, it is a random variable drawn from a distribution. This happens because messages enter and exit automated systems though different gateways and then race across a complex infrastructure of parallel cables, safeguards, throttles and routers into and out of the central limit order books. Add to it market fragmentation and you get a pretty complex picture about the effects of latency on price formation.  

Mauser, Norbert (Inst. CNRS Pauli c/o Fak. Mathematik U. Wien)  OMP 1, Fakultät für Mathematik, 1090 Wien  Wed, 21. Sep 16, 19:00 
Austro  Französische Mathematik: ein Diskurs  
Warum ist Frankreich das weltweit führende Land in Mathematik ? Warum gibt es in Frankreich eine Sektion 25 und eine Sektion 26  und in Österreich eine Sektion Forschung und eine Sektion Universitäten ?! Warum gibt es 2 französische FieldsMedaillen zur Boltzmanngleichung ? Warum ist eines der nur 3 europäischen CNRS Institute « extra muros » am WPI in Wien ? Warum kommen viele österreichische Spitzenmathematiker vom Lycée français de Vienne ? Diese und andere interessante Fragen wird uns Herr Prof. Mauser in seinem Vortrag (in deutscher Sprache) beantworten.  
Note: Click here for further information 
Mats Ehrnström (NTNU)  WPI, OMP 1, Seminar Room 08.135  Wed, 21. Sep 16, 15:30 
"Existence of a Highest Wave in a FullDispersion Shallow Water Model"  
We consider the existence of periodic traveling waves in a bidirectional Whitham equation, combining the full twoway dispersion relation from the incompressible Euler equations with a canonical quadratic shallow water nonlinearity. Of particular interest is the existence of a highest, cusped, traveling wave solution, which we obtain as a limiting case at the end of the main bifurcation branch of $2pi$periodic traveling wave solutions. Unlike the unidirectional Whitham equation, containing only one branch of the full Euler dispersion relation, where such a highest wave behaves like $x^{1/2}$ near its peak, the cusped waves obtained here behave like $xlogx$ at their peak and are smooth away from their highest points. This is joint work with Mathew A. Johnson and Kyle M. Claassen at University of Kansas.  

Eric Wahlen (NTNU)  WPI, OMP 1, Seminar Room 08.135  Wed, 21. Sep 16, 14:30 
"On the highest wave for Whitham’s wave equation"  
In the 1960’s G. B. Whitham suggested a nonlocal version of the KdV equation as a model for water waves. Unlike the KdV equation it is not integrable, but it has certain other advantages. In particular, it has the same dispersion relation as the full water wave problem and it allows for wave breaking. The equation has a family of periodic, travelling wave solutions for any given wavelength. Whitham conjectured that this family contains a highest wave which has a cusp at the crest. I will outline a proof of this conjecture using global bifurcation theory and precise information about an integral operator which appears in the equation. Joint work with M. Ehrnström.  

Thomas Alazard (ENS)  WPI, OMP 1, Seminar Room 08.135  Wed, 21. Sep 16, 11:30 
"Control and stabilization of the incompressible Euler equation with free surface"  
The incompressible Euler equation with free surface dictates the dynamics of the interface separating the air from a perfect incompressible fluid. This talk is about the controllability and the stabilization of this equation. The goal is to understand the generation and the absorption of water waves in a wave tank. These two problems are studied by two different methods: microlocal analysis for the controllability (this is a joint work with Pietro Baldi and Daniel HanKwan), and study of global quantities for the stabilization (multiplier method, Pohozaev identity, hamiltonian formulation, Luke’s variational principle, conservation laws…).  

Hajer Bahouri (UPEC)  WPI, OMP 1, Seminar Room 08.135  Wed, 21. Sep 16, 10:30 
"Qualitative study of 2D Schrodinger equation with exponential nonlinearity"  
In this lecture, we investigate the behavior of the solutions to the nonlinear Schrodinger equation: (1) ( i@tu + u = f(u); ujt=0 = u0 2 H1 rad(R2); where the nonlinearity f : C ! C is dened by (2) f(u) = p( p 4 juj) u with p > 1 and p(s) = es2 pX1 k=0 s2k k! Recall that the solutions of the Cauchy problem (1)(2) formally satisfy the conservation laws: (3) M(u; t) = Z R2 ju(t; x)j2dx = M(u0) and (4) H(u; t) = Z R2 jru(t; x)j2 + Fp(u(t; x)) dx = H(u0) ; where Fp(u) = 1 4 p+1 p 4 juj It is known (see [4], [6] and [2]) that global wellposedness for the Cauchy problem (1)(2) holds in both subcritical and critical regimes in the functional space C(R;H1(R2)) L4(R;W1;4(R2)). Here the notion of criticity is related to the size of the initial Hamiltonian H(u0) with respect to 1. More precisely, the concerned Cauchy problem is said to be subcritical if H(u0) < 1, critical if H(u0) = 1 and supercritical if H(u0) > 1. Structures theorems originates in the elliptic framework in the studies by H. Brezis and J. M. Coron in [3] and M. Struwe in [8]. The approach that we shall adopt in this article consists in comparing the evolution of oscillations and concentration eects displayed by sequences of solutions of the nonlinear Schrodinger equation (1)(2) and solutions of the linear Schrodinger equation associated to the same sequence of Cauchy data. Our source of inspiration here is the pioneering works [1] and [7] whose aims were to describe the structure of bounded sequences of solutions to semilinear defocusing wave and Schrodinger equations, up to small remainder terms in Strichartz norms. The analysis we conducted in this work emphasizes that the nonlinear eect in this framework only stems from the 1oscillating component of the sequence of the Cauchy data, using the terminology introduced in [5]. This phenomenon is strikingly dierent from those obtained for critical semi linear dispersive equations, such as for instance in [1, 7] where all the oscillating components induce the same nonlinear eect, up to a change of scale. To carry out our analysis, we have been led to develop a prole decomposition of bounded sequences of solutions to the linear Schrodinger equation both in the framework of Strichartz and Orlicz norms. The linear structure theorem we have obtained in this work highlights the distinguished role of the 1oscillating component of the sequence of the Cauchy data. It turns out that there is a form of orthogonality between the Orlicz and the Strichartz norms for the evolution under the ow of the free Schrodinger equation of the unrelated component to the scale 1 of the Cauchy data (according to the vocabulary of [5]), while this is not the case for the 1oscillating component.  

Vincent Duchêne (U. Rennes I)  WPI, OMP 1, Seminar Room 08.135  Wed, 21. Sep 16, 9:30 
"On the wellposedness of the GreenNaghdi System"  
The GreenNaghdi system is an asymptotic model for the waterwaves system, describing the propagation of surface waves above a layer of ideal, homogeneous, incompressible and irrotational fluid, when the depth of the layer is assumed to be small with respect to wavelength of the flow. It can be seen as a perturbation of the standard quasilinear (dispersionless) SaintVenant system, with additional nonlinear higherorder terms. Because of the latter, the wellposedness theory concerning the GN system is not satisfactory, in particular outside of the onedimensional framework. We will discuss novel results, obtained with Samer Israwi, that emphasize the role of the irrotationality assumption.  

Christian Klein (U.Bourgogne)  WPI, OMP 1, Seminar Room 08.135  Tue, 20. Sep 16, 15:30 
"Numerical study of breakup in KadomtsevPetviashvili equations"  
The onset of a dispersive shock in solutions to the KadomtsevPetviashvili (KP) equations is studied numerically. First we study the shock formation in the dispersionless KP equation by using a map inspired by the characteristic coordinates for the onedimensional Hopf equation. This allows to numerically identify the shock and to unfold the singularity. A conjecture for the KP solution near this critical point in the small dispersion limit is presented. It is shown that dispersive shocks for KPI solutions can have a second breaking where modulated lump solutions appear.  

Thomas Kappeler (U. Zürich)  WPI, OMP 1, Seminar Room 08.135  Tue, 20. Sep 16, 14:30 
"Analytic extensions of frequencies of integrable PDEs and applications"  
In form of a case study for the mKdV and the KdV2 equation we discuss a novel approach of representing frequencies of integrable PDEs which allows to extend them analytically to spaces of low regularity and to study their asymptotics. Applications include wellposedness results in spaces of low regularity as well as properties of the actions to frequencies map. This is joint work with Jan Molnar.  

Laurent Thomann (U. Lorraine)  WPI, OMP 1, Seminar Room 08.135  Tue, 20. Sep 16, 11:30 
"Invariant measures for NLS in dimension two"  
We consider the defocusing nonlinear Schrödinger equations on a twodimensional compact Riemannian manifold without boundary or a bounded domain in dimension two. In particular, we discuss the Wick renormalization in terms of the Hermite polynomials and the Laguerre polynomials and construct the Gibbs measures corresponding to the Wick ordered Hamiltonian. Then, we construct globalintime solutions with initial data distributed according to the Gibbs measure and show that the law of the random solutions, at any time, is again given by the Gibbs measure.  

Nicola Visciglia (U. Pisa)  WPI, OMP 1, Seminar Room 08.135  Tue, 20. Sep 16, 10:30 
"Existence and Stability of Standing Waves for NLS in a partial confinement"  
I will discuss a joint work with Bellazzini, Boussaid, Jeanjean about the existence and orbital stability of standing waves for NLS with a partial confinement in a supercritical regime. The main point is to show the existence of local minimizers of the constraint energy.  

Philippe Gravejat (U. CergyPontoise)  WPI, OMP 1, Seminar Room 08.135  Tue, 20. Sep 16, 9:30 
"Stability of solitons for the LandauLifshitz equation with an easyplane anisotropy"  
We describe recent results concerning the orbital and asymptotic stability of dark solitons and multi solitons for the LandauLifshitz equation with an easyplane anisotropy. This is joint work with André de Laire (University of Lille Nord de France), and by Yakine Bahri (Nice Sophia Antipolis University).  

BenavidesRiveros, Carlos (U. HalleWittenberg)  WPI, OMP1, Seminar Room 08.135  Fri, 12. Aug 16, 15:15 
“Natural extension of HartreeFock through extremal 1fermion Information”  
By employing the simpler structure arising from pinning and quasipinnig a variational optimization method for few fermion ground states is elaborated. We quantitatively confirm its high accuracy for systems whose vector of NON is close to the boundary of the polytope. In particular, we derive an upper bound on the error of the correlation energy given by the ratio of the distance to the boundary of the polytope and the distance of the vector of NON to the HartreeFock point. These geometric insights shed some light on the concept of active spaces, correlation energy, frozen electrons and virtual orbitals.  

Schilling, Christian (U. Oxford)  WPI, OMP1, Seminar Room 08.135  Fri, 12. Aug 16, 14:00 
“Fermionic exchange symmetry: quantifying its influence beyond Pauli's Exclusion Principle"  
The Pauli exclusion principle has a strong impact on the properties and the behavior of most fermionic quantum systems. Remarkably, even stronger restrictions on fermionic natural occupation numbers follow from the fermionic exchange symmetry. We develop an operationally meaningful measure which allows one to quantify the potential physical relevance of those generalized Pauli constraints beyond the wellestablished relevance of Pauli's exclusion principle. It is based on a geometric hierarchy induced by Pauli exclusion principle constraints. The significance of that measure is illustrated for a fewfermion model which also confirms such nontrivial relevance of the generalized Pauli constraints.  

Brezinova, Iva (TU. Wien)  WPI, OMP1, Seminar Room 08.135  Fri, 12. Aug 16, 11:00 
“Solving timedependent manybody quantum problems using the twoparticle reduced density matrix”  
In this talk we will give an overview over our recent progress in solving timedependent manybody problems using the twoparticle reduced density matrix (2RDM) as the fundamental variable. The wavefunction is completely avoided and with this all problems arising from the exponentially increasing complexity with particle number. Key is the reconstruction of the 3RDM which couples to the dynamics of the 2RDM. At this point the approximation to the full solution of the Schrödinger equation enters: while twoparticle correlations are fully incorporated, threeparticle correlations are only approximated. We will discuss the reconstruction of the 3RDM, how we overcome the Nrepresentability problem, and demonstrate the accuracy of our theory on twoexamples: multielectron atoms in strong fields, and ultracold atoms in optical lattices.  

Gottlieb, Alexander (WPI)  WPI, OMP1, Seminar Room 08.135  Fri, 12. Aug 16, 10:00 
“Quasiseparated electron pairs in small molecules”  
Some of the electrons in a molecule are tightly bound to the nuclei. The closely bound "core electrons" can be relatively uncorrelated with the rest of the electrons in the molecule, and may even form what we call a "quasiseparated" pair. [Let F be the electronic wave function of a molecule with N+2 electrons. We say that F features a "quasiseparated pair" if it is approximately equal to the wedge product G ^ H of a geminal G that describes the state of the separated pair and an Nelectron wave function H that is strongly orthogonal to G.] We have computational evidence of such quasiseparated electron pairs in the ground states of very small molecules (like LiH or the Be atom) whose correlated electronic structure can be very accurately approximated with full CI calculations.  

Gottlieb, Alexander (WPI)  WPI, OMP1, Seminar Room 08.135  Thu, 11. Aug 16, 16:00 
“Geometry of the BorlandDennis setting: the Wtype class”  
We call the Hilbert space for three fermions in six orbitals the BorlandDennis setting. It is isomorphic to the alternating tensor product of three copies of the standard 6dimensional Hilbert space C^6. Slater determinant states in the BorlandDennis setting correspond to "decomposable" trivectors, i.e., simple wedge products of three vectors from C^6. Generic wave functions in the BorlandDennis setting can be written as a sum of just two decomposable trivectors. The wave functions that cannot be written as a sum of fewer than three decomposables constitute the "Wtype entanglement class." I will discuss the geometry of the Wtype class within the ambient BorlandDennis space.  

BenavidesRiveros, Carlos (U. HalleWittenberg)  WPI, OMP1, Seminar Room 08.135  Thu, 11. Aug 16, 14:30 
“Pinning and quasipinning in quantum chemistry”  
It is now known that fermionic natural occupation numbers (NONs) do not only obey Pauli’s exclusion principle but are even stronger restricted by the socalled generalized Pauli constraints (GPC). Whenever given NONs lie on or close to the boundary of the allowed region the corresponding Nfermion quantum state has a significantly simpler structure. We explore this phenomenon in the context of quantum chemistry.  

Schilling, Christian (U. Oxford)  WPI, OMP1, Seminar Room 08.135  Thu, 11. Aug 16, 13:30 
“Quantum marginal problem and generalized Pauli constraints”  
The question whether given reduced density operators (marginals) for subsystems of a multipartite quantum system are compatible to a common total state is called quantum marginal problem (QMP). We present the solution found by A. Klyachko just a few years ago as well as the main steps for its derivation. Applying those concepts to fermionic systems reveals further constraints on fermionic occupation numbers beyond Pauli's famous exclusion principle. We introduce and discuss these socalled generalized Pauli constraints in great detail and comment on their potential physical relevance.  

Komarov, Sergey (MPA & U. Princeton)  WPI Seminar Room 08.135  Fri, 5. Aug 16, 10:00 
CR Diffusion  "Cosmic ray Diffusion in mirror fluctuations"  
TBA  

Rincon, Francois (U. Toulouse)  WPI Seminar Room 08.135  Fri, 5. Aug 16, 10:00 
Convection  "Turbulent convection theories for the Sun"  
TBA  

Stone, Jim (U. Princeton)  WPI Seminar Room 08.135  Thu, 4. Aug 16, 17:00 
MRI/Turbulence  "Reconnection in shearing box simulations of the MRI"  
TBA  

Schekochikin, Alex (U. Oxford)  WPI Seminar Room 08.135  Thu, 4. Aug 16, 16:00 
Phase Mixing  "Phasespace turbulence in 2, 4 and 5D"  
TBA  

Lesur, Geoffroy (U. Grenbole)  WPI Seminar Room 08.135  Thu, 4. Aug 16, 10:00 
MHD  "Vortex stability in nonideal MHD"  
TBA  

Loureiro, Nuno (MIT)  WPI Seminar Room 08.135  Wed, 3. Aug 16, 16:45 
"The onset of magnetic reconnection"  
TBA  

Sironi, Lorenzo (U. Harvard & U. Columbia)  WPI Seminar Room 08.135  Wed, 3. Aug 16, 16:00 
Reconnection  "Magnetic reconnection in relativistic astrophysical jets"  
TBA  

Spirkovsky, Anatoly (U. Princeton)  WPI Seminar Room 08.135  Wed, 3. Aug 16, 10:30 
CR Instabilities  "Kinetics of cosmic raydriven instabilities and winds"  
TBA  

Bethune, William (U. Grenoble)  WPI Seminar Room 08.135  Wed, 3. Aug 16, 10:00 
MRI  "Nonideal MRI in protoplanetary disks"  
TBA  

Cowley, Steve (UKAEA & U. Oxford)  WPI Seminar Room 08.135  Tue, 2. Aug 16, 16:30 
Transport & Stability  "Stability of the ChapmanEnskog solution in weakly collisional Plasma"  
TBA  

RobergClark, Gareth (U. Maryland)  WPI Seminar Room 08.135  Tue, 2. Aug 16, 16:00 
Transport & Stability  "Suppression of electron thermal conduction in highbeta plasma"  
TBA  

Medvedev, Michael (U. Kansas)  WPI Seminar Room 08.135  Tue, 2. Aug 16, 11:00 
Transport  "Thermal conductivity and effective collisionality of astrophysical plasmas"  
TBA  

Bott, Archie (U. Oxford)  WPI Seminar Room 08.135  Tue, 2. Aug 16, 10:00 
Plasama Dynamo  "Dynamo on Omega laser and kinetic Problems of Proton radiography"  
TBA  

Kunz, Matt (U.Princeton)  WPI Seminar Room 08.135  Mon, 1. Aug 16, 16:30 
MRI/Turbulence  "Kinetic MRI turbulence" & "Kinetic solarwind turbulence"  
TBA  

StOnge, Denis (U. Princeton)  WPI Seminar Room 08.135  Mon, 1. Aug 16, 16:00 
Plasma Dynamo  "Hybrid PIC simluations of plasma dynamo"  
TBA  

Strumik, Marek (U. Oxford)  WPI Seminar Room 08.135  Mon, 1. Aug 16, 11:00 
HighBeta  CGL Dynamics and beta Limits on fluctuations in the solar wind"  
TBA  

Squire, Jonathan (Caltech)  WPI Seminar Room 08.135  Mon, 1. Aug 16, 10:30 
HighBeta  "Amplitude limits on alfvenic perturbations in weakly magnetized lowcollisionality plasmas"  
TBA  

Ball, Justin (U. Oxford & EPFL)  WPI Seminar Room 08.135  Fri, 29. Jul 16, 10:00 
UpDown Asymmetry  "Updown asymmetric tokamaks"  
TBA  

Abel, Ian (U. Princeton & U. Greifswald)  WPI Seminar Room 08.135  Thu, 28. Jul 16, 16:00 
Turbulence & Transport  "Sensitivitiy (to input parameters) calculation in gyrokinetics"  
TBA  

Schekochihin, Alexander (U. Oxford)  WPI Seminar Room 08.135  Thu, 28. Jul 16, 10:00 
Turbulence & Transport  "Some updates on ion and electronscale turbulence in MAST"  
TBA  

St. Onge, Denis (U. Princeton)  WPI Seminar Room 08.135  Wed, 27. Jul 16, 16:00 
Turbulence & Transport  "Dimits shift in one and twofield models"  
TBA  

Citrin, Jonathan (CEA)  WPI Seminar Room 08.135  Wed, 27. Jul 16, 11:00 
Turbulence & Transport  "Comparision between measured and predicted turbulence frequency spectra in ITG and TEM regimes"  
TBA  

Calvo, Ivan (CIEMAT)  WPI Seminar Room 08.135  Wed, 27. Jul 16, 10:00 
Stellarators  "The effect of tangential drifts on neoclassical Transport in stellarator close to omnigeneity"  
TBA  

Hammett, Greg (U. Princeton)  WPI Seminar Room 08.135  Tue, 26. Jul 16, 16:30 
SOL  "5D turbulence simluations with Gkeyll, in the presence of open field lines and sheath boundary conditions, in a torpex/helimak helical model of a SOL"  
TBA  

Geraldini, Alessandro (U. Oxford)  WPI Seminar Room 08.135  Tue, 26. Jul 16, 16:00 
SOL  "Kinetic theory of Ions in the magnetic presheath"  
TBA  

Ricci, Paolo (EPFL)  WPI Seminar Room 08.135  Tue, 26. Jul 16, 10:00 
SOL  "Physics at EPFL"  
TBA  

Pusztai, Istvan (U. Chalmers)  WPI Seminar Room 08.135  Mon, 25. Jul 16, 16:00 
EDGE  "Momentum Transport due to neutrals in the edge" & "Neoclassical Transport in the pedestal in the presence of nontrace impurities"  
TBA  

Citrin, Jonathan (CEA)  WPI Seminar Room 08.135  Mon, 25. Jul 16, 11:00 
Transport Optimisation  "Multichannel fluxdriven quasilinear turbulent transport prediciton over many confinement times"  
TBA  

Highcock, Edmund (U. Oxford & U. Chalmers)  WPI Seminar Room 08.135  Mon, 25. Jul 16, 10:30 
Transport Optimisation  "Optimistically optimising optimisation: the Story so far... (and results!)"  
TBA  

Shatah, Jalal (Courant Inst. NY)  WPI, Seminar Room 08.135  Tue, 12. Jul 16, 11:00 
Large Box Limit of Nonlinear Schrödinger equations  
The long time dynamics of the nonlinear Schrödinger equation, on a bounded domain, is very rich. Even for small amplitude initial data there can be quasiperiodic solutions, or solutions whose energy cascades between characteristically different length scales. Our aim in this talk is to explain how the longtime dynamics of the equation begin{equation*} left{ begin{array}{l}  i partial_t u + frac{1}{2pi} Delta u = epsilon^{2p} u^{2p} u qquad mbox{set on $(t,x) in mathbb{R} times mathbb{T}^n_L$} u(t=0) =epsilon u_0 end{array} right. end{equation*} can be described when $epsilon$ is small and $L$ is large. We will show how to derive an equation that describe the dynamics beyond the nonlinear time scale which is of order $mathcal{O}(frac1{epsilon^2})$.  

Wunderlich, Ralf (TU Brandenburg)  Lecture Room 13  Thu, 7. Jul 16, 12:30 
"Partially Observable Stochastic Optimal Control Problems for an Energy Storage"  
We address the valuation of an energy storage facility in the presence of stochastic energy prices as it arises in the case of a hydroelectric pump station. The valuation problem is related to the problem of determining the optimal charging/discharging strategy that maximizes the expected value of the resulting discounted cash ows over the life time of the storage. We use a regime switching model for the energy price which allows for a changing economic Environment described by a nonobservable Markov chain. The valuation problem is formulated as a stochastic control problem under partial information in continuous time. Applying ltering theory we and an alternative state process containing the lter of the Markov chain, which is adapted to the observable ltration. For this alternative control problem we derive the associated Hamilton JacobiBellman (HJB) equation which is not strictly elliptic. Therefore we study the HJB equation using regularization arguments. We use numerical methods for computing approximations of the value function and the optimal strategy. Finally, we present some numerical results. Joint work with Anton Shardin.  

Gonzalez, Jhonny (U. Manchester)  Lecture Room 13  Thu, 7. Jul 16, 12:00 
"Bayesian Calibration and Number of Jump Components in Electricity Spot Price Models"  
The price spikes observed in electricity spot markets may be understood to arise from fundamental drivers on both the supply and demand sides. Each driver can potentially create spikes with dierent frequencies, height distributions and rates of decay. This behaviour can be accounted for in models with multiple superposed components, however their calibration is challenging. Given a price history we apply a Markov Chain Monte Carlo (MCMC) based procedure to generate posterior samples from an augmented state space comprising parameters and multiple driving jump processes. This also enables posterior predictive checking to assess model adequacy. The procedure is used to determine the number of signed jump components required in two dierent markets, in time periods both before and after the recent global financial crises. Joint work with John Moriarty and Jan Palczewski.  

Pflug, Georg (U. Wien)  Lecture Room 13  Thu, 7. Jul 16, 11:00 
"Pricing of Electricity Contracts"  
It is typical for electricity contracts, that the time of concluding the contract and the time of delivery are quite different. For this reason, these contracts are subject to risk and risk premia are and must be part of the pricing rules. In the rst part of the talk, we investigate electricity futures to nd out pricing rules, which the market is applying, such as the distortion priciple, the certainty equivalence priciple or the ambiguity priciple. We then investigate a noarbitrage principle in the presence of capacity contraints on production and storage. We review then the idea of acceptance pricing and indierence pricing using a concrete model. Finally we present a bilevel problem, where the pricing decision depends on the behavioral pattern of the counterparty. Some algorithmic aspects will be discussed as well. Joint work with Raimund Kovacevic  

Lange, Nina (U. Sussex)  Lecture Room 13  Thu, 7. Jul 16, 10:30 
"Presence of Joint Factors in Term Structure Modelling of Oil Prices and Exchange Rates"  
The paper studies the timevarying correlation between oil prices and exchange rates and their volatilities. Generally, when the value of the dollar weakens against other major currencies, the prices of commodities tend move higher. The signicance of this relationship has increased since 2000 with indications of structural breaks around the beginning of the socalled nancialization of commodity marketsregime and again around the beginning of the nancial crisis. Also the correlation between the volatility of oil prices and the volatility of exchange rates seems to experience the same behaviour as the returns correlation. This paper introduces and estimates a term structure model for futures contracts and option contracts on WTI crude oil and EURUSD. The model is tted a panel data of futures prices covering 20002013. The model allows for stochastic volatility and correlation and identies how the number of joint factors increases over time.  

Davison, Matt (U. Western Canada)  Lecture Room 13  Thu, 7. Jul 16, 9:00 
"A Real Options Analysis of the Relation between Ethanol Producers and Corn and Ethanol Markets"  
In recent years, for a variety of reasons, it has become popular in North American to produce Ethanol (for blending with gasoline) from Corn. The resulting industrial process can be modelled as an option on the "crush spread" between Ethanol and Corn. Under a price  taker assumption, real options models of ethanol production can be made incorporating random corn and ethanol prices. In the rst part of my talk I will report work done in my group, together with Natasha Burke and Christian Maxwell, on creating and solving real options models of the cornethanol industry. These models provide interesting insights about the relationship between corn prices, ethanol prices, and their correlation with valuations and operational decisions. Using a jump process, we are also able to incorporate the impact of random changes in government subsidies on the valuation and operation of ethanol facilities. However, while in the relatively fragmented US corn ethanol market it might be (just) reasonable to model any given ethanol producer as a price taker, all producers taken together do have market impact. In the second part of my talk I report work, joint with Nicolas Merener (Universidad Torcuata di Tella, Buenos Aires) on creating tractable models for this price impact. I will also sketch our progress toward solving the models and confronting them with data.  

Lässig, Yves (U. Freiburg)  Lecture Room 13  Wed, 6. Jul 16, 17:00 
"Control of an Energy Storage under Stochastic Consumption"  
We consider a typical optimal control problem from the viewpoint of an energy utility company. The company faces a varying energy demand of its associated consumers, modelled by a stochastic process. Demands can be satised by either buying energy at an exchange or the utilisation of an energy storage system. Furthermore the company is able to buy energy on a larger scale  than needed to satisfy demands  and enlarge the storage level or respectively sell energy from the storage directly to the market. In contrast to previous lit erature the storing facility therefore serves as a hedge against market price and demand volume risks and is not considered isolated from other market activities of the operator. Therefor the value function  which can be interpreted as a real option value of the storage  diers from classical optimal storage control prob lems and delivers a better quantication of the storage value for a specic user. We formulate a stochastic control problem including these features and pay par ticular attention to the operational constraints of the storage. Furthermore we will introduce methods to model the energy spot price and the consumption rate stochastically. Subsequently we will derive a candidate for the optimal policy, verify its optimality and solve the arising HamiltonJacobiBellman equation for the value function numerically using a novel nite elements discretization.  

Mora, Andres (U. de los Andes)  Lecture Room 13  Wed, 6. Jul 16, 16:30 
"Risk Quantication for Commodity ETFs: Backtesting ValueatRisk and Expected Shortfall"  
This paper studies the risk assessment of alternative methods for a wide variety of Commodity ETFs. We implement wellknown as well as and recently proposed backtesting techniques for both valueatrisk (VaR) and ex pected shortfall (ES) under extreme value theory (EVT), parametric, and semi nonparametric techniques. The application of the latter to ES was introduced in this paper and for this purpose we derive a straightforward closed form of ES. We show that, for the condence levels recommended by Basel Accords, EVT and GramCharlier expansions have the best coverage and skewedt and GramCharlier the best relative performance. Hence, we recommend the ap plication of the above mentioned distributions to mitigate regulation concerns about global nancial stability and commodities risk assessment. Joint work with Esther Del Brio and Javier Perote.  

Deschatre, Thomas (EDF)  Lecture Room 13  Wed, 6. Jul 16, 16:30 
"On the Control of the Dierence between two Brownian Motions: A Dynamic Copula Approach"  
We propose new copulae to model the dependence between two Brow nian motions and to control the distribution of their dierence. Our approach is based on the copula between the Brownian motion and its re ection. We show that the class of admissible copulae for the Brownian motions are not limited to the class of Gaussian copulae and that it also contains asymmetric copu lae. These copulae allow for the survival function of the dierence between two Brownian motions to have higher value in the right tail than in the Gaussian copula case. We derive two models based on the structure of the Re ection Brownian Copula which present two states of correlation ; one is directly based on the re ection of the Brownian motion and the other is a local correlation model. These models can be used for risk management and option pricing in commodity energy markets.  

Erwan, Pierre (EDF)  Lecture Room 13  Wed, 6. Jul 16, 15:30 
"Numerical Approximation of a CashConstrained Firm Value with In vestment Opportunities"  
We consider a singular control problem with regime switching that arises in problems of optimal investment decisions of cashconstrained firms. The value function is proved to be the unique viscosity solution of the associated HamiltonJacobiBellman equa tion. Moreover, we give regularity properties of the value function as well as a description of the shape of the control regions. Based on these theoretical results, a numerical deter ministic approximation of the related HJB variational inequality is provided. We nally show that this numerical approximation converges to the value function. This allows us to describe the investment and dividend optimal policies. Joint work with Stephane Villeneuve and Xavier Warin.  

Sgarra, Carlo (U. Politecnico di Milano)  Lecture Room 13  Wed, 6. Jul 16, 14:00 
"A Branching Process Approach to Power Markets"  
Energy markets, and in particular, electricity markets, exhibit very peculiar features. The historical series of both futures and spot prices include seasonality, mean reversion, spikes and small uctuations. Very often a stochastic volatility dynamics is postulated in order to explain their high degree of variability. Moreover, as it also appears in other kind of markets, they exhibit also the USV (Unspanned Stochastic Volatility) phaenomenon [7]. After the pioneering paper by Schwartz, where an OrnsteinUhlenbeck dy namics is assumed to describe the spot price behavior, several different approaches have been investigated in order to describe the price evolution. A comprehensive presentation of the literature until 2008 is oered in the book by F.E. Benth, J. SaltyteBenth and S. Koekebakker [4]. High frequency trading, on the other hand, introduced some new features in com modity prices dynamics: in the paper by V. Filimonov, D. Bicchetti, N. Maystre and D. Sornette [5] evidence is shown of endogeneity and structural regime shift, and in order to quantify this level the branching ratio is adopted as a measure of this endoge nous impact and a Hawkes processes dynamics is assumed as a reasonable modelling framework taking into account the self exciting properties [1]. The purpose of the present paper is to propose a new modeling framework including all the above mentioned features, still keeping a high level of tractability. The model considered allows to obtain the most common derivatives prices in closed or semiclosed form. Here with semiclosed we mean that the Laplace transform of the derivative price admits an explicit expression. The models we are going to introduce can describe the prices dynamics in two dierent forms, that can be proved to be equivalent: the rst is a representation based on random elds, the second is based on Continuous Branching Processes with Immigration (CBI in the following). The idea of adopting a random felds framework for power prices description is not new: O.E. BarndorNielsen, F.E. Benth and A. Veraart introduced the Ambit Fields to this end, showing how this approach can provide a very exible and still tractable setting for derivatives pricing [2], [3]. A model based on CBI has been proposed recently by Y. Jiao, C. Ma and S. Scotti in view of short interest rate modelling, and in that paper it was shown that, with a suitable choice of the Levy process driving the CBI dynamics, the model can oer a signicant extension of the poular CIR model [6]. We shall propose two dierent types of dynamics for the prices evolution. The rst class will be named the Arithmetic models class, and the second will be named the Geometric model class; in adopting the present terminology we are following the classication proposed in [4]. We shall compare the Advantages and the limitations implied by each model class and we shall investigate the risk premium behavior for each of the classes considered. The paper will be organized as follows: in the rst Section we introduce the stochastic processes we are going to consider, while in the second Section we discuss how these pro cesses can be successfully applied to power markets description. In the third Section we derive some closed formulas for Futures and Option prices when the underlying dynamics is assumed to be given by the model introduced. In the fourth Section we shall investigate the risk premium term structure for the models under consideration. In the fth Section, we provide some suggestions about estimation and/or calibration methods for the same model. We complete our presentation with a statistical analysis on the two cases and some numerical illustrations of the results obtained. In the final section we provide some concluding remarks and discuss futures extensions of the present work. Joint work with Ying Jiao, Chunhua Ma and Simone Scotti. References: [1] Bacry, E., Mastromatteo, J., Muzy, J.F. Hawkes Processes in Finance, PREPRINT(2015). [2] BarndorNielsen, O.E., Benth, F.E., Veraart, A. Modelling energy spot prices by volatil ity modulated Levy driven Volterra processes, Bernoulli, 19, 803845 (2013). [3] BarndorNielsen, O.E., Benth, F.E., Veraart, A. Modelling Electricity Futures by Am bit Fields, Advances in Applied Probability, 46 (3), 719745 (2014). [4] Benth, F.E., SaltyteBenth J., Koekebakker S. Stochastic Modelling of Elec tricity and Related Markets , World Scientic, Singapore (2008). [5] Filimonov, V., Bicchetti, D., Maystre, N., Sornette, D. Quantication of the High Level of Endogeneity and Structural Regime Shifts in Commodity Markets, PREPRINT (2015). [6] Jiao, Y., Ma, C., Scotti, S. AlphaCIR Model with Branching Processes in Sovereign Interest Rate Modelling, PREPRINT (2016). [7] Schwarz, A.B., Trolle, E.S. Unspanned Stochastic Volatility and the Pricing of Com modity Derivatives, PREPRINT (2014).  

Ronn, Ehud (U. Texas)  Lecture Room 13  Wed, 6. Jul 16, 11:00 
"Risk and Expected Return in the OilFutures Market"  
This paper considers two elements of the oilfutures markets: Ex pected return and risk. 3 With respect to expected return, the paper presents a parsimonious and theoreticallysound basis for extracting forwardlooking measures of equity and commodity betas, and the riskpremium on crudeoil futures contracts. Dening forwardlooking betas as perturbations of historical estimates, we use the mar ket prices of equity, index and commodity options under a singlefactor market model to estimate the appropriate forwardlooking perturbation to apply to the historical beta. This permits us to compute forwardlooking term structures of equity and commodity betas. In the commodity arena, we use both one and twofactor models to obtain estimates of a forwardlooking measure of the correlation between crudeoil and the S&P 500. Combining these with forward looking (i.e., implied) volatilities on commodities and stockmarket indices, we utilize these forwardlooking betas and correlations to provide an exante esti mate of the expected future crudeoil spot price through the use of an equity exante risk premium and the conditional CAPM. With respect to risk, we use the market prices for crudeoil futures options and the prices of their underlying futures contracts to calibrate the volatility skew using the Merton (1976) jumpdiusion optionpricing model. We demon strate the jumpdiusion parameters bear a close relationship to concurrent eco nomic, nancial and geopolitical events. This produces an informationallyrich structure covering the time period of the turbulent post2007 time period.  

Krühner, Paul (TU Wien)  Lecture Room 13  Wed, 6. Jul 16, 10:30 
"Representation of Innite Dimensional Forward Price Models in Commodity Markets"  
The Heath Jarrow Morton (HJM) approach treats the family of futures  written on a commodity as primary assets and models them directly. This approach has been used for the modelling of future prices in various markets by several authors and it has found its use by practitioners. We derive several representations of possible future dynamics and implications on futures and the spot from an innite dimensional point of view. To be more specically, let us denote the spot price by St and the future prices by ft(x) := E(St+xjFt); x; t 0. Due to the wellknown Heath Jarrow Morton Musiela drift condition the dy namics of ft cannot be specied arbitrarily under the pricing measure. We model it by dft = @xftdt + tdLt in a suitable function space where L is some Levy process. Then we derive a series representation for the futures in terms of the spot price process and OrnsteinUhlenbeck type processes, we represent the spot as a Levysemistationary process and nd formulae for the correlation between the spot and futures.  

Kholodnyi, Valerie (Verbund)  Lecture Room 13  Wed, 6. Jul 16, 9:00 
"Extracting ForwardLooking MarkedImplied RiskNeutral Probabilities for the Intraday Power Spots in the Unified Framework of the NonMarkovian Approach"  
Benets of a unied modeling framework The nonMarkovian approach as a unied framework for the consistent modeling of power spots, forwards and swaps Extracting forwardlooking marketimplied riskneutral probabilities for the intraday hourly and intrahourly power spots from a single or multiple market forward curves Taking into account: { daily, weekly, annual and metaannual cyclical patterns, { linear and nonlinear trends, { upwards and downwards spikes, { positive and negative prices Interpolating and extrapolating power market forward curves: { intrahourly, hourly, daily, weekly and monthly power forward curves, { extending power market forward curves beyond their liquidity hori zons Modeling the German Intraday Cap Week Futures as an hourly strip of Asian call options on forwards on the intraday hourly power spots  

Palczewski, Jan (U. Leeds)  Lecture Room 13  Tue, 5. Jul 16, 17:00 
"Energy Imbalance Market Call Options and the Valuation of Storage"  
In this paper we assess the real option value of operating reserve pro vided by an electricity storage unit. The contractual arrangement is a series of American call options in an energy imbalance market (EIM), physically covered and delivered by the store. The EIM price is a general regular onedimensional Diffusion. Necessary and sucient conditions are provided for a unique optimal strategy and value. We provide a straightforward procedure for numerical solution and several examples. Joint work with John Moriarty.  

Gruet, Pierre (EDF)  Lecture Room 13  Tue, 5. Jul 16, 16:30 
"Ecient Estimation in a TwoFactor Model from Historical Data: Application to Electricity Prices"  
We aim at modeling the prices of forward contracts on electricity, by adopting a stochastic model with two Brownian motions as stochastic factors to describe their evolution over time. In contrast to the model of (Kiesel et al., 2009), the diffusion coecients are stochastic processes; the one of the rst factor is left totally unspecified, and the other one is the product of an unspecified process and of an exponential function of time to the maturity of the forward contract, which allows to account for some shortterm eect in the increase of volatility. We will consider that price processes following this model are observed simultaneously, at n observation times, over a given time interval [0; T]. The time step T=n between two observation times is small with respect to T, in the asymptotics n ! 1. We estimate some parameter of the exponential factor in volatility, with the usual rate, and we explain how it can be estimated eciently in the CramrRao sense. We are also able to estimate the trajectories of the two unspecied volatility processes, using nonparametric methods, with the standard rate of convergence. Numerical tests are performed on simulated data and on real prices data, so that we may see how appropriate our twofactor model is when applied to those data. Joint work with Olivier Feron (EDF, France) and Marc Hoffmann (Universite ParisDauphine).  

Kostrzewski, Maciej (U. Krakau)  Lecture Room 13  Tue, 5. Jul 16, 16:00 
"Bayesian Analysis of Electricity Spot Price under SVLEJX Model"  
In the study, the Bayesian stochastic volatility model with normal errors, a leverage effect, a jump component and exogenous variables (SVLEJX) is proposed. This Bayesian framework, founded upon the idea of latent variables is computationally facilitated with Markov Chain Monte Carlo methods. In this paper, the Gibbs sampler is employed. The SVLEJX structure is applied to model electricity spot price. The results of Bayesian estimation, jump detection and forecasting are presented and discussed. The series of waiting times between two consecutive jumps is also of interest in the paper. Periods of no jumps alternating with the ones of frequent jumps could be indicative of existence of the jump clustering phenomenon. The impact of exogenous variables on electricity spot price dynamic is explored. Moreover, the leverage eect and the stochastic volatility clustering are tested.  

Ziel, Florian (EuropaUniversitat Viadrina)  Lecture Room 13  Tue, 5. Jul 16, 15:30 
"Electricity Price Forecasting using Sale and Purchase Curves: The X Model"  
Our paper aims to model and forecast the electricity price in a completely new and promising style. Instead of directly modeling the electricity price as it is usually done in time series or data mining approaches, we model and utilize its true source: the sale and purchase curves of the electricity exchange. We will refer to this new model as XModel, as almost every deregulated electricity price is simply the result of the intersection of the electricity supply and demand curve at a certain auction. Therefore we show an approach to deal with a tremendous amount of auction data, using a subtle data processing technique as well as dimension reduction and lasso based estimation methods. We incorporate not only several known features, such as seasonal behavior or the impact of other processes like renewable energy, but also completely new elaborated stylized facts of the bidding structure. Our model is able to capture the nonlinear behavior of the electricity price, which is especially useful for predicting huge price spikes. Using simulation methods we show how to 11 derive prediction intervals. We describe and show the proposed methods for the dayahead EPEX spot price of Germany and Austria. Joint work with Rick Steinert.  

Veraart, Almut (Imperial College)  Lecture Room 13  Tue, 5. Jul 16, 14:00 
"Ambit stochastics in Energy Markets"  
This talk gives an introduction to the area of ambit stochastics with a particular focus on applications in energy markets. In particular, we will describe models for energy spot and forward prices based on socalled ambit felds. These models are very flexible and at the same time highly analytically tractable making them interesting from a mathematical perspective, but also very useful for applications.  

Callegaro, Giorgia (U. Padova)  Lecture Room 13  Tue, 5. Jul 16, 11:00 
"Utility Indifference Pricing and Hedging for Structured Contracts in Energy Markets"  
In this paper we study the pricing and hedging of structured products in energy markets, such as swing and virtual gas storage, using the exponential utility indierence pricing approach in a general incomplete multivariate market model driven by nitely many stochastic factors. The buyer of such contracts is allowed to trade in the forward market in order to hedge the risk of his position. We fully characterize the buyers utility indierence price of a given product in terms of continuous viscosity solutions of suitable nonlinear PDEs. This gives a way to identify reasonable candidates for the optimal exercise strategy for the structured product as well as for the corresponding hedging strategy. Moreover, in a model with two correlated assets, one traded and one nontraded, we obtain a representation of the price as the value function of an auxiliary simpler optimization problem under a risk neutral probability, that can be viewed as a perturbation of the minimal entropy martingale measure. Finally, numerical results are provided.  

Vargiolu, Tiziano (U. Padova)  Lecture Room 13  Tue, 5. Jul 16, 10:30 
"Additive Models for Forward Curves in Multicommodity Energy Markets"  
In contrast to geometric models, additive models in energy markets, in particular in markets where forward contracts are delivered during a period like electricity and natural gas, allows easily the computation of forward prices in closed form. Moreover they naturally allow the presence of negative prices, which start to appear more and more frequently in electric markets. In this paper we present an additive multicommodity model which allows for meanreverting dynamics consistent with noarbitrage, based on the observed prices of forward contracts based on the mean on a period, which are the most liquid instruments in natural gas and electricity markets. This allows to compute the price of more complex derivatives and of risk measures of portfolios in a way which is consistent with market data. Joint work with Luca Latini.  

Gulisashvili, Archil (U. Ohio)  Lecture Room 13  Tue, 5. Jul 16, 9:00 
"Peter Laurence as friend and collaborator"  
My talk is dedicated to the memory of Peter Laurence, whose untimely death has left a void in many peoples hearts. Peter was a truly great mathematician and a wonderful person. In the first part of the talk, Peter's scientific biography will be presented. I will also share personal recollections of my meetings with Peter facetoface and in the skype world. The second part of the talk will be more mathematical. I will speak about my joint work with Peter on Riemannian geometry of the Heston model, which is one of the classical stock price models with stochastic volatility. My collaboration with Peter resulted in the paper "The Heston Riemannian distance function", which was published in 2014 by "Journal de Mathematiques Pures et Appliquees". In the paper, we found two explicit formulas for the Riemannian Heston distance, using geometrical and analytical methods. Geometrical approach is based on the study of the Heston geodesics, while the analytical approach exploits the links between the Heston distance function and a similar distance function in the Grushin plane. We also proved a partial large deviation principle for the Heston and the Grushin models. After completing our work on the paper, we started discussing future projects, but fate interfered. I will finish the talk by briefly presenting my recent results on the distance to the line in the Heston plane, and how such results can be used in nancial mathematics. Peter's scientific in fluence continues after his untimely departure from this world.  

Lorz, Alexander (U. Paris VI & KAUST)  Lecture Room 11  Sat, 2. Jul 16, 15:20 
"Population dynamics and therapeutic resistance: mathematical models"  
We are interested in the Darwinian evolution of a population structured by a phenotypic trait. In the model, the trait can change by mutations and individuals compete for a common resource e.g. food. Mathematically, this can be described by nonlocal LotkaVolterra equations. They have the property that solutions concentrate as Dirac masses in the limit of small diffusion. We review results on longterm behaviour and small mutation limits. A promising application of these models is that they can help to quantitatively understand how resistances against treatment develop. In this case, the population of cells is structured by how resistant they are to a therapy. We describe the model, give first results and discuss optimal control problems arising in this context.  

Botesteanu, DanaAdriana (U. Maryland)  Lecture Room 11  Sat, 2. Jul 16, 14:30 
"Modeling the Dynamics of Highgrade Serous Ovarian Cancer Progression for Transvaginal UltrasoundBased Screening and Early Detection"  
Highgrade serous ovarian cancer (HGSOC) represents the majority of ovarian cancers and disease recurrence is common, and leads to incurable disease. Emerging insights into disease progression suggest that timely detection of low volume HGSOC, not necessarily also early stage, should be the goal of any screening study. However, numerous transvaginal ultrasound (TVU) detectionbased studies aimed at detecting lowvolume ovarian cancer have not yielded reduced mortality rates and thus invalidate TVU as an effective HGSOC monitoring strategy in improving overall survival. Our mathematical modeling approach proposes a quantitative explanation behind the reported failure of TVU to improve HGSOC lowvolume detectability and overall survival rates. We develop a novel in silico mathematical assessment of the efficacy of a unimodal TVU monitoring regimen as a strategy aimed at detecting lowvolume HGSOC in cancerpositive cases, defined as cases for which the inception of the first malignant cell has already occurred. Focusing on a malignancy poorly studied in the mathematical oncology community, our model recapitulates the dynamic, temporal evolution of HGSOC progression, and is characterized by several infrequent, ratelimiting events. Our results suggest that multiple frequency TVU monitoring across various detection sensitivities does not significantly improve detection accuracy of HGSOC in an in silico cancerpositive population. This is a joint work with Doron Levy (University of Maryland, College Park) and JungMin Lee (Women’s Malignancies Branch, National Cancer Institute)  

Eder, Thomas (Ludwig Boltzmann Institute)  Lecture Room 11  Sat, 2. Jul 16, 14:00 
"The Normalization Visualization Tool or how to choose an adequate normalization strategy for RNASeq experiments"  
Differential gene expression analysis between healthy and cancer samples is a common task. In order to identify differentially expressed genes, it is crucial to normalize the raw count data of RNASeq experiments. There are multiple normalization methods available but all of them are based on certain assumptions. These may or may not be suitable for the type of data they are applied on and especially if an experiment compares gene expression levels of healthy vs. rapidly growing tumor cells, the assumptions of nondifferentially expressed genes or equal amounts of mRNA might not apply. Researchers therefore need to select an adequate normalization strategy for each RNASeq experiment. This selection includes exploration of different normalization methods as well as their comparison. We developed the NVT package, which provides a fast and simple way to analyze and evaluate multiple normalization methods via visualization and representation of correlation values, based on a userdefined set of uniformly expressed genes.  

Hanson, Shalla (U. Duke)  Lecture Room 11  Sat, 2. Jul 16, 13:30 
"Toxicity Management in CAR T cell therapy for BALL: Mathematical modelling as a new avenue for improvement"  
Advances in genetic engineering have made it possible to reprogram individual immune cells to express receptors that recognise markers on tumour cell surfaces. The process of reengineering T cell lymphocytes to express Chimeric Antigen Receptors(CARs), and then reinfusing the CARmodified T cells into patients to treat various cancers is referred to as CAR T cell therapy. This therapy is being explored in clinical trials  most prominently for B Cell Acute Lymphoblastic Leukaemia (BALL), a common B cell malignancy, for which CAR T cell therapy has led to remission in up to 90% of patients. Despite this extraordinary response rate, however, potentially fatal inflammatory side effects occur in up to 10% of patients who have positive responses. Further, approximately 50% of patients who initially respond to the therapy eventually relapse. Significant improvement is thus necessary before the therapy can be made widely available for use in the clinic. To inform future development, we develop a mathematical model to analyze the interaction dynamics between CAR T cells, inflammatory toxicity, and individual patients' tumour burdens in silico. This talk outlines an underlying system of coupled ordinary differential equations, designed based on wellknown immunological principles and widely accepted views on the mechanism of toxicity development in CAR T cell therapy for BALL, to form novel hypotheses on key factors in toxicity development, and reports in silico outcomes in relationship to standard and recently conjectured predictors of toxicity in a heterogeneous, randomly generated patient population. Our initial results and analyses are consistent with and connect immunological mechanisms to the clinically observed, counterintuitive hypothesis that initial tumour burden is a stronger predictor of toxicity than is the dose of CAR T cells administered to patients. We outline how the mechanism of action in CAR T cell therapy can give rise to such nonstandard trends in toxicity development, and demonstrate the utility of mathematical modelling in understanding the relationship between predictors of toxicity, mechanism of action, and patient outcomes.  

Stiehl, Thomas (U. Heidelberg)  Lecture Room 11  Sat, 2. Jul 16, 11:10 
"Heterogeneity in acute leukemias and its clinical relevance – Insights from mathematical modeling"  
Acute leukemias are cancerous diseases of the blood forming (hematopoietic) system. A hallmark of acute leukemias is heterogeneity of their clinical course. Similar as the hematopoietic system, leukemias originate from a small population of leukemic stem cells that resist treatment and trigger relapse. Recent gene sequencing studies demonstrate that the leukemic cell mass is composed of multiple clones the contribution of which changes over time. We propose compartmental models of hierarchical cell populations to study interaction of leukemic and healthy cells. The models are given as nonlinear ordinary differential equations. They include different feedback mechanisms that mediate competition and selection of the leukemic clones and the decline of healthy cells. Examples for considered mechanism are hormonal (cytokine) feedback loops, competition within the stem cell niche and overcrowding of the bone marrow space. A combination of computer simulations and patient data analysis is applied to provide insights in the following questions: (1) Which mechanisms allow leukemic cells to outcompete their benign counterparts? (2) How do properties of leukemic clones in terms of selfrenewal and proliferation change during the course of the disease? What is the impact of treatment on clonal properties? (3) How do leukemic stem cell parameters affect the clinical course and patient prognosis? (4) What is the impact of leukemic cell properties on the number of leukemic clones and their genetic interdependence? (5) How does responsiveness of leukemic cells to signals of healthy hematopoiesis influence treatment response? Do interindividual differences in signal sensitivity of leukemic cells matter? The talk is based on joint works with Anna MarciniakCzochra (Institute of Applied Mathematics, Heidelberg University), Anthony D. Ho, Natalia Baran and Christoph Lutz (Heidelberg University Hospital).  

Almeida, Luis (U. UPMC Paris)  Lecture Room 11  Sat, 2. Jul 16, 10:30 
"Mathematical models for epithelial tissue integrity restoration"  
We will present work on the mechanisms used for establishing or restoring epithelial integrity which are motivated by experimental work on development and wound healing in Zebrafish and drosophila and on gap closure in monolayers of MDCK cells or keratinocytes. These works concern mathematical modeling of the dynamics of epithelial tissues pulled by lamellipodal crawling or the contraction of actomyosin cables at the gap boundary. We are particularly interested in the influence of the wound/gap geometry and of the adhesion to the substrate on the closure mechanism.  

Xu, Zhou (U. UPMC Paris VI)  Lecture Room 11  Sat, 2. Jul 16, 9:30 
"Telomere length dynamics and senescence heterogeneity: when size matters"  
Failure to maintain telomeres leads to their progressive erosion at each cell division. This process is heterogeneous but eventually triggers replicative senescence, a pathway shown to protect from unlimited cell proliferation, characteristic of cancer cells. However, the mechanisms underlying its variability and its dynamics are not characterized. Here, we used a microfluidicsbased livecell imaging assay to investigate replicative senescence in individual Saccharomyces cerevisiae cell lineages. We show that most lineages experience an abrupt and irreversible transition from a replicative to an arrested state, contrasting with the common idea of a progressive transition. Interestingly, senescent lineages displayed an important heterogeneity in their timing to enter senescence despite starting from the same initial telomeres. To understand this, we built several mathematical models, successively adding layers of molecular details. We find that, in a stochastic model where the first telomere reaching a critical short length triggers senescence, the variance of the initial telomere distribution mostly accounts for senescence heterogeneity. Unexpectedly, the residual heterogeneity is structurally built in the asymmetrical telomere replication mechanism. We then theoretically studied different senescence regimes, depending on the initial telomere variance, and provided analytical solutions to derive senescence onset from telomere length. Furthermore, the microfluidics approach also revealed another class of lineages that undergo frequent reversible cellcycle arrests. Cells with this phenotype persist only at low frequency in bulk cultures but could initiate both genomic instability and postsenescence survival through adaptation mechanisms. These data suggest that another source of heterogeneity of senescence onset consists of stochastic telomere damages that may be the basis of cancer emergence.  

Lorenzi, Tommaso (U. St. Andrews)  Lecture Room 11  Fri, 1. Jul 16, 16:00 
" Observing the dynamics of cancer cell populations through the mathematical lens of structured equations "  
A growing body of evidence supports the idea that solid tumours are complex ecosystems populated by heterogeneous cells, whose dynamics can be described in terms of evolutionary and ecological principles. In this light, it has become increasingly recognised that models that are akin to those arising from mathematical ecology can complement experimental cancer research by capturing the crucial assumptions that underlie given hypotheses, and by offering an alternative means of understanding experimental results that are currently available. This talk deals with partial differential equations modelling the dynamics of structured cancer cell populations. Analyses and numerical simulations of these equations help to uncover fresh insights into the critical mechanisms underpinning tumour progression and the emergence of resistance to anticancer therapies.  

Berger, Walter (MedUni Wien) & Mohr, Thomas (MedUni Wien)  Lecture Room 11  Fri, 1. Jul 16, 15:20 
"Modeling factors contributing to glioblastoma aggressiveness"  
Glioblastoma represents the most frequent and aggressive primary brain tumor. Despite intense research and availability of extended in silico data, the mean patient survival after diagnosis is only around 15 months. Classical alkylating chemotherapy with concomitant radiation is still the standard therapeutic approach. This demonstrates that the revolution of modern precision medicine based on “big data” strategies has not resulted in approved therapeutic options and patient prognosis in this deadly disease so far. This implies that simple big data collection with bioinformatic evaluation might not be sufficient to translate into clinical benefit and close cooperations between systems biology and whet lab research is essential. Accordingly, we focus in our research cooperation on a multistrategy approach focusing on a tight integration of 1) largescale biobanking of viable malignant cells and cancer stem cells, 2) wetlab cell and molecular biology and xenograft experiments; 3) extended omics analysis and 4) advanced computational biology methods. Regarding molecular factor driving tumor aggressiveness, data on a recently discovered noncoding mutation in the promoter of the telomerase reverse transcriptase (TERT) gene in human glioblastoma will be elucidated. Additionally, using publicly available gene expression profiles of glioblastoma patients we tried to bridge the existing gap of understanding the association of individual genes/mutations to complex physiological processes by the systematic investigation of the observed relationship between gene products and clinical traits. A weighted gene coexpression network approach (WGCNA) has been proposed to reconstruct gene coexpression networks in terms of largescale gene expression profiles and as well as for the distinction genes potentially driving key cellular signaling pathways based on the centrality – lethality theorem. The WGCNA approach provides a functional interpretation in Systems Biology and leads to new insights into cancer pathophysiology. Here, we applied a systematic framework for constructing gene coexpression networks (modules) and pinpointing key genes that may drive tumorigenesis and progression in different subclasses of GBM. Microarray data were downloaded from The Cancer Genome Atlas, corrected for batch effects using ComBat and normalized using rma and quantil normalization. Outliers were excluded using coexpression network parameters and coexpression network similarity. The resulting dataset was stratified according to the classification of Verhaak et al. and subjected to comparative Weighted Gene Coexpression analysis. The resulting modules were tested for module preservation across GBM subtypes using the connectivity and density measures. Modules of interest (both preserved and differentially interconnected) were analyzed for biological function using Term Enrichment Analysis methods and correlated to clinical traits (e.g. survival) to identify potential key driving coexpression networks. The lead modules will be then subject to cell biological and in vivo evaluation in glioblastoma models. In summary this multidisciplinary approach offers novel insights into glioblastoma aggressiveness and might uncover novel therapeutic targets.  

Pouchol, Camille (INRIA)  Lecture Room 11  Fri, 1. Jul 16, 14:25 
"Optimal control of combined chemotherapies in phenotypestructured cancer cell populations evolving towards drug resistance"  
We investigate optimal therapeutical strategies combining cytotoxic and cytostatic drugs for the treatment of a solid tumour. The difficulty comes from the usual pitfalls of such treatments: emergence of drugresistance and toxicity to healthy cells. We consider an integrodifferential model for which the structuring variable is a continuous phenotype. Such models come from theoretical ecology and have been developed to understand how selection occurs in a given population of individuals. Two populations of healthy and cancer cells, both structured by a phenotype representing resistance to the drugs, are thus considered. The optimal control problem consists of minimising the number of cancer cells after some fixed time T. We first analyse the effect of constant doses on the longtime asymptotics through a Lyapunov functional. The optimal control problem is solved numerically, and for large T, we also theoretically determine the optimal strategy in a restricted class of controls.  

Vallette, Francois (U. Nantes)  Lecture Room 11  Fri, 1. Jul 16, 13:45 
"Biological analysis of the drug resistance acquisition in a glioma cell line"  
Cancer evolution, including resistance to treatments, can be explained by classical evolutionary principles. This contention implies that cancer cells may be confronted to several “bottlenecks” or “evolutionary traps” during the natural course or adaptation to this “new environment”. It has been shown that despite an important heterogeneity at the start, cancer cells may rely, at some stage, on few survival mechanisms or on restricted populations that exhibit cancer stem cells / dedifferentiation features. We used two cell lines (U251 and U87 both derived from human glioma) treated with the most clinical relevant chemotherapy (Temozolomide, TMZ) in vitro for few days and analyzed their relative sensitivity to several drugs interfering with epigenetics. Deep sequencing of control and TMZ treated U251 cell lines allowed us to identify new genes implicated in their survival that are transiently overexpressed shortly after TMZ addition. Using single cell analysis by microfluidic Fluidigm technologies (combined C1 single cell analysis plus Biomark HD system), we have studied the expression of these genes plus some implicated in cell death program and survival mechanisms) in isolated cells (>60) from control and cells treated with TMZ. Analysis of the expression of these genes reveals that the level of genomic heterogeneity appeared to be reduced in treated cells at early stages. These preliminary results, coupled to phenotypic analyses on cell death and proliferation rates, suggest that the cell lines can undergo a first rapid selection process that reduces their heterogeneity (and proliferation capacity) but improve their resistance capacity through limited survival pathways.  

Ciccolini, Joseph (U. Aix Marseille)  Lecture Room 11  Fri, 1. Jul 16, 11:30 
"Not enough money on this earth: will pharmacometrics save oncology ?"  
Oncology has benefited from major groundbreaking innovations over the last 15years. Beyond standard chemotherapy, targeted therapies, antioangiogenics and now immune checkpoint inhibitors have all fueled high expectancies in terms of increased response rate and extended survival in patients. Of note, despite huge resources engaged now to better understand tumor biology and to identify relevant genetic and/or molecular biomarkers for choosing the best drugs, increase in survival has been mostly achieved in an incremental fashion so far, with the notable exception of CML and more recently of melanoma. The everincreasing number of druggable targets, along with the rise of new concepts such as cancer immunology, has contributed to a considerable complexification of the decisionmaking at bedside. Indeed, it is widely acknowledged now that combination therapy is the future of cancer treatment. As such, defining the optimal association between cytotoxics, radiotherapy, antiangiogenic drugs, targeted therapies and now immunotherapy is a major issue that remains to be addressed. Optimal solution will not be reached anymore by standard trialanderror empirical practice, owing to the nearinfinite number of possible combinations to be tested now that would require unsustainable efforts in terms of clinical development by pharmaceutical companies. In this respect, pharmacometrics (i.e., mathematical PK/PD models) could help to identify, using in silico simulations, a reduced number of working hypothesis to be tested in priority as part of clinical trials. Reviewing recent literature in the field and giving some examples in experimental and clinical oncology with chemotherapy, antiangiogenics and immunotherapy, we will discuss how pharmacometrics could indeed help to optimize anticancer treatments. The paradigm shift from empirical to more rationale practice is probably the next challenge in oncology.  

Obenauf, Anna (U. Wien)  Lecture Room 11  Fri, 1. Jul 16, 10:50 
"Unintended consequences of targeted cancer therapy: Therapy induced tumor secretomes fuel drug resistance and tumor Progression"  
The identification of molecular drivers in cancer has paved the way for targeted therapy. However, incomplete responses and relapse on therapy remain the biggest problem for improving patient survival. Evidence suggests that a tumor consists of a majority of cells that are sensitive to targeted therapy while few cells that are intrinsically resistant or poised to quickly adapt to drug treatment already preexist within this heterogeneous tumor population. Although a multitude of resistance mechanisms have been described, it was largely unknown how resistant cells behave in a heterogeneous tumor during treatment and whether a regressing tumor microenvironment could influence disease relapse. We found that targeted therapy with BRAF, ALK, or EGFR kinase inhibitors induces a complex network of secreted signals in drugstressed melanoma and lung adenocarcinoma cells. This therapyinduced secretome (TIS) stimulates the outgrowth, dissemination, and metastasis of drugresistant cancer cell clones in the heterogenous tumors and supports the survival of drugsensitive cancer cells, contributing to incomplete tumour regression. The vemurafenib reactive secretome in melanoma is driven by downregulation of the transcription factor FRA1. In situ transcriptome analysis of drugresistant melanoma cells responding to the regressing tumour microenvironment revealed hyperactivation of multiple signalling pathways, most prominently the AKT pathway. Dual inhibition of RAF and PI3K/AKT/mTOR pathways blunted the outgrowth of the drugresistant cell population in BRAF mutant melanoma tumours, suggesting this combination therapy as a strategy against tumour relapse. Thus, therapeutic inhibition of oncogenic drivers induces vast secretome changes in drugsensitive cancer cells, paradoxically establishing a tumour microenvironment that supports the expansion of drugresistant clones, but is susceptible to combination therapy.  

Clairambault, Jean (INRIA)  Lecture Room 11  Fri, 1. Jul 16, 9:50 
"Heterogeneity and drug resistance in cancer cell populations: an evolutionary point of view with possible therapeutic consequences"  
I will present an evolutionary viewpoint on cancer, seen as the 2 time scales of (largetime) evolution in the genomes and of (shorttime) evolution in the epigenetic landscape of a constituted genome. These views, based on pioneering works by Lineweaver, Davies and Vincent (cancer as anatomically localised backward evolution in multicellular organisms, aka atavistic theory of cancer) and by Sui Huang and collaborators (revisited Waddington epigenetic landscape), respectively, may serve as guidelines to propose a global conception of cancer as a disease that impinges on all multicellular organisms, and they may lead to innovating therapeutic strategies. Druginduced drug resistance, the medical question we are tackling from a theoretical point of view, may be due to biological mechanisms of different natures, mere local regulation, epigenetic modifications (reversible, nevertheless heritable) or genetic mutations (irreversible), according to the extent to which the genome of the cells in the population is affected. In this respect, the modelling framework of adaptive dynamics presented here is more likely to correspond biologically to epigenetic modifications than to mutations, although eventual induction of emergent resistant cell clones due to mutations under drug pressure is not to be completely excluded. From the biologist's point of view, we study phenotypically heterogeneous, but genetically homogeneous, cancer cell populations under stress by drugs. The builtin targets for theoretical therapeutic control present in the phenotypestructured PDE models we advocate are not supposed to represent welldefined molecular effects of the drugs in use, but rather functional effects, i.e., related to cell death (cytotoxic drugs), or to proliferation in the sense of slowing down the cell division cycle without killing cells (cytostatic drugs). We propose that cell lifethreatening drugs (cytotoxics) induce by far more resistance in the highly plastic cancer cell populations than drugs that only limit their growth (cytostatics), and that a rational combination of the two classes of drugs may be optimised to propose innovating therapeutic control strategies to avoid the emergence of drug resistance in tumours.  

Kalinin, Alexander (U. Mannheim)  WPI, Seminar Room 08.135  Wed, 6. Apr 16, 16:30 
“Mild and Viscosity Solutions of Parabolic PathDependent Partial Differential Equations”  
In this talk, we consider a class of parabolic semilinear pathdependent PDEs that can be associated with a class of stochastic integral equations, which may depend on the entire sample paths of a timeinhomogeneous diffusion process. For instance, such integral equations can determine the logLaplace functionals of historical superprocesses. By exploiting this relationship, we show uniqueness, existence and nonextendibility of mild solutions, and verify that every mild solution turns out to be a viscosity solution of the pathdependent PDE in question.  

Cosso, Andrea (Université Paris 7)  WPI, Seminar Room 08.135  Wed, 6. Apr 16, 15:00 
“Functional versus Banach space stochastic calculus, and strongviscosity solutions to pathdependent PDEs”  
In the first part of the talk we revisit the basic theory of functional Ito calculus, using the regularization approach. This allows us to explore its relations with the corresponding Banach space stochastic calculus. In the second part of the talk, we introduce a viscosity type solution for pathdepenendent partial differential equations, called strongviscosity solution, with the peculiarity that it is a purely analytic object. We discuss its properties and we present an existence and uniqueness result for strongviscosity solutions to semilinear parabolic pathdependent partial differential equations.  

Cont, Rama (Imperial College London)  WPI, Seminar Room 08.135  Wed, 6. Apr 16, 14:00 
“Kolmogorov without Markov: pathdependent Kolmogorov equations”  
Pathdependent Kolmogorov equations are a class of infinite dimensional partial differential equations on the space of cadlag functions which extend Kolmogorov's backward equation to pathdependent functionals of stochastic processes. Solutions of such equations are nonanticipative functionals which extend the notion of harmonic function to a nonMarkovian, pathdependent setting. We discuss existence, uniqueness and properties of weak and strong solutions of pathdependent Kolmogorov equations using the Functional Ito calculus. Time permitting, some applications to mathematical finance and nonMarkovian stochastic control will be discussed.  

Davis, Mark (Imperial College, London)  WPI, Seminar Room 08.135  Wed, 6. Apr 16, 11:30 
“Infinitedimensional linear programming and robust hedging of contingent claims”  
We consider a market including a traded asset whose forward price St is unambiguously defined and on which put options are traded with maturity/strike pairs {(Tj,Kji), i = 1, . . . , ij, j = 1, . . . , n}. The prices of these options, and the underlying asset price, are known at the current time t = 0, and are assumed to satisfy the DavisHobson (2007) conditions for consistency with an arbitragefree model. Given a pathdependent contingent claim with exercise value ö(ST1, . . . , STn) we look for the cheapest semistatic superhedging portfolio, consisting of static positions in the traded options together with dynamic trading in the underlying where rebalancing takes place only at the option exercise times Tj. This problem is naturally formulated as an infinitedimensional linear program (LP) and (under stated conditions) we can apply interior point conditions to show that there is no duality gap, the dual problem being maximization of expectation over martingale measures. One advantage of this approach is that computations can be done by finitedimensional LP algorithms, following a 2stage discretization process where we firstly restrict the dynamic trading integrands to finite linear combinations of basis functions, and then discretize the state space; we present some examples. Finally, we comment on possible extensions of these results to models with transaction costs. This is joint work with Sergey Badikov and Antoine Jacquier.  

Acciaio, Beatrice (London School of Economics)  WPI, Seminar Room 08.135  Wed, 6. Apr 16, 10:30 
“Modelindependent pricing with additional information”  
We consider a continuoustime financial market that consists of securities available for dynamic trading, and securities only available for static trading. We work in a robust framework and discuss two different ways of including additional information. In the first case, the informed agent's information flow is modeled by a filtration which is finer that the one of the uninformed agent. This clearly leads to a richer family of trading strategies, and to a smaller set of pricing measures. In the second case, we assume that the additional information consists in being able to exclude some evolution of the asset price process. In particular, superreplication of a contingent claim is required only along paths falling in the smaller set of admissible paths, and the pricing measures to be considered are only those supported on this set. The talk is based on joint works with Martin Larsson, Alex Cox and Martin Huesmann.  

Obloj, Jan (U. Oxford)  WPI, Seminar Room 08.135  Wed, 6. Apr 16, 9:00 
“Robust pricinghedging duality with path constraints and applications to information quantification”  
We consider robust (pathwise) approach to pricing and hedging. Motivated by the notion of prediction set in Mykland (2003), we include in our setup modelling beliefs by allowing to specify a set of paths to be considered, e.g. superreplication of a contingent claim is required only for paths falling in the given set. The framework interpolates between modelindependent and modelspecific settings. We establish a general pricinghedging duality. The setup is parsimonious and includes the case of no traded options as well as the socalled martingale optimal transport duality of Dolinsky and Soner (2013) which we extend to multiple dimensions and multiple maturities. In presence of nontrivial beliefs, the equality is obtained between limiting values of perturbed problems indicating that the duality holds only if the market is stable under small perturbations of the inputs. Our framework allows to quantify the impact of making assumptions or gaining information. We focus in particular on the latter and study if the pricinghedging duality is preserved under additional information. Joint work with Zhaoxu Hou and Anna Aksamit.  

Nutz, Marcel (Columbia University)  WPI, Seminar Room 08.135  Tue, 5. Apr 16, 17:00 
“Martingale Optimal Transport and Beyond”  
We study the MongeKantorovich transport between two probability measures, where the transport plans are subject to a probabilistic constraint. For instance, in the martingale optimal transport problem, the transports are laws of martingales. Interesting new couplings emerge as optimizers in such problems. Constrained transport arises in the context of robust hedging in mathematical finance via linear programming duality. We formulate a complete duality theory for general performance functions, including the existence of optimal hedges. This duality leads to an analytic monotonicity principle which describes the geometry of optimal transports. Joint work with Mathias Beiglböck, Florian Stebegg and Nizar Touzi.  

Badikov, Sergey (Imperial College, London)  WPI, Seminar Room 08.135  Tue, 5. Apr 16, 16:00 
“Noarbitrage bounds for the forward smile given marginal”  
We explore the robust replication of forwardstart straddles given quoted (Call and Put options) market data. One approach to this problem classically follows semiinfinite linear programming arguments, and we propose a discretisation scheme to reduce its dimensionality and hence its complexity. Alternatively, one can consider the dual problem, consisting in finding optimal martingale measures under which the upper and the lower bounds are attained. Semianalytical solutions to this dual problem were proposed by Hobson and Klimmek (2013) and by Hobson and Neuberger (2008). We recast this dual approach as a finite dimensional linear programme, and reconcile numerically, in the BlackScholes and in the Heston model, the two approaches.  

Siorpaes, Pietro (U. Oxford)  WPI, Seminar Room 08.135  Tue, 5. Apr 16, 14:30 
“Pathwise local time and robust pricing of realized variance”  
Davis, Obloj and Raval (2013) developed a theory of robust pricing and hedging of weighted variance swaps given market prices of comaturing put options. They make use of Föllmer’s quadratic variation for continuous paths, and of an analogous notion of local time. Here we develop a theory of pathwise local time, defined as a limit of suitable discrete quantities along a general sequence of partitions of the time interval. We provide equivalent conditions for the existence of pathwise local time. Our approach agrees with the usual (stochastic) local times for a.e. path of a continuous semimartingale. We establish pathwise versions of the ItôTanaka, change of variables and change of time formulae. Finally, we study in detail how the limiting objects, the quadratic variation and the local time, depend on the choice of partitions. In particular, we show that an arbitrary given nondecreasing process can be achieved a.s. by the pathwise quadratic variation of a standard Brownian motion for a suitable sequence of (random) partitions; however, such degenerate behavior is excluded when the partitions are constructed from stopping times.  

BlacqueFlorentin, Pierre (Imperial College, London)  WPI, Seminar Room 08.135  Tue, 5. Apr 16, 11:30 
“Functional calculus and martingale representation formula for integervalued random measures”  
We develop a pathwise calculus for functionals of integervalued measures. We show that smooth functionals in the sense of this pathwise calculus are dense in the space of squareintegrable (compensated) integrals with respect to a large class of integervalued random measures. Using these results, we extend the framework of Functional Itô Calculus to functionals of integervalued random measures. We construct a 'stochastic derivative' operator with respect to such integervalued random measures and obtain an explicit martingale representation formula for squareintegrable martingales with respect to the filtration generated by such integervalued random measures. Our results hold beyond the class of Poisson random measures and allow for random and timedependent compensators. This is joint work with R. Cont.  

Lu, Yi (Université Pierre & Marie Curie, Paris VI)  WPI, Seminar Room 08.135  Tue, 5. Apr 16, 10:30 
“Weak derivatives of nonanticipative functionals”  
In his seminal paper "Calcul d'Ito sans probabilités", Hans Föllmer proposed a nonprobabilistic version of the Itô formula, which was recently generalized by Rama Cont and DavidAntoine Fournié in a functional framework. Using the notion of pathwise quadratic variation, we derive first a pathwise isometry formula for functionals of a given path. This formula allows to generalize the notion of vertical derivatives and allows to define a weak version of vertical derivatives for functionals which are not necessarily smooth in the classical sense. The whole approach involves only pathwise arguments and does not rely on any probability notions. Nevertheless, we show that when applying to a stochastic process, this notion of weak derivatives coincides with the weak derivatives proposed by Cont and Fournié in a probabilistic framework.  

Ananova, Anna (Imperial College, London)  WPI, Seminar Room 08.135  Tue, 5. Apr 16, 9:00 
“Pathwise integration with respect to paths of finite quadratic variation.”  
We study a notion of pathwise integral with respect to paths of finite quadratic variation, defined as the limit of nonanticipative Riemann sums, as defined by Follmer (1979) and extended by Cont & Fournie (2010). We prove a pathwise isometry property for this integral, analogous to the wellknown Ito isometry for stochastic integrals. This property is then used to represent the integral as a continuous map on an appropriately defined vector space of integrands. Finally, we obtain a pathwise 'signal plus noise' decomposition, which is the pathwise analog of the semimartingale decomposition, for a large class of irregular paths obtained through functional transformations of a reference path with nonvanishing quadratic variation. The relation with controlled rough paths is discussed.  

Beiglböck, Mathias (TU Wien)  WPI, Seminar Room 08.135  Mon, 4. Apr 16, 16:30 
“Pathwise superreplication via Vovk's outer measure”  
Since Hobson's seminal paper the connection between modelindependent pricing and the skorokhod embedding problem has been a driving force in robust finance. We establish a general pricinghedging duality for financial derivatives which are susceptible to the Skorokhod approach. Using Vovk's approach to mathematical finance we derive a modelindependent superreplication theorem in continuous time, given information on finitely many marginals. Our result covers a broad range of exotic derivatives, including lookback options, discretely monitored Asian options, and options on realized variance.  

Prömel, David (HumboldtUniversität zu Berlin)  WPI, Seminar Room 08.135  Mon, 4. Apr 16, 15:00 
“Pathwise Tanaka formula and local times for typical price paths”  
We present a pathwise Tanaka formula for absolutely continuous functions with weak derivative of finite qvariation provided the local time is of finite pvariation with 1/p + 1/q >1. To justify the assumption on the local time, we follow Vovk's hedging based approach to model free financial mathematics. We prove that it is possible to make an arbitrarily large profit by investing in those onedimensional paths which do not possess local times fulfilling the aforementioned assumptions. This talk is based on a joint work with Nicolas Perkowski.  

Perkowski, Nicolas (HumboldtUniversität zu Berlin)  WPI, Seminar Room 08.135  Mon, 4. Apr 16, 14:00 
"Stochastic integration and gametheoretic martingales"  
Vovk recently introduced a pathwise approach to continuous time mathematical finance which does not require any measuretheoretic foundation and allows us to describe properties of “typical price paths” or “gametheoretic martingales" by only relying on superhedging arguments. I will show how to construct a model free Itô integral in this setting. We will also see that every typical price paths a rough path in the sense of Lyons. Based on joint work with David Prömel.  

Vovk, Vladimir (Royal Holloway, London)  Skylounge (12th floor)  Mon, 4. Apr 16, 11:30 
“Financial applications of gametheoretic supermartingales”  
This talk will introduce a class of gametheoretic supermartingales, whose main advantage over their measuretheoretic counterparts is that they do not presuppose a given probability measure; instead, they can be used to define an outer measure motivated by economic considerations combined only with topological (but not statistical) assumptions. Under the continuity assumption, it is possible to show that a typical continuous price path "looks like Brownian motion" with a possibly deformed time axis. A weaker assumption of boundedness of jumps still implies the almost sure existence of pathwise stochastic integrals of functions with finite pvariation for some p with respect to cadlag price paths with bounded jumps.  

Teichmann, Josef (ETH Zürich)  Skylounge (12th floor)  Mon, 4. Apr 16, 10:00 
“Rough term structures”  
In the realm of Martin Hairer's regularity structures we aim to introduce topologies on spaces of modelled distributions, which enable on the one hand reconstruction and which allow on the other hand a rich class of modelled distribution valued semimartingales. This is done to have tools from regularity structures and semimartingale theory at hand. Examples from the theory of term structures in mathematical Finance are shown. Joint work with David Prömel, ETH Zürich.  

Pansu, Pierre (U. Paris)  WPI, Seminar Room 08.135  Wed, 24. Feb 16, 12:00 
"The quasisymmetric Hölder equivalence Problem"  
What is the optimal pinching of curvature on spaces quasiisometric to complex hyperbolic spaces ? This leads to the following problem: what is the best Hölder continuity exponent for a homeomorphism of Euclidean space to a metric space quasisymmetric to the Heisenberg group, when the inverse map is assumed to be Lipschitz ? We give a partial result on this question.  

Swiatoslaw, Gal (U. Wroclaw)  OMP 1, Seminar Room 08.135  Wed, 24. Feb 16, 10:30 
"Uniform simplicity of groups of dynimical origin"  
A group is called $N$]uniformly simple if for every nontrivial conjugacy class $C$, $(C^\pm)^{\leq N}$ covers the whole group. Every uniformly simple group is simple. It is known that many group with geometric or dynamical origin are simple. In the talk we prove that, in fact, many of them are uniformly simple. The result are due to the speaker, Kuba Gis] matullin, and Nir Lazarovich.  

Ghosh, Sourav (U. Heidelberg)  WPI, Seminar Room 08.135  Wed, 24. Feb 16, 9:15 
"Moduli space of Margulis Spacetimes"  
In this talk I will describe the stable and unstable leaves for the geodesic flow on the space of nonwandering space like geodesics of a Margulis Spacetime. I will also describe how monodromy of Margulis Spacetimes are “Anosov representations in non semisimple Lie groups”. Finally using the Anosov property I will define the Pressure metric on the Moduli Space of Margulis Spacetimes and discuss some of its properties.  

Guichard, Olivier (U. Strasbourg)  WPI, Seminar Room 08.135  Tue, 23. Feb 16, 16:00 
"Symplectic Maximal Representations"  
Jointly with Anna Wienhard, we obtain a better understanding of the compact $\mathbf{R}\mathbb{P}^{2n1}$manifolds coming from maximal representations into the symplectic group $\mathrm{Sp}(2n, \mathbf{R}$, and in particular of their topology. This is based on the special properties of the boundary map into the Lagrangian variety.  

Kassel, Fanny (U. Lille)  WPI, Seminar Room 08.135  Tue, 23. Feb 16, 14:30 
"Proper affine actions for rightangled Coxeter Groups"  
We prove that any rightangled Coxeter group on k generators admits a proper affine action on R^{k(k1)/2}. This yields proper affine actions for many other groups, including all Coxeter groups. Joint work with J. Danciger and F. Guéritaud.  

Caprace, PierreEmmanuel (U. Louvain)  WPI, Seminar Room 08.135  Tue, 23. Feb 16, 9:15 
"Linear representations of lattices in Euclidean buildings"  
When is a lattice in a Euclidean building linear? We will explain that answers to that question can be obtained by combining tools of various origins: ergodic theory, structure theory of disconnected locally compact groups, and classical theory of projective planes. Based on joint work with Uri Bader and Jean Lécureux.  

Leeb, Bernhard (U. München)  WPI, Seminar Room 08.135  Mon, 22. Feb 16, 15:45 
"Geometry and dynamics of Anosov representations II"  
We give a geometric interpretation of the maximal Satake compactification of symmetric spaces X=G/K of noncompact type, showing that it arises by attaching the horofunction boundary for a suitable Ginvariant "polyhedral" Finsler metric on X. We then discuss the topological dynamics of discrete subgroups Gamma"<"G on this compactification. We show that there exist natural domains of proper discontinuity for Gamma extending X, and that the Gammaaction on these domains is cocompact if Gamma is an Anosov subgroup. This leads to natural bordifications resp compactifications of the locally symmetric spaces X/Gamma as orbifolds with corners by attaching quotients of domains of discontinuity at infinity. This is joint work with Misha Kapovich.  

Porti, Joan (U. Barcelone)  WPI, Seminar Room 08.135  Mon, 22. Feb 16, 14:15 
"Geometry and dynamics of Anosov representations I"  
In this talk I give a definition of Anosov representation that does not use geodesic flow. Then I give a characterization in terms of coarse geometry of the orbit map in the symmetric space. This leads to the notion of Morse subgroups and to a Morse lemma for higher rank symmetric spaces. This is joint work with B. Leeb and M. Kapovich.  

Lee, GyeSeon (U. Heidelberg)  WPI, Seminar Room 08.135  Mon, 22. Feb 16, 13:00 
"Collar lemma for Hitchin representations"  
There is a classical result first due to Keen known as the collar lemma for hyperbolic surfaces. A consequence of the collar lemma is that if two closed curves A and B on a closed orientable hyperbolizable surface have nonzero geometric intersection number, then there is an explicit lower bound for the length of A in terms of the length of B, which holds for any hyperbolic structure on the surface. By slightly weakening this lower bound, we generalize this statement to hold for all Hitchin representations. Joint work with Tengren Zhang.  

Marquis, Ludovic (U. Rennes)  WPI, Seminar Room 08.135  Mon, 22. Feb 16, 10:30 
"Projectivization of some Dehnfilling on hyperbolic 4orbifold"  
A theorem of Thurston says that if M is a finite volume noncompact hyperbolic manifold of dimension 3 (say with one cusp to simplify) then the manifold of dimension 3 obtained by filling (Dehn filling) the cusp is hyperbolic except in a finite number of cases. The hyperbolization of finite volume noncompact orbifold is possible only in dimension 2 or 3. We will exhibit examples of hyperbolic polytopes of dimension 4 which admit a projectivization of their Dehn filling. During this talk, "projectivize" will mean realise as the quotient of a properly convex open set of the real projective space by a discrete subgroup of projective transformation (preserving the convex). This is a joint work with Suhyoung Choi (KAIST) and GyeSeon Lee (Heidelberg).  

Osajda, Damian (U. Wroclaw)  WPI, Seminar Room 08.135  Mon, 22. Feb 16, 10:30 
"Gromov boundaries with the combinatorial Loewner property."  
This is joint work with Antoine Clais (Technion). The combinatorial Loewner property (CLP) is a property of metric spaces invariant under quasiMoebius homeomorphisms. It has been introduced by M. Bonk and B. Kleiner as a combinatorial counterpart of the classical Loewner property. Conjecturally, Gromov group boundaries satisfying the CLP are quasiMoebius homeomorphic to Loewner spaces. For Loewner boundaries various quasiconformal analysis techniques have been developed in order to achieve rigidity results. Not many group boundaries with the CLP are known. We present new classes of Gromov boundaries, in dimensions greater than one, satisfying the CLP. The underlying groups are hyperbolic rightangled Coxeter groups and lattices in associated buildings.  

Lubotzky, Alexander (U. Jerusalem)  WPI, Seminar Room 08.135  Mon, 22. Feb 16, 9:15 
"Arithmetic quotients of the mapping class group"  
Let M=M(g) be the mapping class group of a surface of genus g > 1 (resp. M=Aut(F_g) the automorphism group of the Free group on g generators ). As it is well known, M is mapped onto the symplectic group Sp(2g,Z) (resp. the general linear group GL(g,Z) ). We will show that this is only a first case in a series: in fact, for every pair (S,r) when S is a finite group with less than g generators and r is a Qirreducible representation of S, we associate an arithmetic group which is then shown to be a virtual quotient of M. The case when S is the trivial group gives the above Sp(2g,Z) ( resp. GL(g,Z) ) but many new quotients are obtained. For example it is used to show that M(2) (resp. Aut(F_3) ) is virtually mapped onto a nonabelian free group. Another application is an answer to a question of Kowalski: generic elements in the Torelli groups are hyperbolic and fully irreducible. Joint work with Fritz Gruenwald, Michael Larsen and Justin Malestein .  

Constantin, Peter (U. Princeton)  WPI Seminar Room 08.135  Fri, 18. Dec 15, 11:00 
"Nonlocal equations in bounded Domains"  

Hittmeir, Sabine (U. Vienna)  WPI Seminar Room 08.135  Fri, 18. Dec 15, 10:00 
"Multiscale asymptotics and analysis for atmospheric flow models with moisture"  

Li, Jinkai (U. Weizmann)  WPI Seminar Room 08.135  Thu, 17. Dec 15, 15:30 
"Recent advances on the primitive equations of oceanic and atmospheric dynamics"  

Mucha, Piotr (U. Warsaw)  WPI Seminar Room 08.135  Thu, 17. Dec 15, 14:30 
"Slightly compressible NavierStokes system connection to incompressible flows"  

Szekelyhidi, Laszlo (U. Leipzig)  WPI Seminar Room 08.135  Thu, 17. Dec 15, 11:00 
"Hölder continuous weak solutions of the Euler equations"  

Boldrighini, Carlo (U. Rome)  WPI Seminar Room 08.135  Thu, 17. Dec 15, 10:00 
"LiSinai solutions of the 3d NavierStokes equations and related real solutions: theory and computer simulations"  

Brenier, Yann (Ecole Polytechnique & CNRS)  WPI Seminar Room 08.135  Wed, 16. Dec 15, 15:30 
"Rearrangement methods in convective and compressible fluid motions"  

Kukavica, Igor (U. Southern California)  WPI Seminar Room 08.135  Wed, 16. Dec 15, 14:30 
"Analyticity results for the incompressible Euler equations "  

Besse, Nicolas (Obs. Nice & UCA)  WPI Seminar Room 08.135  Wed, 16. Dec 15, 11:00 
"Timeanalyticity of Lagrangian incompressible Euler flow in a bounded Domain"  

Frisch, Uriel (Obs. Nice & CNRS)  WPI Seminar Room 08.135  Wed, 16. Dec 15, 10:00 
"The CauchyLagrangian method for numerical analysis of Euler Flow"  

Nguyen, Toan (U. Penn State)  WPI Seminar Room 08.135  Tue, 15. Dec 15, 15:30 
"The stability of boundary layers: an overview"  

Mazzucato, Anna (U. Penn State)  WPI Seminar Room 08.135  Tue, 15. Dec 15, 14:30 
"The vanishing viscosity limit in the presence of a porous medium"  

Dalibard, AnneLaure (U. Paris 6)  WPI Seminar Room 08.135  Tue, 15. Dec 15, 11:00 
"Separation for the stationary Prandle equation"  

Vicol, Vlad (U. Princeton)  WPI Seminar Room 08.135  Tue, 15. Dec 15, 10:00 
"Remarks on the vanishing viscosity problem with Dirichlet boundary conditions"  

Wiedemann, Emil (U. Bonn)  WPI Seminar Room 08.135  Mon, 14. Dec 15, 16:30 
"The issue of weakstrong uniqueness in contrast to nonuniqueness for 'wild' solutions"  

Dong, Li (U. British Colombia)  WPI Seminar Room 08.135  Mon, 14. Dec 15, 15:45 
"Ill posedness of the Euler Equation in C^{m} and related issues"  

Gibbon, John (Imperial College London)  WPI Seminar Room 08.135  Mon, 14. Dec 15, 15:00 
“Regimes of nonlinear depletion and regularity in the 3D NavierStokes equations”  

WPI Seminar Room 08.135  Mon, 14. Dec 15, 14:20  
Opening of Workshop and self presentation of participants  

Ning, Jiang (U. Wuhan)  WPI Seminar Room 08.135  Fri, 11. Dec 15, 14:30 
"Boundary layers and the fluid limits of the Boltzmann equation"  

Golse, Francois (Ecole Polytechnique)  WPI Seminar Room 08.135  Fri, 11. Dec 15, 11:30 
"From Nbody Schrödinger to Vlasov"  

Jabin, PierreEmmanuel (U. Maryland)  WPI Seminar Room 08.135  Fri, 11. Dec 15, 10:00 
"Mean field limits for bounded force kernels"  

Brenier, Yann (Ecole Polytechnique & CNRS)  WPI Seminar Room 08.135  Thu, 10. Dec 15, 14:30 
"A double large deviation principle for the gravitational VlasovPoisson system via MongeAmpere approximation"  

HanKwan, Daniel (Ecole Polytechnique & CNRS)  WPI Seminar Room 08.135  Thu, 10. Dec 15, 11:00 
"Quasineutral limit for VlasovPoisson: a review"  

Nguyen, Toan (U. Penn State)  WPI Seminar Room 08.135  Thu, 10. Dec 15, 9:30 
"Illposedness of the hydrostatic Euler and singular Vlasov equations"  

Diamond, Patrick (UCSD)  WPI Seminar Room 08.135  Wed, 9. Dec 15, 14:30 
"The quasilinear theory for the Vlasov plasma dynamics: content, success, failures"  

Hauray, Maxime (U. AMU)  WPI Seminar Room 08.135  Wed, 9. Dec 15, 12:00 
"Weakstrong stability and meanfield limit for Vlasov equations"  

Bardos, Claude (WPI & ICP c/o Paris 6 & 7)  WPI Seminar Room 08.135  Wed, 9. Dec 15, 11:00 
"About the Maxwell Boltzmann equation"  

GerardVaret, David (U. Paris 7)  WPI Seminar Room 08.135  Wed, 9. Dec 15, 9:30 
"Trend to equilibrium in the Kuramoto model"  

Hahn, Oliver (Obs. Nice & UNS)  WPI Seminar Room 08.135  Tue, 8. Dec 15, 14:40 
"Cosmic structure formation in the continuum limit"  

Sobolevski, Andrei + Frisch, Uriel (Obs. Nice & CNRS) + Besse, Nicolas (Obs. Nice & UCA)  WPI Seminar Room 08.135  Tue, 8. Dec 15, 12:00 
"Work in Progress on Lagrangian timeanalyticity of the VlasovPoisson flow"  

Sousbie, Thierry (IAP & CNRS)  WPI Seminar Room 08.135  Tue, 8. Dec 15, 11:00 
"ColDICE: a parallel VlasovPoisson solver using moving adaptive simplicial tessellation"  

Colombi, Stephane (IAP & CNRS)  WPI Seminar Room 08.135  Tue, 8. Dec 15, 9:30 
"Evolution of collisionless, initially cold, selfgravitating Systems in one dimension"  

Besse, Nicolas (Obs. Nice & UCA)  WPI Seminar Room 08.135  Mon, 7. Dec 15, 15:30 
"On the eigenvalue problem for the gyrokinetic equations"  

WPI Seminar Room 08.135  Mon, 7. Dec 15, 14:30  
Presentation of participants  

WPI Seminar Room 08.135  Mon, 7. Dec 15, 14:20  
Opening of Workshop and self presentation of participants (5 min each)  

Peter Weibel  Künstlerhaus Vienna  Mon, 12. Oct 15, 18:00 
"Gotthard Günther and the Digital Revolution"  

Gerhard Widmer  Künstlerhaus Vienna  Mon, 12. Oct 15, 17:00 
"Con Espressione! Towards a New Level of Music Understanding in Computers"  

Kurt Hofstetter  Künstlerhaus Vienna  Mon, 12. Oct 15, 16:00 
"On the Event Horizon of Order"  

Dirk Frettlöh  Künstlerhaus Vienna  Mon, 12. Oct 15, 15:00 
"Mathematical Quasicrystals And Inductive Rotation Tilings"  

Texier, Benjamin (Univ. de Paris VII)  WPI, Seminar Room 08.135  Fri, 2. Oct 15, 10:30 
Spacetime resonances and highfrequency instabilities in twofluid EulerMaxwell systems  
We show that spacetime resonances induce highfrequency instabilities in the twofluid EulerMaxwell system. This implies in particular that the Zakharov approximation to EulerMaxwell is stable if and only if the group velocity vanishes. The instability proof relies on a shorttime representation formula for the flows of pseudodifferential operators of order zero. This is joint work with Eric Dumas (Grenoble) and Lu Yong (Prague).  

Watanabe, Tatsuya (Kyoto Sangyo University)  WPI, Seminar Room 08.135  Fri, 2. Oct 15, 9:15 
Uniqueness and asymptotic behavior of ground states for quasilinear Schrodinger equations arising in plasma physics  
In this talk, we consider a quasiinear Schrodinger equation which appears in the study of plasma physics. We are interested in the uniqueness of ground states without assuming any restriction on a physical parameter. We also study asymptotic behavior of ground states as the parameter goes to zero.  

Stimming, HansPeter (Univ. Wien)  WPI, Seminar Room 08.135  Thu, 1. Oct 15, 11:15 
Nonlocal NLS of derivative type for modeling highly nonlocal optical nonlinearities  
A new NLS type equation is employed for modeling longrange interactions in nonlinear optics, in a collaboration with experimental physicists. It is of quasilinear type and models fluctuations around a 'continuouswave polariton' which are chosen according to Bogoliubov theory. We present a numerical discretization method and simulation results. Mathematical theory for this equation is work in progress.  

Pomponio, Alessio (Politecnico di Bari)  WPI, Seminar Room 08.135  Thu, 1. Oct 15, 10:30 
BornInfeld equations in the electrostatic case  
The equation in (BI) appears for instance in the BornInfeld nonlinear electromagnetic theory: in the electrostatic case it corresponds to the Gauss law in the classical Maxwell theory and so is the electric potential and is an assigned extended charge density. We discuss existence, uniqueness and regularity of the solution of (BI). The results have been obtained in a joint work with Denis Bonheure and Pietro d’Avenia.  

Ohta, Masahito (Science University of Tokyo)  WPI, Seminar Room 08.135  Thu, 1. Oct 15, 9:15 
Stability of standing waves for a system of nonlinear Schrodinger equations with cubic nonlinearity  
We consider a system of nonlinear Schrodinger equations with cubic nonlinearity, called a coherently coupled NLS system (CCNLS) in nonlinear optics, in one space dimension. We study orbital stability and instability of standing wave solutions of (CCNLS), and prove similar results to Colin and Ohta (2012) which studies a system of NLS equations with quadratic nonlinearity. This is a joint work with Shotaro Kawahara (Tokyo University of Science).  

Melinand, Benjamin (Univ. de Bordeaux)  WPI, Seminar Room 08.135  Wed, 30. Sep 15, 11:15 
The Proudman resonance  
In this talk, I will explain the Proudman resonance. It is a resonant respond in shallow waters of a water body on a traveling atmospheric disturbance when the speed of the disturbance is close to the typical water wave velocity. In order to explain this phenomenon, I will prove a local wellposedness of the water waves equations with a non constant pressure at the surface, taking into account the dependence of small physical parameters. Then, I will justify mathematically the historical work of Proudman. Finally, I will study the linear water waves equations and I will give dispersion estimates in order to extend The Proudman resonance to deeper waters. To complete these asymptotic models, I will show some numerical simulations.  

Le Coz, Stefan (Univ. De Toulouse)  WPI, Seminar Room 08.135  Wed, 30. Sep 15, 10:30 
On a singularly perturbed GrossPitaevskii equation  
We consider the 1D GrossPitaevskii equation perturbed by a Dirac potential. Using a fine analysis of the properties of the linear propagator, we study the wellposedness of the Cauchy Problem in the energy space of functions with modulus 1 at infinity. Then we study existence and stability of the black solitons with a combination of variational and perturbation arguments. This is a joint work with Isabella Ianni and Julien Royer.  

Klein, Christian (Univ. de Bourgogne)  WPI, Seminar Room 08.135  Wed, 30. Sep 15, 9:15 
Numerical study of fractional nonlinear Schrödinger equations  
Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödingertype equations involving a fractional Laplacian in an onedimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub and supercritical regimes can be identified. This allows us to study the possibility of finite time blowup versus global existence, the nature of the blowup, the stability and instability of nonlinear ground states and the longtime dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation.  

Hirayama; Hiroyuki (Nagoya Univ.)  WPI, Seminar Room 08.135  Tue, 29. Sep 15, 14:15 
Wellposedness for a system of quadratic derivative nonlinear Schrödinger equations with periodic initial data.  
We consider the Cauchy problem of a system of quadratic derivative nonlinear Schrödinger equations which was introduced by M. Colin and T. Colin as a model of laserplasma interaction. In this talk, we prove the wellposedness of this system for the periodic initial data. In particular, if the coefficients of Laplacian satisfy some conditions, then the wellposedness is proved at the scaling critical regularity by using U^2 and V^2 spaces.  

Hayashi, Nakao (Osaka Univ.)  WPI, Seminar Room 08.135  Tue, 29. Sep 15, 11:15 
Asymptotics of solutions to fourthorder nonlinear Schrödinger equations  
We consider the Cauchy problem for the fourthorder nonlinear Schrödinger equation with a critical nonlinearity and prove the asymptotic stability of solutions in the neighborhood of the self similar solutions under the non zero mass condition and the smallness on the data.  

González de Alaiza Martínez, Pedro (CEA)  WPI, Seminar Room 08.135  Tue, 29. Sep 15, 10:30 
Mathematical models for terahertz emissions by lasergas interaction  
Terahertz (THz) emissions have nowadays important applications such as security screening and imaging. Lasergas interaction reveals itself to be a promising technique to generate broadband and intense THz sources suitable for these applications. In this talk, I will explain recent mathematical models and their underlying physics explaining the THz radiation generated when ultrafast laser pulses ionize a gas at high intensities. Solutions to the model equations will be compared with direct numerical simulations.  

Dumas, Eric (Univ. de Grenoble)  WPI, Seminar Room 08.135  Tue, 29. Sep 15, 9:15 
Some variants of the focusing NLS equations Derivation, justification and open problems  
The usual model of nonlinear optics given by the cubic NLS equation is too crude to describe large intensity phenomenas such as filamentation, which modifies the focusing of laser beams. I shall explain how to derive some more appropriate variants of the NLS model from Maxwell's equations, using improved approximations of the original dispersion relation or taking ionization effects into account. I shall provide rigorous error estimates for the models considered, and also discuss some open problems related to these modified NLS equations. This is joint work with David Lannes and Jeremie Szeftel.  

Saut, JeanClaude (Univ. Paris d'Orsay)  WPI, Seminar Room 08.135  Mon, 28. Sep 15, 15:30 
Full dispersion water waves models  
We will survey recent results and open problems on various nonlocal "full dispersion" models of surface water waves.  

Colin, Mathieu (Univ. de Bordeaux)  WPI, Seminar Room 08.135  Mon, 28. Sep 15, 14:30 
Solitons in quadratic media  
In this talk, we investigate the properties of solitonic structures arising in quadratic media. More precisely, we look for stationary states in the context of normal or anomalous dispersion regimes, that lead us to either elliptic or nonelliptic systems and we address the problem of orbital stability. Finally, we present some numerical experiments in order to compute localized states for several regimes.  

Esther Daus (TU Wien)  WPI, Seminar Room 08.135  Wed, 16. Sep 15, 10:45 
Crossdiffusion systems: "Population dynamics model (Joint work with A. Jüngel), Diffusion through obstacles (Joint work with M. Bruna, A. Jüngel)"  
In this talk we will discuss two different crossdiffusion models. The first model is used in population dynamics in biology and can be derived from a lattice in the case when we are not taking into account any volumefilling effects. We will present recent results concerning the existence of global weak solutions under the assumption that the system possesses a formal gradientflow structure using ideas of [A. Jüngel: Boundednessbyentropy method. Nonlinearity 28 (2015)]. The second model describes diffusion through obstacles. The underlying crossdiffusion system can be derived from a two species mixture of Brownian hard spheres. We will discuss open questions concerning this model.  

Ulisse Stefanelli (Univ. Wien)  WPI, Seminar Room 08.135  Wed, 16. Sep 15, 10:00 
"The WED principle in metric spaces"  
I will present the WED variational approach to gradientflow evolution in metric spaces. A reference application is to densities and empirical measures. In the linearspace case, the WED strategy entails in an ellipticintime regularization of the problem. The picture in the metric case is confined to the variational level and the discussion relies on a Pontyagintype principle. This is joint work with Riccarda Rossi (Brescia), Giuseppe Savar' (Pavia), and Antonio Segatti (Pavia).  

Ruediger Müller (Univ. WIAS)  WPI, Seminar Room 08.135  Tue, 15. Sep 15, 14:45 
"Modeling of Ion Transport in Nanopores"  
Until recently, the (Poisson)NernstPlanck equations have been the standard model for the description of ion transport in diluted electrolyte solutions, although it was known that they fail to reasonably limit the ion concentration in diffuse double layers. This weakness can be remedied by a thermodynamic consistent coupling to the momentum balance and introducing an appropriate elastic law, rather than by a mere modification of the entropy of mixing. In many electrochemical applications, the Debye length that controls the width of the diffuse layers is typically very small compared to the macroscopic dimensions of the system. In these situations a spacial resolution of the layers is often not necessary. By the method of formal asymptotic analysis we derive a reduced model that is locally electric neutral and does not resolve the layers but incorporates all relevant features of the layers into a new set of interface equations. Nanopores typically have a strongly anisotropic geometry where the diameter is close to the Debye length but the length in axial direction is larger by at least one order of magnitude. We discuss the scaling to dimensionless quantities and present a reduced 1dmodel for arbitrary geometries with rotational symmetry. Multidimensional solutions that resolve boundary layers can be recovered from the lowerdimensional solution.  

Ulrich Dobramysl (Univ. Oxford)  WPI, Seminar Room 08.135  Tue, 15. Sep 15, 14:00 
"Exploring unknown environments  from robot experiments to numerical modelling"  
I will present examples of modelling collective movement via robot experiments. In the first part I will focus on an investigation on how two communicating individuals can most efficiently navigate a corridor without external sensory input. The second part of my talk will be about robot swarms and their strategies for target finding in an unknown environment. These studies where performed via a combination of robot experiments and numerical simulations.  

Hartmut Loewen (Univ. Düsseldorf)  WPI, Seminar Room 08.135  Tue, 15. Sep 15, 11:15 
"Phase separation and turbulence in active Systems"  
Ordinary materials are "passive" in the sense that their constituents are typically made by inert particles which are subjected to thermal fluctuations, internal interactions and external fields but do not move on their own. Living systems, like schools of fish, swarms of birds, pedestrians and swimming microbes are called "active matter" since they are composed of selfpropelled constituents. Active matter is intrinsically in nonequilibrium and exhibits a plethora of novel phenomena as revealed by a recent combined effort of statistical theory, hydrodynamics and realspace experiments. The talk provides an introduction into the modelling of active matter focussing on biological and artificial microswimmers as key examples of active systems. A number of singleparticle and collective phenomena in active matter will be addressed ranging from the most disordered state of matter (turbulence) to the purely kinetic phase separation in active systems.  

Jay Newby (Univ. MBI Ohio)  WPI, Seminar Room 08.135  Tue, 15. Sep 15, 10:00 
Metastable dynamics in gene circuits driven by intrinsic noise  
Metastable transitions are rare events, such as bistable switching, that occur under weak noise conditions, causing dramatic shifts in the expression of a gene. Within a gene circuit, one or more genes randomly switch between regulatory states, each having a different mRNA transcription rate. The circuit is self regulating when the proteins it produces affect the rate of switching between gene regulatory states. Under weak noise conditions, the deterministic forces are much stronger than fluctuations from gene switching and protein synthesis. A general tool used to describe metastability is the quasi stationary analysis (QSA). A large deviation principle is der ived so that the QSA can explicitly account for random gene switching without using an adiabatic limit or diffusion approximation, which are unreliable and inaccurate for metastable events.This allows the existing asymptotic and numerical methods that have been developed for continuous Markov processes to be used to analyze the full model.  

Jon Chapman (Univ. Oxford)  WPI, Seminar Room 08.135  Mon, 14. Sep 15, 16:15 
"Excluded volume effects in drift Diffusion"  
When diffusing agents interact with each other their motions are correlated, and the configuration space is of very high dimension. Often an equation for the marginal distribution function of one particle (the “concentration”) is sought by “integrating out” the positions of all the others. This leads to the classic problem of closure, since the equation for the concentration so derived depends on the twopoint correlation function. A common closure is to assume independence at this stage, leading to some form of nonlinear (drift) diffusion equation. Such an approach works well for long range interactions (such as electric fields), but fails for short range interactions (such as steric effects). Here we consider an alternative approach using matched asymptotic expansions, in which the approximation is entirely systematic. We show how information about correlations can be recovered from the concentration. Finally we consider some of the difficulties when both long and short range forces are present.  

Ansgar Juengel (TU Wien)  WPI, Seminar Room 08.135  Mon, 14. Sep 15, 15:30 
"Modeling and analysis of multispecies systems in biology"  
The nature is dominated by systems composed of many individuals with a collective behavior. Examples include wildlife populations, biological cell dynamics, and tumor growth. There is a fast growing interest in multispecies systems both in theoretical biology and applied mathematics, but because of their enormous complexity, the scientific understanding is still very poor. Instead of calculating the trajectories of all individuals, it is computationally much simpler to describe the dynamics of the individuals on a macroscopic level by averaged quantities such as population densities. This leads to systems of highly nonlinear partial differential equations with cross diffusion, which may reveal surprising effects such as uphill diffusion and diffusioninduced instabilities, seemingly contradicting our intuition on diffusion. Major difficulties of the mathematical analysis of the crossdiffusion equations are their highly nonlinear structure and the lack of positive definiteness of the diffusion matrix. In this talk, a method inspired from nonequilibrium thermodynamics is proposed, which allows for a mathematical theory of some classes of such systems. It is based on a transformation of entropy variables which make the diffusion matrix positive definite. This property is a purely algebraic condition and may be shown by computer algebra systems. We explain the technique for systems modeling populations and transport through ion channels.  

MarieTherese Wolfram (Univ. Wien)  WPI, Seminar Room 08.135  Mon, 14. Sep 15, 14:30 
"Interaction with fluids"  

JanFrederick Pietschmann (Univ. Münster)  WPI, Seminar Room 08.135  Mon, 14. Sep 15, 14:00 
"CrossDiffusion from onlattice and inverse problems"  

Maria Bruna (Univ. Oxford)  WPI, Seminar Room 08.135  Mon, 14. Sep 15, 13:30 
"Crossdiffusion models for offlattice and gradient flow"  

Stimming, HansPeter (WPI c/o U. Wien)  WPI Seminar Room 08.135  Thu, 6. Aug 15, 14:30 
“Absorbing Boundary Conditions for Schrodinger and Wave equations: PML vs ECS”  
The perfectly matched layers (PML) and exterior complex scaling (ECS) methods for absorbing boundary conditions are analyzed using spectral decomposition. Both methods are derived as analytical continuations of unitary to contractive transformations. We find that the methods are mathematically and numerically distinct: ECS is complex stretching that rotates the operator's spectrum into the complex plane, whereas PML is a complex gauge transform which shifts the spectrum. Consequently, the schemes differ in their timestability. Numerical examples are given.  

Zhang, Yong (WPI c/o U. Wien)  WPI Seminar Room 08.135  Thu, 6. Aug 15, 13:30 
“Efficient evaluation of nonlocal potentials: NUFFT and Gaussian Sum Approximations”  
We introduce accurate and efficient methods for nonlocal potentials evaluations with free boundary condition, including the 3D/2D Coulomb, 2D Poisson and 3D dipoledipole potentials. Both methods rely on the same assumption: the density is smooth and fast decaying. The first method,proposed by Jiang, Greengard and Bao, evaluates the potential in spherical/polar coordinates using NonUniform FFT algorithm, where the singularity of the Fourier representation disappears automatically, while the second one is based on a Gaussiansum approximation of the singular convolution kernel and Taylor expansion of the density. Both methods are accelerated by fast Fourier transforms (FFT). They are accurate (1416 digits), efficient ($O(Nlog N)$ complexity), low in storage, easily adaptable to other different kernels, applicable for anisotropic densities and highly parallelizable.  

Descombes, Stephane (U. Nice)  WPI Seminar Room 08.135  Thu, 6. Aug 15, 11:00 
“Exponential operator splitting methods for evolutionary problems and applications to nonlinear Schrödinger equations in the semiclassical regime“  
In this talk, I investigate the error behaviour of exponential operator splitting methods for nonlinear evolutionary problems. In particular, I will present an exact local error representation that is suitable in the presence of critical parameters. Essential tools in the theoretical analysis including timedependent nonlinear Schrödinger equations in the semiclassical regime as well as parabolic initialboundary value problems with high spatial gradients are an abstract formulation of differential equations on function spaces and the formal calculus of Liederivatives.  

Besse, Christophe (U. Toulouse)  WPI Seminar Room 08.135  Thu, 6. Aug 15, 10:00 
“Exponential integrators for NLS equations with application to rotating BECs“  
In this talk, I will present various time integrators for NLS equations when the potentials are time dependent. In this case, the usual time splitting schemes fail. I will introduce exponential RungeKutta scheme and Lawson scheme and present some of their properties.  

Luong, Hung (U. Wien)  WPI Seminar Room 08.135  Wed, 5. Aug 15, 12:00 
“On the Cauchy problem of some 2d models on the background of 1d soliton solution of the cubic nonlinear Schrödinger equation"  

Bardos, Claude (WPI & ICP c/o Paris)  WPI Seminar Room 08.135  Wed, 5. Aug 15, 11:00 
“Formal derivation of the Vlasov Boltzmann relation”  
I report on current work with Toan Nguyen and Francois Golse.  

Gottlieb, Alex (WPI)  WPI Seminar Room 08.135  Wed, 5. Aug 15, 10:00 
“Entropy measures for quantum correlation”  
We use quantum Rényi divergences to define "correlation" functionals of manyfermion states (density operators on a Fock space). The "reference" state for the relative entropy functional is the unique gaugeinvariant quasifree (g.i.q.f.) state with the same 1RDM as the state of interest. That is, the "correlation" of the state of interest is its Rényi divergence from the uniquely associated g.i.q.f. state. Correlation functionals defined in this way enjoy the following properties: (a) they take only nonnegative values, possibly infinity; (b) they assign the value 0 to all Slater determinant states; (c) they are monotone with respect to restriction of states; (d) they are additive over independent subsystems; and (e) they are invariant under changes of the 1particle basis (Bogoliubov transformations). The quantum relative entropy or quantum KullbackLeibler divergence is a special and distinguished member of any family of quantum Rényi divergences (of which there are at least two). The associated correlation functional, defined using quantum KullbackLeibler divergence, we call "nonfreeness." Nonfreeness enjoys further appealing properties not shared by related correlation functionals: (f) the nonfreeness of a state X is the minimum possible value for the entropy of X relative to any g.i.q.f. reference state; (g) there is a simple formula for a pure state's nonfreeness in terms of it's natural occupation numbers; and (h) within the convex set of nfermion states with given 1RDM, the nonfreeness minimizer equals the entropy maximizer, which is the Gibbs canonical (nparticle) state.  

Nguyen, Toan (Penn State)  WPI Seminar Room 08.135  Tue, 4. Aug 15, 14:00 
"Grenier's iterative scheme for instability and some new applications"  
"The talk is planned to revisit Grenier's scheme for instability of Euler and Prandtl, introduced in his CPAM2000 paper, and to present some new applications in the instability of generic boundary layers and instability of VlasovMaxwell in the classical limit".  

Pawilowski, Boris (U. Wien & U. Rennes)  WPI Seminar Room 08.135  Tue, 4. Aug 15, 12:00 
“Mean field limits for discrete NLS: analysis and numerics”  
In my thesis, jointly supervised by N.J. Mauser and F. Nier, we deal with approximations of the timedependent linear many body Schrödinger equation with a two particles interaction potential, by introducing a discrete version of the equation and mean field limits. We consider the bosonic Fock space in a finite dimensional setting. Mathematical tools include the reduced density matrices and Wigner measure techniques exploiting the formal analogy to semiclassical limits.  

Nier, Francis (U. Paris 13)  WPI Seminar Room 08.135  Tue, 4. Aug 15, 11:00 
“Phasespace approach to the bosonic mean field dynamics : a review”  
After recalling old or more recent point of views on bosonic quantum field theory and mean field problems, the series of works in collaboration with Z. Ammari will be summarized. This phasespace presentation implements the old dream of an infinite dimensional microlocal analysis. In particular the mean field dynamics is nothing but a propagation of singularity result in the semiclassical regime. This talk will put the stress on the key issues related with the infinite dimensional setting and on the new results for the mean field problem provided by this approach.  

Golse Francois (X)  WPI Seminar Room 08.135  Tue, 4. Aug 15, 10:00 
“On the meanfield and classical limits for the Nbody Schrödinger equation”  
This talk proposes a quantitative convergence estimate for the meanfield limit of the Nbody Schrödinger equation that is uniform in the classical limit. It is based on a new variant of the Dobrushin approach for the mean field limit in classical mechanics, which avoids the use of particle trajectories and empirical measures, and has a very natural quantum analogue. (Work in collaboration with C. Mouhot and T. Paul).  

Germain, Pierre (Courant)  WPI Seminar Room 08.135  Mon, 3. Aug 15, 15:15 
“On the derivation of the kinetic wave equation”  
The kinetic wave equation is of central importance in the theory of weak turbulence, but no rigorous derivation of it is known. I will show how it can be derived from NLS on the torus with random forcing, in the small nonlinearity / big box limit. This is joint work with Isabelle Gallagher and Zaher Hani.  

Brenier, Yann (CNRS X)  WPI Seminar Room 08.135  Mon, 3. Aug 15, 14:15 
"When Madelung comes up...."  
After recalling the remarkable formulation made in 1926 by Erwin Madelung of the Schrödinger equation in terms of fluid mechanics, I will introduce a rational scheme, based on the least action principle and some nonlinear rescaling of the time variable, starting from Euler's equations of isothermal compressible fluids (1755), followed by Fourier's heat conduction equation (1807), leading to Schrödinger's equation of quantum mechanics (1925). Finally, I will suggest the application of this scheme to Magnetohydrodynamics. Madelung, E. (1926). "Eine anschauliche Deutung der Gleichung von Schrödinger". Naturwissenschaften 14 (45): 1004–1004.  

Mauser, Norbert J (WPI & ICP c/o U. Wien)  WPI Seminar Room 08.135  Mon, 3. Aug 15, 14:00 
“Welcome to Vienna, birthplace of Boltzmann, Schrödinger and Pauli”  

Dorland, Bill (Maryland)  WPI Seminar Room 08.135  Fri, 31. Jul 15, 10:00 
Turbulent dissipation challenge: what ought to be done  
Many naturally occurring and manmade plasmas are collisionless and turbulent. It is not yet well understood how the energy in fields and fluid motions is transferred into the thermal degrees of freedom of constituent particles in such systems. The debate at present primarily concerns proton heating. Multiple possible heating mechanisms have been proposed over the past few decades, including cyclotron damping, Landau damping, heating at intermittent structures and stochastic heating. Recently, a communitydriven effort was proposed (Parashar & Salem, 2013, arXiv:1303.0204) to bring the community together and understand the relative contributions of these processes under given conditions. In this paper, we propose the first step of this challenge: a set of problems and diagnostics for benchmarking and comparing different types of 2.5D simulations. These comparisons will provide insights into the strengths and limitations of different types of numerical simulations and will help guide subsequent stages of the challenge.  

Kunz, Matt (Princeton)  WPI Seminar Room 08.135  Thu, 30. Jul 15, 16:15 
Firehose and mirror: old and new results  
Hybridkinetic numerical simulations of firehose and mirror instabilities in a collisionless plasma are performed in which pressure anisotropy is driven as the magnetic field is changed by a persistent linear shear S . For a decreasing field, it is found that mostly oblique firehose fluctuations grow at ion Larmor scales and saturate with energies ∝S 1/2 ; the pressure anisotropy is pinned at the stability threshold by particle scattering off microscale fluctuations. In contrast, nonlinear mirror fluctuations are large compared to the ion Larmor scale and grow secularly in time; marginality is maintained by an increasing population of resonant particles trapped in magnetic mirrors. After one shear time, saturated orderunity magnetic mirrors are formed and particles scatter off their sharp edges. Both instabilities drive subionLarmor–scale fluctuations, which appear to be kineticAlfvénwave turbulence. Our results impact theories of momentum and heat transport in astrophysical and space plasmas, in which the stretching of a magnetic field by shear is a generic process.  

Schekochihin, Alex (Oxford)  WPI Seminar Room 08.135  Thu, 30. Jul 15, 10:00 
Phase mixing vs. nonlinear advection in driftkinetic plasma turbulence  

Komarov, Sergey (MPA Garching)  WPI Seminar Room 08.135  Wed, 29. Jul 15, 10:00 
Suppression of thermal conductivity by mirror fields  

Spitovsky, Anatoly (Princeton)  WPI Seminar Room 08.135  Tue, 28. Jul 15, 16:15 
Magnetogenesis in collisionless shear flows  

Quataert, Eliot (Berkeley)  WPI Seminar Room 08.135  Tue, 28. Jul 15, 10:00 
Sheared electron kinetics: whistler and mirror instabilities  

Catto, Peter (MIT)  WPI Seminar Room 08.135  Mon, 27. Jul 15, 16:15 
Three dimensional magnetized and rotating hot plasma equilibria in a gravitational field  
A rotating and magnetized threedimensional axisymmetric equilibrium for hot plasma confined by a gravitational field is found. The plasma density and current can exhibit strong equatorial plane localization, resulting in disk equilibria with open magnetic field lines. The associated equatorial plane pinching results in magnetic field flaring, implying a strong gravitational squeezing of the plasma carrying ambient magnetic field lines toward the gravitational source. At high plasma pressure, the magnetic field becomes strongly radial outside the disk. The model predicts the rotation frequency bound, the condition for a plasma disk, and the requirement for strong magnetic field flaring.  

RobergClark, Gareth (Maryland)  WPI Seminar Room 08.135  Mon, 27. Jul 15, 10:00 
Heatflux driven instabilities in highbeta plasmas and their relevance for AGN feedback in galaxy clusters  

Wilkie, Georg (Maryland)  WPI Seminar Room 08.135  Fri, 24. Jul 15, 10:00 
Coupled radiusenergy transport of alpha particles in GK turbulence  
To rigorously model fast ions in fusion plasmas, a nonMaxwellian equilibrium distribution must be used. In this work, the response of highenergy alpha particles to electrostatic turbulence has been analyzed for several different tokamak parameters. Our results are consistent with known scalings and experimental evidence that alpha particles are generally well confined: on the order of several seconds. It is also confirmed that the effect of alphas on the turbulence is negligible at realistically low concentrations, consistent with linear theory. It is demonstrated that the usual practice of using a hightemperature Maxwellian, while previously shown to give an adequate orderofmagnitude estimate of the diffusion coefficient, gives incorrect estimates for the radial alpha particle flux, and a method of correcting it in general is provided. Furthermore, we see that the timescales associated with collisions and transport compete at moderate energies, calling into question the assumption that alpha particles remain confined to a flux surface that is used in the derivation of the slowingdown distribution.  

Hammett, Greg (Princeton PPL)  WPI Seminar Room 08.135  Thu, 23. Jul 15, 16:15 
Lithium vapour boxes  

Citrin, Jonathan (CEA/DIFFER)  WPI Seminar Room 08.135  Thu, 23. Jul 15, 10:00 
Overview and open questions on electromagnetic effects on tokamak transport  
The impact of electromagnetic stabilization and flow shear stabilization on ITG turbulence is investigated. Analysis of a lowβ JET Lmode discharge illustrates the relation between ITG stabilization and proximity to the electromagnetic instability threshold. This threshold is reduced by suprathermal pressure gradients, highlighting the effectiveness of fast ions in ITG stabilization. Extensive linear and nonlinear gyrokinetic simulations are then carried out for the highβ JET hybrid discharge 75225, at two separate locations at inner and outer radii. It is found that at the inner radius, nonlinear electromagnetic stabilization is dominant and is critical for achieving simulated heat fluxes in agreement with the experiment. The enhancement of this effect by suprathermal pressure also remains significant. It is also found that flow shear stabilization is not effective at the inner radii. However, at outer radii the situation is reversed. Electromagnetic stabilization is negligible while the flow shear stabilization is significant. These results constitute the highβ generalization of comparable observations found at lowβ at JET. This is encouraging for the extrapolation of electromagnetic ITG stabilization to future devices. An estimation of the impact of this effect on the ITER hybrid scenario leads to a 20% fusion power improvement.  

Waelbroek, Francois (IFS, UT Austin)  WPI Seminar Room 08.135  Wed, 22. Jul 15, 10:00 
Magnetic islands and Hamiltonian gyrofluid models  
A Lie Poisson bracket is presented for a fourfield gyrofluid model with compressible ions and magnetic field curvature, thereby showing the model to be Hamiltonian. In particular, we find that in addition to commonly adopted magnetic curvature terms present in the continuity equations, analogous terms must be retained also in the momentum equations, in order to have a LiePoisson structure. The corresponding Casimir invariants are presented, and shown to be associated to four Lagrangian invariants, that get advected by appropriate ''velocity'' fields during the dynamics. This differs from a cold ion limit, in which the LiePoisson bracket transforms into the sum of direct and semidirect products, leading to only three Lagrangian invariants.  

Citrin, Jonathan (CEA/DIFFER)  WPI Seminar Room 08.135  Tue, 21. Jul 15, 16:15 
New approach for realtime capable and firstprinciple based transport modelling  
A realtime capable core turbulence tokamak transport model is developed. This model is constructed from the regularized nonlinear regression of quasilinear gyrokinetic transport code output. The regression is performed with a multilayer perceptron neural network. The transport code input for the neural network training set consists of five dimensions, and is limited to adiabatic electrons. The neural network model successfully reproduces transport fluxes predicted by the original quasilinear model, while gaining five orders of magnitude in computation time. The model is implemented in a realtime capable tokamak simulator, and simulates a 300s ITER discharge in 10s. This proofofprinciple for regression based transport models anticipates a significant widening of input space dimensionality and physics realism for future training sets. This aims to provide unprecedented computational speed coupled with firstprinciple based physics for realtime control and integrated modelling applications.  

Mandell, Noah (Princeton)  WPI Seminar Room 08.135  Tue, 21. Jul 15, 10:00 
New gyrofluid closures, hybrid gyrofluid simulations with gyrokinetic zonal flows, Trinity/GryfX coupling, etc.  

Hammett, Greg (Princeton PPL)  WPI Seminar Room 08.135  Mon, 20. Jul 15, 16:15 
Progress towards continuum gyrokinetic simulations of the edge region  

Abel, Ian (Princeton)  WPI Seminar Room 08.135  Mon, 20. Jul 15, 10:00 
Multiscale kinetic edge models  

Czirok, Andras (University of Kansas)  Lecture room HS 13, 2nd floor  Fri, 3. Jul 15, 15:30 
Contribution of cell contractility to mesothelioma nodule formation  

Szakacs, Gergely (Medical University Vienna)  Lecture room HS 13, 2nd floor  Fri, 3. Jul 15, 14:20 
Modeling in vitro selection of drug resistant cancer cells using a cellular automaton model  

Menche, Jörg (CEU Budapest)  Lecture room HS 13, 2nd floor  Fri, 3. Jul 15, 13:30 
Human diseases in the interactome  

Berger, Walter (Medical University Vienna)  Lecture room HS 13, 2nd floor  Fri, 3. Jul 15, 11:00 
Activity of defense: modeling the anticancer drug response  

Perthame, Benoit (University of Paris 6)  Lecture room HS 13, 2nd floor  Fri, 3. Jul 15, 10:10 
The derivation of free‐ boundary (incompressible) models for tumor growth and the Hele‐ Shaw asymptotic  

Marciniak‐Czochra, Anna (University of Heidelberg)  Lecture room HS 13, 2nd floor  Fri, 3. Jul 15, 9:00 
Mathematical models of clonal selection and therapy resistance in acute leukemias  

Gerner, Christopher (Institute for Analytical Chemistry, Univ. Wien)  Lecture room HS 13, 2nd floor  Thu, 2. Jul 15, 16:20 
Investigation of anticancer drug effects via proteome and metabolome profiling: do we really understand what these drugs are doing?  

Levy, Doron (University of Maryland)  Lecture room HS 13, 2nd floor  Thu, 2. Jul 15, 15:30 
Modeling the immune response to chronic myeloid leukemia  

Sykacek, Peter (Department of Biotechnology, BOKU, Vienna)  Lecture room HS 13, 2nd floor  Thu, 2. Jul 15, 14:20 
Probabilistic models in translational cancer research: converting low level leads to comprehensible predictions  

Clairambault, Jean (INRIA, Rocquencourt)  Lecture room HS 13, 2nd floor  Thu, 2. Jul 15, 13:30 
Drug resistance in cancer: biology, medicine, and modeling  

Saut, Olivier (CNRS, INRIA, Bordeaux)  Lecture room HS 13, 2nd floor  Thu, 2. Jul 15, 11:00 
Data assimilation in tumor growth modeling: towards patient calibrated models using imaging devices  

Grebien, Florian (Boltzmann Institute for Cancer Research, Vienna)  Lecture room HS 13, 2nd floor  Thu, 2. Jul 15, 10:10 
Functional studies of leukemia oncoproteins using integrated approaches  

Anderson, Alexander (Moffitt Cancer Center)  Lecture room HS 13, 2nd floor  Thu, 2. Jul 15, 9:00 
An integrated approach to understanding tumor‐ stromal interactions in cancer progression and treatment  

QingLin Tang (University of Singapore)  WPI, OMP 1, Seminar Room 08.135  Thu, 25. Jun 15, 10:00 
Computing ground states of spin 2 BoseEinstein condensates by the normalized gradient flow  
In this talk, an efficient and accurate numerical method will be proposed to compute the ground state of spin2 BoseEinstein condensates (BECs) by using the normalized gradient flow (NGF) or imaginary time method (ITM). The key idea is twofold. One is to find the five projection or normalization conditions that are used in the projection step of NGF/ITM, while the other one is to find a good initial data for the NGF/ITM. Based on the relations between chemical potentials and the two physical constrains given by the conservation of the totlal mass and magnetization, these five projection or normalization conditions can be completely and uniquely determined in the context of the the discrete scheme of the NGF discretized by backEuler finite difference (BEFD) method, which allows one to successfully extend the most powerful and popular NGF/ITM to compute the ground state of spin2 BECs. Additionally, the structures and properties of the ground states in a uniform system are analysed so as to construct efficient initial data for NGF/ITM. Extensive numerical results on ground states of spin2 BECs with ferromagnetic/nematic/cyclic interaction and harmonic/optical lattice potential in one/two dimensions are reported to show the efficiency of our method and to demonstrate some interesting physical phenomena.  

Suciu, Dan (University of Washington)  Zemanek seminar room; TU Wien  Sat, 6. Jun 15, 11:35 
Query Compilation: the View from the Database Side  
We study knowledge compilation for Boolean formulas that are given as groundings of First Order formulas. This problem is motivated by probabilistic databases, where each record in the database is an independent probabilistic event, and the query is given by a SQL expression or, equivalently, a First Order formula. The query’s probability can be computed in linear time in the size of the compilation representation, hence the interest in studying the size of such a representation. We consider the “data complexity” setting, where the query is fixed, and the input to the problem consists only of the database instance. We consider several compilation targets, of increasing expressive power: OBDDs, FBDDs, and decisionDNNFs (a subclass of dDNNFs). For the case of OBDDs we establish a dichotomy theorem for queries in restricted languages FO(\exists, \wedge, \vee) and FO(\forall, \wedge, \vee): for each such query the OBDD is either linear in the size of the database, or grows exponentially, and the complexity can be determined through a simple analysis of the query expression. For the other targets we describe a class of queries for which (a) the decisionDNNF is exponentially large in the size of the database, and (b) the probability of the query can be computed in polynomial time in the size of the database. This suggests that the compilation target decisionDNNF is too weak to capture all tractable cases of probabilistic inference. Our lower bound for decisionDNNF’s relies on a translation into FBDD’s, which is of independent interest. Joint work with Paul Beame, Abhay Jha, Jerry Li, and Sudeepa Roy.  

Olteanu, Dan (University of Oxford)  Zemanek seminar room; TU Wien  Sat, 6. Jun 15, 10:05 
Factorized Databases.  
will overview recent work on compilation of join queries (First Order formulas with conjunction and existential quantification) into lossless factorized representations. The primary motivation for this compilation is to avoid redundancy in the representation of results (satisfying assignments) of queries in relational databases. The relationship between a relation encoded as a set of tuples and an equivalent factorized representation is on a par with the relationship between propositional formulas in disjunctive normal form and their equivalent nested formulas obtained by algebraic factorization. For any fixed join query, we give asymptotically tight bounds on the size of their factorized results by exploiting the structure of the query, and we quantify the size gap between factorized and standard relational representation of query results. Factorized databases allow for constantdelay enumeration of represented tuples and provide efficient support for subsequent queries and analytics, such as linear regression. Joint work with Jakub Zavodny.  

Kratsch, Stefan (Universität Bonn)  Zemanek seminar room; TU Wien  Sat, 6. Jun 15, 9:15 
Kernelization: Efficient Preprocessing for NPhard Problems  
Efficient preprocessing is a widely applied opening move when faced with a combinatorially hard problem. The framework of parameterized complexity and its notion of kernelization offer a rigorous approach to understanding the capabilities of efficient preprocessing. In particular, it is possible to prove both upper and lower bounds on the output sizes that be achieved by polynomialtime algorithms. Crucially, using the perspective of parameterized complexity, these bounds are given in relation to problemspecific parameters, whereas unless P = NP there can be no efficient algorithm that shrinks every instance of an NPhard problem. The talk will give an introduction to kernelization and cover several different problems like \textsc{Point Line Cover}, \textsc{$d$Hitting Set}, and \textsc{Planar Steiner Tree}. We will discuss some recent examples of kernelizations that may be of particular interest to this meeting. Finally, we will briefly address the basic intuition behind lower bounds for kernelization.  

Bova, Simone (TU Wien)  Zemanek seminar room; TU Wien  Fri, 5. Jun 15, 14:20 
A Strongly Exponential Separation of DNNFs from CNFs  
Decomposable Negation Normal Forms (DNNFs) are Boolean circuits in negation normal form where the subcircuits leading into each AND gate are defined on disjoint sets of variables. We prove a strongly exponential lower bound on the size of DNNFs for a class of CNF formulas built from expander graphs. As a corollary, we obtain a strongly exponential separation between DNNFs and CNF formulas in prime implicates form. This settles an open problem in the area of knowledge compilation (Darwiche and Marquis, 2002). This is joint work with Florent Capelli (Universite Paris Diderot), Stefan Mengel (Ecole Polytechnique), and Friedrich Slivovsky (Technische Universitat Wien).  

Razgon, Igor (Birkbeck University of London)  Zemanek seminar room; TU Wien  Fri, 5. Jun 15, 13:30 
On the relationship between Nondeterministic readonce branching programs and DNNFs  
This talk consists of two parts. In the first part I will present a result published in (Razgon,IPEC2014) stating that for each $k$ there is an infinite class of monotone 2CNFs of primal graph treewidth at most $k$ for which the equivalent NonDeterministic ReadOnce Branching programs (NROBPs) require space $\Omega(n^{k/c})$ for some constant $c$. Then I will show that, essentially, replacing $k$ with $\log n$ we obtain a class of monotone 2CNFs with pseudopolynomial space complexity of the equivalent NROBPs. Using a well known result of Darwiche about space fixed parameter tractability of DNNFs for CNFs of bounded primal graph treewidth, it is easy to show that the space complexity of DNNFs on this class of CNFs is polynomial. Thus we obtain a pseudopolynomial separation between NROBPs and DNNFs. In the second part of the talk I will show that the above separation is essentially tight. In particular I will present a transformation of a DNNF of size $m$ with $n$ variables into an equivalent NROBP of size $O(m^{\log n+2})$. It follows for this transformation that an exponential lower bound (on the space complexity of) NROBP for any class of functions implies an exponential lower bound for DNNFs for this class of functions. Since NROBPs are much better studied than DNNFs from the lower bounds perspective with many exponential lower bounds known, I believe this result is a significant progress in our understanding of the complexity of DNNFs. The proposed transformation is an adaptation of the approach for transformation of a decision DNNF into an FBDD presented in (Beame et al, UAI2013).  

Kullmann, Oliver (Swansea University)  Zemanek seminar room; TU Wien  Fri, 5. Jun 15, 11:40 
A measured approach towards “good representations”  
I want to give an overview on the usage of “hardness measures” in the theory of representations of boolean functions via CNF’s. A special focus will be on separation of classes (given by the levels of the hardness measures), showing that increasing various hardness measures enables much shorter representations.The measures we consider are closely related to SAT solving, that is, making the implicit knowledge explicit happens with SAT solvers in mind. This makes for good connections to proof complexity, but now in a stronger setting — satisfiable clausesets are the target, and we wish to represent the underlying boolean function as good as possible. “As good as possible” means that the hidden(!) unsatisfiable subinstances are as easy as possible. Since we are aiming at making the life easier for SAT solvers, the concrete nature of the hardness measures becomes of importance, different from general Knowledge Compilation, where one uses whatever polynomial time offers.  

Cepek, Ondrej (Karlsuniversität Prag)  Zemanek seminar room; TU Wien  Fri, 5. Jun 15, 11:15 
Complexity aspects of CNF to CNF compilation  
Knowledge compilation usually deals with transforming some input representation of a given knowledge to some other type of representation on the output. In this talk we will concentrate on compilation where both input and output representation are of the same type, namely in the CNF format. In this case the purpose of the compilation process is to add clauses to the input CNF in order to improve its inference properties. We will look at this process in more detail and study its complexity.  

Simon, Laurent (IASI, Université de Orsay Paris 11)  Zemanek seminar room; TU Wien  Fri, 5. Jun 15, 10:20 
SAT and Knowledge Compilation: a JustinTime Approach  
Knowledge Compilation (KC) principles rely on an offline phase to rewrite the Knowledge base in an appropriate form, ready to be efficiently queried. In our talk, we propose an alternative approach, built on top of an efficient SAT solver. The recent progresses in the practical solving of SAT problems allows us to directly use them to answer the set of classical queries used in most KC works. We show that this very simple approach gives very good practical results. In addition, the learning mechanism is fully exploited from queries to queries, allowing to amortize previous calls by speeding up the process of new queries.  

MarquesSilva, Joao (IST/INESCID, Portugal and University College Dublin)  Zemanek seminar room; TU Wien  Fri, 5. Jun 15, 9:30 
Prime Compilation of NonClausal Formulae  
Formula compilation by generation of prime implicates or implicants finds a wide range of applications in AI. Recent work on formula compilation by prime implicate/implicant generation often assumes a Conjunctive/Disjunctive Normal Form (CNF/DNF) representation. However, in many settings propositional formulae are naturally expressed in nonclausal form. Despite a large body of work on compilation of nonclausal formulae, in practice existing approaches can only be applied to fairly small formulae, containing at most a few hundred variables. This paper describes two novel approaches for the compilation of nonclausal formulae either with prime implicants or implicates, that is based on propositional Satisfiability (SAT) solving. These novel algorithms also find application when computing all prime implicates of a CNF formula. The proposed approach is shown to allow the compilation of nonclausal formulae of size significantly larger than existing approaches.  

Darwiche, Adnan (University of California)  Zemanek seminar room; TU Wien  Thu, 4. Jun 15, 16:50 
Beyond NP: Keeping up with solvers that reach beyond NP!  
We will discuss in this presentation a new community website, BeyondNP.org, which is planned to launch later this summer. Beyond NP aims to disseminate and promote research on solvers that reach beyond NP, including model counters, knowledge compilers, QBF solvers and functionproblem solvers (e.g. MaxSAT, MUS and MCS). Beyond NP will serve as a news and information aggregator for such solvers, including a catalog of opensource solvers, repositories of corresponding benchmarks, and news on related academic activities. The presentation aims to raise awareness about this initiative, to discuss its underlying vision and objectives, and to seek input and participation from the broader community.  

Niveau, Alexandre (Université de Caen–BasseNormandie)  Zemanek seminar room; TU Wien  Thu, 4. Jun 15, 16:25 
Towards a knowledge compilation map for heterogeneous representation languages  
The knowledge compilation map introduced by Darwiche and Marquis takes advantage of a number of concepts (mainly queries, transformations, expressiveness, and succinctness) to compare the relative adequacy of representation languages to some AI problems. However, the framework is limited to the comparison of languages that are interpreted in a homogeneous way (formulas are interpreted as Boolean functions). This prevents one from comparing, on a formal basis, languages that are close in essence, such as OBDD, MDD, and ADD.To fill the gap, we present a generalized framework into which comparing formally heterogeneous representation languages becomes feasible. In particular, we explain how the key notions of queries and transformations, expressiveness, and succinctness can be lifted to the generalized setting. The talk is based on the IJCAI’13 paper by Fargier, Marquis, and Niveau.  

Fargier, Hélène (IRITCNRS, Université Paul Sabatier)  Zemanek seminar room; TU Wien  Thu, 4. Jun 15, 15:35 
A KC Map of Valued Decision Diagrams – application to product configuration  
Valued decision diagrams (VDDs) are data structures that represent functions mapping variablevalue assignments to nonnegative real numbers. Existing languages in VDD family, including ADD, AADD , and those of the SLDD family, seem to be valuable target languages for compiling utility functions, probability distributions and, in the domain of application we are interested in, cost functions over a catalog of configurable products.This talks first presents a compilation map of such structures and shows that many tasks that are hard on valued CSPs are actually tractable on VDDs. Indeed, languages from the VDD family (especially, ADD, SLDD, AADD) benefit from polynomialtime algorithms for some tasks of interest (e.g., the optimization one) for which no polynomialtime algorithm exists when the input is the VCSP considered at 