** LIST OF CITATIONS of publications by
Goulnara N. ARZHANTSEVA **

** more then 896 citations in total, ** excluding self-citations.

** Last update: Nov. 22 ^{nd},
2022 **

** Papers already published or accepted:**

Summary
and comments to my list of publications

[57] G.N. Arzhantseva, M. Steenbock, *
Rips construction without unique product*, Pacific Journal of
Mathematics, (2022), in press. pdf

** 12 citations by **

M. Arenas, *A cubical Rips construction*, (2022), arXiv:2202.01048.

E. Einstein, T. Ng, *Relative cubulation of small cancellation free
products*, (2021), arXiv:2111.03008.

M. Finn-Sell, * Almost quasi-isometries and more non-C*-exact groups*,
Mathematical Proceedings of the Cambridge Philosophical Society 162
(2017), no. 3, pp. 393-403.

G. Gardam, * A counterexample to the unit conjecture for group rings*,
Annals of Mathematics (2) 194 (2021), no. 3, 967-979.

D. Gruber, * Infinitely presented C(6)-groups are SQ-universal*, J.
Lond. Math. Soc. (2) 92 (2015), no. 1, 178-201.

D. Gruber, A. Martin, M. Steenbock, * Finite index subgroups without
unique product in graphical small cancellation groups*, Bull. Lond.
Math. Soc. 47 (2015), no. 4, 631–638.

D. Gruber, A. Sisto, * Infinitely presented graphical small
cancellation groups are acylindrically hyperbolic*, Annales de
l'Institut Fourier, 68 (2018) no. 6, 2501-2552.

K. Khan, * Fundamental groups of certain von Neumann algebras*, PhD
thesis, (2020), Vanderbilt University.

K. Khan, * Subgroups of lacunary hyperbolic groups and free products*,
(2020), arXiv:2002.08540.

S. Kionke, J. Raimbault, N. Dunfield, * On geometric aspects of diffuse
groups*, Doc. Math. 21 (2016), 873-915.

A. Martin, M. Steenbock, * A combination theorem for cubulation in
small cancellation theory over free products*, Ann. Inst. Fourier, 67
(2017), no. 4, 1613-1670.

J. Öinert, * Units, zero-divisors and idempotents in rings graded by
torsion-free groups*, (2019), arXiv:1904.04847.

[56] G.N. Arzhantseva, A. Biswas, *
Logarithmic girth expander graphs of SL_n(F_p)*, Journal of
Algebraic Combinatorics, 56 (2022), 691-723. pdf

** 10 citations by**

I. Benjamini, M. Fraczyk, G. Kun, * Expander spanning subgraphs with
large girth*, (2020), arXiv:2012.15502.

A. Biswas, * Flexibility and movability in Cayley graphs*, (2019),
arXiv:1911.06261.

A. Biswas, J. P. Saha, * Expansion in Cayley graphs, Cayley sum graphs
and their twists*, (2021), arXiv:2103.05935.

T. Budzinski, N. Curien, B. Petri, * On the minimal diameter of closed
hyperbolic surfaces*, Duke Math. J. 170(2) (2021), 365-377.

A. S. Detinko, W. A. de Graaf, * 2-Generation of simple Lie algebras
and free dense subgroups of algebraic groups*, Journal of Algebra 545
(2020), 159-173.

D. Gruber, A. Sisto, * Divergence and quasi-isometry classes of random
Gromov's monsters*, (2018), arXiv:1805.04039.

C. Le Coz, C. Battarbee, R. Flores, Th. Koberda, D. Kahrobaei,
Post-quantum hash functions using SL_n(F_p), (2022), arXiv:2207.03987.

M. W. Liebeck, A. Shalev, * Girth, words and diameter*, Bull. London
Math. Soc. 51 (2019), no. 3, 539-546.

M. Polak, E. Zhupa, Keyed hash function
from large girth expander graphs, Albanian Journal of
Mathematics, 16(1) (2022), 25-39.

M. Zeggel, * The bounded isomorphism conjecture for box spaces of
residually finite groups*, (2021), arXiv:2103.16967.

[55] G.N. Arzhantseva, M. Hagen, *
Acylindrical hyperbolicity of cubical small-cancellation groups*,

Algebraic & Geometric Topology (2021), in press. pdf

** 2 citations by**

A. Genevois, A. Stocker, * Partially CAT(−1) groups are acylindrically
hyperbolic*, Bull. Soc. Math. France 147 (2019), no. 3, 377–394.

D. Gruber, A. Sisto, * Infinitely presented graphical small
cancellation groups are acylindrically hyperbolic*, Ann. Inst.
Fourier (Grenoble), 68 (2018), no. 6, 2501–2552.

[54] G.N. Arzhantseva, S. Gal, * On
approximation properties of semidirect products of groups*,

Annales mathematiques Blaise Pascal, 27(1) (2020), 125-130. pdf

** 5 citations by**

F. Berlai, * Residual properties of free products*, Comm. Algebra 44
(2016), no. 7, 2959-2980.

A. Bhattacharya, M. Brannan, A. Chirvasitu, S. Wang,* Property (T),
property (F) and residual finiteness for discrete quantum groups*, J.
Noncommut. Geom. 14 (2020), no. 2, 567-589.

L. Bowen, P. Burton, * Locally compact sofic groups*, (2021),
arXiv:2106:09118.

M. Doucha, J. Gismatullin, * On Dual surjunctivity and applications*,
(2020), arXiv:2008:10565.

D. F. Holt, S. Rees, * Some closure results for C-approximable groups*,
Pacific J. Math. 287 (2017), no. 2, 393-409.

[53] G.N. Arzhantseva, F. Berlai, M.
Finn-Sell, L. Glebsky, * Unrestricted wreath products and sofic
groups*,

International Journal of Algebra and Computation, 29(02) (2019),
343-355. pdf

** 4 citations by **

L. Bowen, P. Burton, * Locally compact sofic groups*, (2021),
arXiv:2106:09118.

J. Brude, R. Sasyk, * Permanence properties of verbal products and
verbal wreath products of groups*, (2019), arXiv:1909.07800.

J. Brude, R. Sasyk, * Metric approximations of unrestricted wreath
products when the acting group is amenable*, (2020),
arXiv:2004.05735.

R. Ji, C. Ogle, B. Ramsey, * Relative amenability and relative soficity*,
(2018), arXiv:1807.07600

[52] G.N. Arzhantseva, Ch. Cashen, *
Cogrowth for group actions with strongly contracting elements*,

Ergodic Theory and Dynamical Systems, 40(7) (2020), 1738-1754.
pdf

** 2 citations by **

I. Gekhtman, A. Levit, * Critical exponents of invariant random
subgroups in negative curvature*, Geom. Funct. Anal. 29 (2019), no.
2, 411-439.

K. Matsuzaki, Y. Yabuki, J. Jaerisch, * Normalizer, divergence type,
and Patterson measure for discrete groups of the Gromov hyperbolic space*,
Groups Geom. Dyn. 14 (2020), no. 2, 369-411.

[51] G.N. Arzhantseva, L. Paunescu, *
Constraint metric approximations and equations in groups*,

Journal of Algebra, 516 (2018), 329-351. pdf

** 2 citations by **

F. Fournier-Facio, * Ultrametric analogues of Ulam stability of groups
*, (2021), arXiv:2105.00516

A. Ioana, * Stability for product groups and property (τ)*, J.
Algebra 516 (2018), J. Funct. Anal. 279 (2020), no. 9, 108729, 32 pp.

[50] G.N. Arzhantseva, C. Drutu, *
Geometry of infinitely presented small cancellation groups and
quasi-homomorphisms*,

Canadian Journal of Mathematics, 71(5) (2019), 997-1018. pdf

** 5 citations by **

M. Bradenbursky, Ś. Gal, J. Kędra, M. Marcinkowski, * The cancellation
norm and the geometry of bi-invariant word metrics*, Glasg. Math. J.
58 (2016), no. 1, 153–176.

I. Chatterji, * Introduction to the rapid decay property*, Around
Langlands correspondences, 53-72, Contemp. Math., 691, Amer. Math. Soc.,
Providence, RI, 2017.

D. Gruber, A. Sisto, * Infinitely presented graphical small
cancellation groups are acylindrically hyperbolic*, Ann. Inst.
Fourier (Grenoble) 68 (2018), no. 6, 2501-2552.

A. Martin, * Complexes of groups and geometric small cancelation over
graphs of groups*, Bull. Soc. Math. France 145 (2017), no. 2,
193-223.

M. Sapir, * The rapid decay property and centroids in groups*, J.
Topol. Anal. 7 (2015), no. 3, 513–541.

[49] G.N. Arzhantseva, Ch. Cashen, D.
Gruber, D. Hume, * Negative curvature in graphical small cancellation
groups*,

Groups, Geometry and Dynamics, 13(2) (2019), 579-632. pdf

** 12 citations by **

T. Aougab, M. G. Durham, S. J. Taylor, * Pulling back stability with
applications to Out(Fn) and relatively hyperbolic groups*, J. Lond.
Math. Soc. (2) 96 (2017), no. 3, 565-583.

Ch. Cashen, * Morse subsets of CAT(0) spaces are strongly contracting*,
Geom. Dedicata 204 (2020), 311–314.

Ch. Cashen, J. Mackay, * A metrizable topology on the contracting
boundary of a group* Trans. Amer. Math. Soc. 372 (2019), no. 3,
1555–1600.

M. Cordes, D. Hume, * Stability and the Morse boundary* J. Lond.
Math. Soc. (2) 95 (2017), no. 3, 963–988.

R. Coulon, D. Gruber, * Small cancellation theory over Burnside groups*,
Adv. Math. 353 (2019), 722–775.

I. Gekhtman, W. Yang, * Counting conjugacy classes in groups with
contracting elements *, (2018), arXiv:1810.02969.

D. Gruber, A. Sisto, * Infinitely presented graphical small
cancellation groups are acylindrically hyperbolic* Ann. Inst. Fourier
(Grenoble) 68 (2018), no. 6, 2501–2552.

S. Han, * Relative Hyperbolicity of graphical small cancellation groups
*, (2020), arXiv:2010.13528.

D. Hume, A. Sisto, * Groups with no coarse embeddings into hyperbolic
groups* New York J. Math. 23 (2017), 1657–1670.

M. Incenerti-Medici, * Comparing topologies on the Morse boundary and
quasi-isometry invariance*, Geom. Dedicata 212 (2021), 153-176.

W. Yang, * Statistically convex-cocompact actions of groups with
contracting elements*, Int. Math. Res. Not. IMRN 2019, no. 23,
7259-7323.

W. Yang, * Genericity of contracting elements in groups*, Math. Ann.
376 (2020), no. 3-4, 823-861.

[48] G.N. Arzhantseva, R. Tessera, *
Admitting a coarse embedding is not preserved under group extensions*,

International Mathematics Research Notices, 2019 (20) (2019), 6480-6498.
pdf

** 9 citations by **

B. Braga, , Y. C. Chung, and K. Li, * Coarse Baum-Connes conjecture and
rigidity for Roe algebras*, Journal of Functional Analysis 279
(2020), no. 9, 108728.

C. Bönicke, C. Dell’Aiera, * Going-down functors and the Künneth
formula for crossed products by étale groupoids*, Transactions of the
American Mathematical Society, 372 (2019), no. 11, 8159-8194.

K. Boucher, * On non-amenable embeddable spaces in relation with free
products*, (2018), arXiv:1801.04889.

T. Delabie, A. Khukhro, * Box spaces of the free group that neither
contain expanders nor embed into a Hilbert space*. Advances in
Mathematics 336 (2018), 70-96.

J. Deng, * The Novikov conjecture and extensions of coarsely embeddable
groups*, (2019), arXiv:1910.05381.

J. Deng, Q. Wang, G. Yu, * The coarse Baum-Connes conjecture for
certain extensions and relative expanders*, (2021), arXiv:2102.10617.

L. Guo, Z. Luo, Q. Wang, Y. Zhang,*K-theory of the maximal and reduced
Roe algebras of metric spaces with A-by-CE coarse fibrations*,
(2021), arXiv:2110.15624.

G. Li, X. Wang, * Remarks on strong embeddability for discrete metric
spaces and groups*, arXiv:1709.02522.

K. Li, J. Špakula, J. Zhang, * Measured asymptotic expanders and
rigidity for Roe algebras*, (2020), arXiv:2010.10749.

[47] G.N. Arzhantseva, G.A. Niblo, N.
Wright, J. Zhang, * A characterization for asymptotic dimension
growth*,

Algebraic & Geometric Topology, 18 (2018), 493-524. pdf

** 4 citations by **

T. Davila, * Decomposition complexity growth of finitely generated
groups*, (2019), arXiv:1902.08561.

T. Davila, * Infinite-dimensional coarse geometry of groups and spaces*,
PhD thesis, 2020, University of Florida.

E. Fioravanti, * Superrigidity of actions on finite rank median spaces*,
Adv. Math. 352 (2019), 1206–1252.

J. Wang, Z. Xie, G. Yu, * Decay of scalar curvature on uniformly
contractible manifolds with finite asymptotic dimension*, (2021),
arXiv:2101.11584.

[46] G.N. Arzhantseva, Ch. Cashen, D.
Gruber, D. Hume, * Characterizations of Morse quasi-geodesics via
superlinear divergence and sublinear contraction*,

Documenta Mathematica, 22 (2017), 1193-1224. pdf

** 29 citations by **

C. Abbott, J. Behrstock, M. G. Durham, * Largest acylindrical actions
and Stability in hierarchically hyperbolic groups*, Trans. Amer.
Math. Soc. Ser. B 8 (2021), 66-104.

T. Aougab, M. G. Durham, S. J. Taylor, * Pulling back stability with
applications to Out(Fn) and relatively hyperbolic groups* J. Lond.
Math. Soc. (2) 96 (2017), no. 3, 565-583.

A. Bartels, M. Bestvina, * The Farrell-Jones conjecture for mapping
class groups*, Invent. Math. 215 (2019), no. 2, 651-712.

J. Beyrer, E. Fioravanti, * Cross ratios and cubulations of hyperbolic
groups*, (2018), arXiv:1810.08087.

N. Brady, H. C. Tran, * Divergence of finitely presented groups*,
(2020), arXiv:2002.03653.

N. Brady, H. C. Tran, * Divergence of finitely presented subgroups of
CAT(0) groups*, (2020), arXiv:2012.15803.

Ch. Cashen, * Quasi-isometries need not induce homeomorphisms of
contracting boundaries with the Gromov product topology* Anal. Geom.
Metr. Spaces 4 (2016), no. 1, 278–281.

Ch. Cashen, * Morse subsets of CAT(0) spaces are strongly contracting*
Geom. Dedicata 204 (2020), 311–314.

Ch. Cashen, J. Mackay, * A metrizable topology on the contracting
boundary of a group* Trans. Amer. Math. Soc. 372 (2019), no. 3,
1555–1600.

M. Cordes, * A survey on Morse boundaries & stability*, (2017),
arXiv:1704.07598.

M. Cordes, D. Hume, * Stability and the Morse boundary* J. Lond.
Math. Soc. (2) 95 (2017), no. 3, 963–988.

C. Druţu, S. Mozes, M. Sapir, * Corrigendum to "Divergence in lattices
in semisimple Lie groups and graphs of groups''*, Trans. Amer. Math.
Soc. 370 (2018), no. 1, 749-754.

E. Fink, * Morse geodesics in torsion groups*, (2017),
arXiv:1710.11191.

E. Fioravanti, * Cross ratios on cube complexes and length-spectrum
rigidity*, PhD thesis, 2019, University of Oxford.

M. Incenerti-Medici, * Comparing topologies on the Morse boundary and
quasi-isometry invariance*, Geom. Dedicata 212 (2021), 153-176.

M. Hagen, * Large facing tuples and a strengthened sector lemma*,
(2020), arXiv:2005.09536.

L. Huang, B. Kleiner, S. Stadler, * Morse quasiflats I*, (2019),
arXiv:1911.04656.

H. Kim, * Stable subgroups and Morse subgroups in mapping class groups*,
Internat. J. Algebra Comput. 29 (2019), no. 5, 893-903.

S. C. Mousley, J. Russell, * Hierarchically hyperbolic groups are
determined by their Morse boundaries*, (2018), arXiv:1801.04867.

D. Murray, Y. Qing, A. Zalloum, * Sublinearly Morse geodesics in CAT(0)
spaces: Lower divergence and hyperplane characterization*, (2020),
arXiv:2008.09199.

A. Pal, R. Pandey, * Acylindrical hyperbolicity of subgroups*, New
York J. Math. 26 (2020), 1213-1231.

A. Pal, R. Pandey, * Contracting boundary of a cusped space*,
(2020), arXiv:2012.08259.

A. Pal, S. Paul, * Strongly contracting geodesics in a tree of spaces*,
(2019), arXiv:1904.09906.

Y. Qing, K. Rafi, G. Tiozzo, * Sublinearly Morse boundary I: CAT(0)
spaces*, (2020), arXiv:1909.02096.

Y. Qing, K. Rafi, G. Tiozzo, * Sublinearly Morse boundary II: Proper
geodesic spaces*, (2020), arXiv:2011.03481.

Y. Qing, A. Zalloum, * Rank one isometries in sublinearly morse
boundaries of CAT(0) groups*, (2019), arXiv:1911.03296.

J. Russell, D. Spriano, H.C. Tran, * Convexity in hierarchically
hyperbolic spaces*, (2018), arXiv:1809.09303.

J. Russell, D. Spriano, H.C. Tran, * The local-to-global property for
Morse quasi-geodesics*, (2019), arXiv:1908.11292.

H. C. Tran, * On strongly quasiconvex subgroups*, Geom. Topol. 23
(2019), no. 3, 1173-1235.

[45] G.N. Arzhantseva, L. Paunescu, *
Linear sofic groups and algebras*,

Transactions of the American Mathematical Society, 369 (2017),
2285-2310. pdf

** 28 citations by **

A. Anderson, M. Lupini, *The Fraïssé limit of matrix algebras with the
rank metric*, (2017), arXiv:1712.04431.

J. Brude, R. Sasyk, * Permanence properties of verbal products and
verbal wreath products of groups*, (2019), arXiv:1909.07800.

J. Brude, R. Sasyk, * Metric approximations of unrestricted wreath
products when the acting group is amenable*, (2020),
arXiv:2004.05735.

V. Capraro, M. Lupini, * Introduction to sofic and hyperlinear groups
and Connes' embedding conjecture*, Lecture Notes in Mathematics 2136,
Springer 2015.

T. Ceccherini-Silberstein, M. Coornaert, * On sofic monoids *,
Semigroup Forum 89 (2014), no. 3, 546–570.

M. de Chiffre, * Approximate representations of groups*, PhD thesis,
2018, Technischen Universität Dresden.

M. Doucha, * Metric topological groups: their metric approximation and
metric ultraproducts*, Groups Geom. Dyn. 12 (2018), no. 2, 615-636.

G. Elek, * Convergence and limits of linear representations of finite
groups*, J. Algebra 450 (2016), 588-615.

G. Elek, * Infinite dimensional representations of finite dimensional
algebras and amenability*, (2015), arXiv:1512.03959.

G. Elek, L. Grabowski, * Almost commuting matrices with respect to the
rank metric *, (2017), arXiv:1708.05338

F. Fournier-Facio, * Ultrametric analogues of Ulam stability of groups*,
(2021), arXiv:2105.00516.

L. Glebsky, * Approximations of groups, characterizations of sofic
groups, and equations over groups*, J. Algebra 477 (2017), 147-162.

M. Gromov, * Number of questions*, 2014,
http://www.ihes.fr/~gromov/PDF/Problems-marc6-11-2014.pdf

M. Gromov, *Morse spectra, homology measures, spaces of cycles and
parametric packing problems*, Ann. of Math. Stud. 205 (2020),
141-205.

B. Hayes, A. W. Sale, * Metric approximations of wreath products*,
Ann. Inst. Fourier (Grenoble) 68 (2018), no. 1, 423-455.

D. F. Holt, S. Rees, * Some closure results for C-approximable groups*,
(2016), arXiv:1601.01836

A. Ivanov, * Sofic metric groups and continuous logic*, (2016),
arXiv:1604.08446

A. Ivanov, * Metric ultraproducts of finite groups with respect to some
length functions*, (2014), arXiv:1401.0857

A. Ivanov, * Soficity and hyperlinearity for metric groups*,
Topology Appl. 235 (2018), 146-156.

A. Korchagin, * MF-property for countable discrete groups*, (2017),
arXiv:1704.06906.

M. Lupini, * An invitation to model theory and C*-algebras*, Bull.
Symb. Log. 25 (2019), no. 1, 34-100.

N. Nikolov, J. Schneider, A. Thom, * Some remarks on finitarily
approximable groups*, J. Éc. polytech. Math. 5 (2018), 239-258.

L. M. Rivera, N. M. Veyna García, * Aproximación métrica de grupos: una
breve perspectiva*, (2017), arXiv:1709.01202

J. Schneider, * On ultraproducts of compact quasisimple groups*, PhD
thesis, 2021, Universität Leipzig.

A. Stolz, * Linear approximation of groups and ultraproducts of compact
simple groups*, PhD thesis, 2013, Universität Leipzig.

A. Stolz, * Properties of linearily sofic groups*, (2013),
arXiv:1309.7830.

A. Thom, * Finitary approximations of groups and their applications*,
Proceedings of the ICM (2018).

S. Virili, * A point-free approach to L-Surjunctivity and stable
finiteness*, (2014), arXiv:1410.164.

S. Virili, * Group representations, algebraic dynamics and torsion
theories*, PhD thesis, 2014, Universitat Autònoma de Barcelona.

[44] G.N. Arzhantseva, Ch. Cashen, J. Tao,
* Growth tight actions*,

Pacific Journal of Mathematics, 278(1) (2015), 1-49. pdf

** 23 citations by **

A. Broise-Alamichel, J. Parkkonen, F. Paulin, * Equidistribution and
counting under equilibrium states in negative curvature and trees*,
Applications to non-Archimedean Diophantine approximation. Progress in
Mathematics, 329, Birkhäuser/Springer, 2019.

C. Cashen, J. Tao, * Growth tight actions of product groups,* Groups
Geom. Dyn. 10 (2016), no. 2, 753-770.

M. Cordes, J.Russell, D. Spriano, A. Zalloum, * Regularity of Morse
geodesics and growth of stable subgroups*, (2020), arXiv:2008.06379.

R. Coulon, R. Dougall, B. Schapria, S. Tapie,* Twisted
Patterson-Sullivan measures and applications to amenability and
coverings*, (2018), arXiv:1809.10881.

F. Dahmani, D. Futer, D. T. Wise, * Growth of quasiconvex subgroups*,
Math. Proc. Cambridge Philos. Soc. 167 (2019), no. 3, 505-530.

S. Das, M. Mj, * Controlled Floyd separation and non relatively
hyperbolic groups*, J. Ramanujan Math. Soc. 30 (2015), no. 3,
267-294.

I. Gekhtman, S. J. Taylor, G. Tiozzo, * Counting problems in graph
products and relatively hyperbolic groups*, Israel J. Math. 237
(2020), no. 1, 311-371.

I. Gekhtman, W. Yang, * Counting conjugacy classes in groups with
contracting elements *, (2018), arXiv:1810.02969.

S. Gouëzel, C. Noûs, B. Schapira, S. Tapie, * Pressure at infinity and
strong positive recurrence in negativecurvature*, (2020),
arXiv:2007.08816v2.

J. Han, * Growth of pseudo-anosov conjugacy classes in Teichmüller
space*, (2021), arXiv:2105.08640.

J. Han, * Growth rate of dehn twist lattice points in Teichmüller space*,
(2021), arXiv:2105.08624.

S. Han, W. Yang, * Generic free subgroups and statistical hyperbolicity*,
(2018), arXiv:1812.06265.

Z. He, J. Liu, W. Yang, * Large quotients of group actions with a
contracting element*, (2020), arXiv:2007.15825.

I. Kapovic, J. Maher, C. Pfaff, S.J. Taylor, * Random outer
automorphisms of free groups: Attracting trees and their singularity
structures*, (2018), arXiv:1805.12382.

K. Matsuzaki, * Growth and cogrowth tightnessof Kleinian and hyperbolic
groups*, RIMS Kôkyûroku Bessatsu B66 (2017), 21-36.

M. Mj, P. Roy, * Stable random fields, Bowen-Margulis measures and
extremal cocycle growth*, (2018), arXiv:1809.08295v1.

Y. Qing, K. Rafi, G. Tiozzo, * Sublinearly Morse boundary II: Proper
geodesic spaces*, (2020), arXiv:2011.03481.

K. Rafi, Y. Verberne, * Geodesics in the mapping class group*,
(2018), arXiv:1810.12489.

J. Russell, D. Spriano, H.C. Tran, * The local-to-global property for
Morse quasi-geodesics*, (2019), arXiv:1908.11292.

Y. Verberne, * Pseudo-Anosov homeomorphisms constructed using poitive
Dehn twists*, PhD thesis, 2020, University of Toronto.

B. Wiest, * Garside groups and geometry*, (2020), arXiv:2008.08802.

W. Yang, * Statistically convex-cocompact actions of groups with
contracting elements*, Int. Math. Res. Not. IMRN 2019, no. 23,
7259-7323.

W. Yang, * Genericity of contracting elements in groups*, Math. Ann.
376 (2020), no. 3-4, 823-861.

[43] G.N. Arzhantseva, L. Paunescu, *
Almost commuting permutations are near commuting permutations*,

Journal of Functional Analysis, 269(3) (2015), 745-757. pdf

** 43 citations by **

S. Atkinson, * Some results on tracial stability and graph products*,
Indiana Univ. Math. J. 70 (2021), no. 3, 1167–1187.

S. Atkinson, S. Kunnawalkam Elayavalli, * On ultraproduct embeddings
and amenability for tracial von Neumann algebras*, Int. Math. Res.
Not. IMRN 2021, no. 4, 2882–2918.

O. Becker, M. Chapman, * Stability of approximate group actions:
uniform and probabilistic*, J. Eur. Math. Soc. (2022), in press.

O. Becker, A. Lubotzky, * Group stability and Property (T)*, J.
Funct. Anal. 278 (2020), no. 1, 108298, 20 pp.

O. Becker, A. Lubotzky, J. Mosheiff, *Stability and testability:
equations in permutations*, (2020), arXiv:2011.05234.

O. Becker, A. Lubotzky, J. Mosheiff, *Testability of relations between
permutations*, 2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science (FOCS), 2022, pp. 286-297.

O. Becker, A. Lubotzky, J. Mosheiff, * Testability in group theory*,
(2022), arXiv:2204.04539.

O. Becker, A. Lubotzky, A. Thom, * Stability and invariant random
subgroups*, Duke Math. J. 168 (2019), no. 12, 2207-2234.

O. Becker, J. Mosheiff, * Abelian groups are polynomially stable*,
Int. Math. Res. Not. IMRN 2021, no. 20, 15574–15632.

L. Bowen, P. Burton, * Flexible stability and nonsoficity*, Trans.
Amer. Math. Soc. 373 (2020), no. 6, 4469–4481.

H. Bradford, Local permutations
stability, (2022), arXiv:2211.15249.

P. Burton, *Hyperlinear approximations to amenable groups come from
sofic approximations*, (2021), arXiv:2110.03076.

V. Capraro, M. Lupini, * Introduction to sofic and hyperlinear groups
and Connes' embedding conjecture*, Lecture Notes in Mathematics 2136,
Springer 2015.

M. Cavaleri, * Algorithms and quantifications in amenable and sofic
groups*, PhD thesis, Universita degli studi di Roma La Sapienza
(2016).

M. Cavaleri, R. Munteanu, L. Paunescu, * Two special subgroups of the
universal sofic group*, Ergodic Theory Dynam. Systems 39 (2019), no.
12, 3250-3261.

M. De Chiffre, * Approximate representations of groups*, PhD thesis,
Technische Universität Dresden (2019).

M. De Chiffre, L. Glebsky, A. Lubotzky, A. Thom, * Stability,
cohomology vanishing, and non-approximable groups*, Forum Math. Sigma
8 (2020), Paper No. e18, 37 pp.

S. Eilers, T. Shulman, A. Sørensen, * C*-stability of discrete groups*,
Adv. Math. 373 (2020), 107324, 41 pp.

G. Elek, Ł. Grabowski, *Almost commuting matrices with respect to the
rank metric*, Groups Geom. Dyn. 15 (2021), no. 3, 1059–1083.

D. Enders, T. Shulman, * Almost commuting matrices, cohomology, and
dimension*, (2019), arXiv:1902.10451.

F. Fournier-Facio, * Ultrametric analogues of Ulam stability of groups*,
(2021), arXiv:2105.00516.

M. A. García Morales, L. Glebsky, * Property of defect diminishing and
stability*, (2019), arXiv:1911.11752v2.

D. Hadwin, T. Shulman, * Stability of group relations under small
Hilbert-Schmidt perturbations*, J. Funct. Anal. 275 (2018), no. 4,
761–792.

D. Hadwin, T. Shulman, * Variations of projectivity for C*-algebras*,
Pacific J. Math. 301 (2019), no. 2, 421-440.

H. Helfgott, K. Juschenko, * Soficity, short cycles, and the Higman
group*, Trans. Amer. Math. Soc. 371 (2019), no. 4, 2771–2795.

A. Ioana, * Stability for product groups and property (τ)*, J.
Funct. Anal. 279 (2020), no. 9, 108729, 32 pp.

A. Ioana, * On sofic approximations of F2×F2*, Ergodic Theory Dynam.
Systems (2021), 1-19.

A. Ioana, Almost commuting matrices and
stability for product groups, (2021), ar Xiv:2108.09589

M. Kassabov, V. Kuperberg, T. Riley, * Soficity and variations on
Higman’s group*, J. Comb. Algebra 3 (1) (2019), 41–70.

J. König, A. Leitner, D. Neftin, * Almost-regular dessins d'enfant on a
torus and sphere*, Topology Appl. 243 (2018), 78–99.

N. Lazarovich, A. Levit, Y. Minsky, * Surface groups are flexibly
stable*, (2019), arXiv:1901.07182.

A. Levit, A. Lubotzky, * Infinitely presented permutation stable groups
and invariant random subgroups of metabelian groups*, Ergodic Theory
Dynam. Systems, 42(6) (2022), 2028-2063.

A. Levit, A. Lubotzky, * Uncountably many permutation stable groups*,
(2019), arXiv:1910.11722v1.

A. Levit, I. Vigdorovich, *Characters of solvable groups,
Hilbert-Schmidt stability and dense periodic measures*, (2022),
arXiv:2206.02268.

A. Lubotzky, I. Oppenheim,* Non p-norm approximated groups*, J. Anal.
Math. 141 (2020), no. 1, 305-321.

M. Lupini, * An invitation to model theory and C*-algebras*, Bull.
Symb. Log. 25 (2019), no. 1, 34–100.

K. Mallahi-Karai, M. Mohammadi Yekta, *Optimal linear sofic
approximations of countable groups*, (2021), arXiv:2112.10111.

M. A. G. Morales, L. Glebsky, Property
of defect diminishing and stability, International Electronic
Journal of Algebra 31 (2022), 49-54.

R. Moreno, L.M. Rivera, * Blocks in cycles and k-commuting permutations*,
SpringerPlus (2016) 5: 1949.

L. Oppenheim, * Garland's method with Banach coefficients*, (2020),
arXiv:2009.01234.

L. Paunescu, F. Radulescu, * A generalisation to Birkhoff-von Neumann
theorem*, Adv. Math. 308 (2017), 836-858.

L. Paunescu, A. Sipos, A proof-theoretic metatheorem for trcial von
Neumann algebras, (2022), arXiv:2209.01797.

L. M. Rivera, * Integer sequences and k-commuting permutations*,
Integers 15 (2015), Paper No. A46, 22 pp.

[42] G.N. Arzhantseva, D. Osajda, *
Infinitely presented small cancellation groups have Haagerup property*,

Journal of Topology and Analysis, 7(3) (2015), 389-406. pdf

** 12 citations by **

V. Alekseev, M. Finn-Sell, * Sofic boundaries of groups and coarse
geometry of sofic approximations*, Groups Geom. Dyn. 13 (2019), no.
1, 191-234.

P. Baum, E. Guentner, R. Willett, * Exactness and the Kadison-Kaplansky
conjecture*, Operator algebras and their applications, 1-33, Contemp.
Math., 671, Amer. Math. Soc., Providence, RI, 2016.

Y. Cornulier, * Group actions with commensurated subsets, wallings and
cubings*, (2013), arXiv:1302.5982v2.

M. Finn-Sell, * Almost quasi-isometries and more non-exact groups*,
Math. Proc. Cambridge Philos. Soc. 162 (2017), no. 3, 393-403.

F. Fournier-Facio, * Ultrametric analogues of Ulam stability of groups*,
(2021), arXiv:2105.00516.

D. Gruber, * Infinitely presented C(6)-groups are SQ-universal*, J.
Lond. Math. Soc. (2) 92 (2015), no. 1, 178-201.

D. Gruber, A. Sisto, * Infinitely presented graphical small
cancellation groups are acylindrically hyperbolic*, Ann. Inst.
Fourier (Grenoble) 68 (2018), no. 6, 2501-2552.

S. Knudby, * On connected Lie groups and the approximation property*,
C. R. Math. Acad. Sci. Paris 354 (2016), no. 7, 697-699.

A. Martin, * Complexes of groups and geometric small cancellation over
graphs of groups*, Bull. Soc. Math. France 145 (2017), no. 2,
193-223.

M. Mimura, * Amenability versus non-exactness of dense subgroups of a
compact group.* J. Lond. Math. Soc. (2) 100 (2019), no. 2, 592-622.

M. Mimura, H. Sako, * Group approximation in Cayley topology and coarse
geometry, Part II: Fibred coarse embeddings*, Anal. Geom. Metr.
Spaces 7 (2019), no. 1, 62-108.

D. Osajda, * Small cancellation labellings of some infinite graphs and
applications*, Acta Math. 225 (2020), no. 1, 159-191.

[41] G.N. Arzhantseva, R. Tessera, *
Relative expanders*,

Geometric and Functional Analysis [GAFA], 25(2) (2015), 317-341.
pdf

** 18 citations by **

P. Awasthi, M. Charikar, R. Krishnaswamy, and A. K. Sinop, * Spectral
Embedding of k-Cliques, Graph Partitioning and k-Means*, In
Proceedings of the 2016 ACM Conference on Innovations in Theoretical
Computer Science (ITCS '16). Association for Computing Machinery, New
York, NY, USA, 301–310.

C. Cave, * On coarse geometric properties of discrete andlocally
compact groups*, PhD thesis, 2015, University of Southampton.

K. Das, * From the geometry of box spaces to the geometry and measured
couplings of groups*, J. Topol. Anal. 10 (2018), no. 2, 401-420.

T. Delabie, * Large scale geometry of box spaces*, PhD thesis, 2018,
Université de Neuchâtel.

T. Delabie, A. Khukhro, * Box spaces of the free group that neither
contain expanders nor embed into a Hilbert space*, Adv. Math. 336
(2018), 70-96.

J. Deng, Q. Wang, G. Yu, * The coarse Baum-Connes conjecture for
certain extensions and relative expanders*, (2021), arXiv:2102.10617.

A. Eskenazis, * Geometric inequalities and advances in the Ribe program*,
PhD thesis, 2019, Princeton University.

A. Eskenazis, M. Mendel, A. Naor, * Nonpositive curvature is not
coarsely universal*, Invent. Math. 217 (2019), no. 3, 833-886.

L. Guo, Z. Luo, Q. Wang, Y. Zhang,*K-theory of the maximal and reduced
Roe algebras of metric spaces with A-by-CE coarse fibrations*,
(2021), arXiv:2110.15624.

D. Hume, * A continuum of expanders*, (2014), Fund. Math. 238
(2017), no. 2, 143-152.

A. Khukhro, K. Li, F. Vigolo, J. Zhang, * On the structure of
asymptotic expanders*, Adv. Math. 393 (2021), Paper No. 108073, 35
pp.

K. Li, J. Špakula, J. Zhang, * Measured asymptotic expanders and
rigidity for Roe algebras*, (2020), arXiv:2010.10749.

M. Mimura, H. Sako, * Group approximation in Cayley topology and coarse
geometry, Part II: Fibred coarse embeddings*, Anal. Geom. Metr.
Spaces 7 (2019), no. 1, 62-108.

T. Pillon, * Affine isometric actions of groups*, PhD thesis, 2015,
Université de Neuchâtel.

M. de la Salle, * A duality operators/Banach spaces *, (2021),
arXiv:2101.07666.

D. Sawicki, J. Wu, * Straightening warped cones*, Journal of
Topology and Analysis (2020), 1-25.

Q. Wang, Y. Zhang, * The coarse Novikov conjecture for extensions of
coarsely embeddable groups*, (2021), arXiv:2105.04753.

J. Xia, X. Wang, * Strong embeddability for groups acting on metric
spaces*, Chin. Ann. Math. Ser. B 40 (2019), no. 2, 199-212.

[40] G.N. Arzhantseva, * Asymptotic
approximations of finitely generated groups*,

in Research Perspectives CRM Barcelona-Fall 2012 (Trends in
Mathematics), Birkhäuser, Basel, vol. 1, 2014, 7-16. pdf

** 12 citations by **

J. Brude, R. Sasyk, * Metric approximations of unrestricted wreath
products when the acting group is amenable*, (2020),
arXiv:2004.05735.

V. Capraro, M. Lupini, * Introduction to sofic and hyperlinear groups
and Connes' embedding conjecture*, Lecture Notes in Mathematics 2136,
Springer 2015.

M. Cavaleri, * Algorithms and quantifications in amenable and sofic
groups*, PhD Thesis, 2016, the Sapienza University of Rome.

M. de Chiffre, * Approximate representations of groups*, PhD thesis,
Technische Universität Dresden (2019).

M. de Chiffre, L. Glebsky, A. Lubotzky, A. Thom, * Stability,
cohomology vanishing, and non-approximable groups*, Forum Math. Sigma
8 (2020), Paper No. e18, 37 pp.

V. Climenhaga, G. Knieper, K. War, * Uniqueness of the measure of
maximal entropy for geodesic flows on certain manifolds without
conjugate points*, Adv. Math. 376 (2021), 107452, 44 pp.

M. Dadarlat, * Obstructions to matricial stability of discrete groups
and almost flat K-theory*. Advances in Mathematics 384 (2021),
107722.

D. Enders, T. Shulman, * Almost commuting matrices, cohomology, and
dimension*, (2019), arXiv:1902.10451.

S. Eilers, T. Shulman, A. Sørensen, * C*-stability of discrete groups*,
Adv. Math. 373 (2020), 107324, 41 pp.

L. Glebsky, * Approximations of groups, characterizations of sofic
groups, and equations over groups*, J. Algebra 477 (2017), 147-162.

M. Mimura, H. Sako, * Group approximation in Cayley topology and coarse
geometry, Part I: Coarse embeddings of amenable groups*, Journal of
Topology and Analysis 13 (2021), no. 1, 1–47.

P. Pueschel, * On residual properties of groups and Dehn functions for
mapping tori of right angled Artin groups*, PhD thesis, 2016, Cornell
University.

[39] G.N. Arzhantseva, J.-F. Lafont, A.
Minasyan, * Isomorphism versus commensurability for a class of
finitely presented groups*,

Journal of Group Theory, 17(2) (2014), 361-378. pdf

** 8 citations by **

Y. Antolín, A. Minasyan, * Tits alternatives for graph products*, J.
Reine Angew. Math. 704 (2015), 55-83.

J. Belk, C. Bleak, * Some undecidability results for asynchronous
transducers and the Brin-Thompson group 2V*, Trans. Amer. Math. Soc.
369 (2017), no. 5, 3157-3172.

B. Cavallo, * Algorithmic properties of poly-Z groups and secret
sharing using non-commutative groups*, PhD thesis, 2015, The City
University of New York.

F. Dahmani, * On suspensions and conjugacy of hyperbolic automorphisms*,
Trans. Amer. Math. Soc. 368 (2016), no. 8, 5565-5577.

A.D. Logan, * On the outer automorphism groups of finitely generated,
residually finite groups*, J. Algebra 423 (2015), 890-901.

L. Paoluzzi, * The notion of commensurability in group theory and
geometry*, Representation spaces, twisted topological invariants and
geometric structures of 3-manifolds (2012), 124-137.

J. R. Peters, P. Sanyatit, * Isomorphism of uniform algebras on the
2-torus*, Math. Proc. Cambridge Philos. Soc. 167 (2019), no. 1,
89-106.

M. Weinstein, * On the structure of a poly-group*, (2020),
arXiv:2012.10510.

[38] G.N. Arzhantseva, E. Guentner, J.
Spakula, * Coarse non-amenability and coarse embeddings*,

Geometric and Functional Analysis [GAFA], 22(1) (2012), 22-36.
pdf

** 41 citations by **

V. Alekseev, M. Finn-Sell, * Sofic boundaries of groups and coarse
geometry of sofic approximations*, Groups Geom. Dyn. 13 (2019), no.
1, 191-234.

C. Anantharaman-Delaroche, * Amenability and exactness for groups,
group actions and operator algebras*, ESI 2007, (version of 2015).

P. Ara, K. Li, F. Lledó, J. Wu, * Amenability and uniform Roe algebras*
J. Math. Anal. Appl. 459 (2018), no. 2, 686-716.

P. Baum, E. Guentner, R. Willett, * Exactness and the Kadison-Kaplansky
conjecture, Operator algebras and their applications*, 1-33, Contemp.
Math., 671, Amer. Math. Soc., Providence, RI, 2016.

M. Bestvina, V. Guiradel, C. Horbez, * Boundary amenability of Out(FN)*,
(2017), arXiv:1705.07017.

B. M. Braga, I. Farah, * On the rigidity of uniform Roe algebras over
uniformly locally finite coarse spaces*, Trans. Amer. Math. Soc. 374
(2021), no. 2, 1007-1040.

B. M. Braga, I. Farah, A. Vignati, * Embeddings of uniform Roe algebras*
Comm. Math. Phys. 377 (2020), no. 3, 1853-1882.

J. Brodzki, G. Niblo, J. Špakula, R. Willett, N. Wright, * Uniform
local amenability*, J. Noncommut. Geom. 7 (2013), no. 2, 583-603.

K. Boucher, * On non-amenable embeddable spaces in relation with free
products*, (2018), arXiv:1801.04889.

C. Cave, D. Dreesen, A. Khukhro, * Embeddability of generalized wreath
products and box spaces*, (2013), arXiv.org:1307.3122.

M. Cencelj, J. Dydak, A. Vavpetič, * Coarse amenability versus
paracompactness*, J. Topol. Anal. 6 (2014), no. 1, 125-152.

M. Cencelj, J. Dydak, A. Vavpetič, * Large scale versus small scale,
Recent progress in general topology*, III, 165-203, Atlantis Press,
Paris, 2014.

X. Chen, Q. Wang, X. Wang, * Characterization of the Haagerup property
by fibred coarse embedding into Hilbert space*, Bull. Lond. Math.
Soc. 45 (2013), no. 5, 1091-1099.

Y. C. Chung, * Property A and coarse embeddability for fuzzy metric
spaces*, (2021), arXiv:2102.10258.

Y. Cornulier, P. de la Harpe, * Metric geometry of locally compact
groups*, EMS Tracts in Mathematics Vol. 25, 2016.

K. Das, * From the geometry of box spaces to the geometry and measured
couplings of groups*, J. Topol. Anal. 10 (2018), no. 2, 401-420.

T. Delabie, A. Khukhro, * Box spaces of the free group that neither
contain expanders nor embed into a Hilbert space*, Adv. Math. 336
(2018), 70-96.

J. Deng, Q. Wang, G. Yu, * The coarse Baum-Connes conjecture for
certain extensions and relative expanders*, (2021), arXiv:2102.10617.

M. Finn-Sell, * Fibred coarse embeddings, a-T-menability and the coarse
analogue of the Novikov conjecture*, J. Funct. Anal. 267 (2014), no.
10, 3758-3782.

M. Finn-Sell, * Almost quasi-isometries and more non-exact groups*,
Math. Proc. Cambridge Philos. Soc. 162 (2017), no. 3, 393-403.

M. Finn-Sell, J. Wu, * The asymptotic dimension of box spaces for
elementary amenable groups*, (2015), arXiv:1508.05018.

M. P. Gomez Aparicio, P. Julg, A. Valette, * The Baum–Connes
conjecture: an extended survey*, In Advances in Noncommutative
Geometry (pp. 127-244), 2019, Springer, Cham.

A. R. Harsy Ramsay, * Locally compact property A groups*, PhD
thesis, 2014, Purdue University.

R. Ji, C. Ogle, B. Ramsey, * Strong embeddability and extensions of
groups*, (2013), arXiv.org:1307.1935.

A. Khukhro, * Box spaces, group extensions and coarse embeddings into
Hilbert space*, J. Funct. Anal. 263 (2012), no. 1, 115-128.

A. Khukhro, * Embeddable box spaces of free groups*, Math. Ann. 360
(2014), no. 1-2, 53-66.

B. Kwaśniewski, K. Li, A. Skalski, * The Haagerup property for twisted
groupoid dynamical systems*, (2020), arXiv:2004.06317.

M. Mimura, H. Sako, * Group approximation in Cayley topology and coarse
geometry, Part I: Coarse embeddings of amenable groups*, J. Topol.
Anal. 13 (2021), no. 1, 1–47.

D. Osajda, * Small cancellation labellings of some infinite graphs and
applications*, Acta Math. 225 (2020), no. 1, 159-191.

D. Osajda, * Group cubization* With an appendix by Mikaël Pichot,
Duke Math. J. 167 (2018), no. 6, 1049-1055.

M. Ostrovskii, * Low-distortion embeddings of graphs with large girth*,
J. Funct. Anal. 262 (2012), no. 8, 3548-3555.

M. Ostrovskii, * Metric Embeddings: Bilipschitz and coarse embeddings
into Banach spaces*, de Gruyter Studies in Mathematics, Vol. 49,
2013.

D. Pawlik, * A (co)homological crieterion for property A of metric
space*, Uniwersytet Warszawski, Praca semestralna nr 2, 2011/2012.

T. Pillon, * Affine isometric actions of groups*, PhD thesis, 2015,
Université de Neuchâtel.

T. Pillon, * Coarse amenability at infinity*, (2018),
arXiv:1812.11745.

J. Roe, R. Willett, * Ghostbusting and property A*, J. Funct. Anal.
266 (2014), no. 3, 1674-1684.

H. Sako, * A generalization of expander graphs and local reflexivity of
uniform Roe algebras*, J. Funct. Anal. 265 (2013), no. 7, 1367-1391.

D. Sawicki, * Warped cones over profinite completions*, J. Topol.
Anal. 10 (2018), no. 3, 563-584.

D. Sawicki, J. Wu, * Straightening warped cones*, Journal of
Topology and Analysis (2020), 1-25.

J. Špakula, R. Willett, * A metric approach to limit operators*,
Trans. Amer. Math. Soc. 369 (2017), no. 1, 263-308.

R. Willett, * Property A and graphs with large girth*, J. Topol.
Anal. 3 (2011), no. 3, 377-384.

[37] G.N. Arzhantseva and E. Guentner, *
Coarse non-amenability and covers with small eigenvalues*,

Mathematische Annalen, 354(3) (2012), 863-870. pdf

** 4 citations by **

K. Das, * From the geometry of box spaces to the geometry and measured
couplings of groups*, J. Topol. Anal. 10 (2018), no. 2, 401-420.

A. Khukhro, A. Valette, * Expanders and box spaces* Adv. Math. 314
(2017), 806-834.

V. Manuilov, * On a family of representations of residually finite
groups*, Algebr. Represent. Theory 23 (2020), no. 4, 1727-1735.

E. le Masson, T. Sahlsten, * Quantum ergodicity and Benjamini-Schramm
convergence of hyperbolic surfaces*, Duke Math. J. 166 (2017), no.
18, 3425-3460.

[36] G.N. Arzhantseva, M. Bridson, T.
Januszkiewicz, I. Leary, A. Minasyan, J. Swiatkowski, * Infinite
groups with fixed point properties*,

Geometry & Topology, 13 (2009), 1229-1263. pdf

** 27 citations by **

A. Bartels, * K-theory and actions on Euclidean retracts* In
Proceedings of the International Congress of Mathematicians(ICM 2018), pp.
1041-1062 (2019).

I. Belegradek, * Topology of open nonpositively curved manifolds*,
Geometry, topology, and dynamics in negative curvature, 32-83, London
Math. Soc. Lecture Note Ser., 425, Cambridge Univ. Press, Cambridge, 2016.

I. Belegradek, Ph. Nguyễn, T. Tâm, * Non-aspherical ends and
non-positive curvature*, Trans. Amer. Math. Soc. 368 (2016), no. 8,
5363-5376.

R. Biswas, * Categories of modules over infinite groups*, PhD
thesis, 2021, University of Manchester.

M. Bridson, * On the dimension of CAT(0) spaces where mapping class
groups act*, J. Reine Angew. Math. 673 (2012), 55-68.

M. Bridson, K. Vogtmann, * Actions of automorphism groups of free
groups on homology spheres and acyclic manifolds*, Comment. Math.
Helv. 86 (2011), no. 1, 73-90.

I. Chatterji, M. Kassabov, * New examples of finitely presented groups
with strong fixed point properties*, J. Topol. Anal. 1 (2009), no. 1,
1-12.

Y. Cornulier, * Group actions with commensurated subsets, wallings and
cubings*, (2013), arXiv:1302.5982.

O. Cotton-Barratt, * Detecting ends of residually finite groups in
profinite completions*, Math. Proc. Cambridge Philos. Soc. 155
(2013), no. 3, 379–389.

P. Dani, * The large-scale geometry of right-angled Coxeter groups*,
(2018), arXiv:1807.08787.

D. Fisher, L. Silberman, * Groups not acting on manifolds, Int. Math.
Res. Not. 16 (2008)*, 11 pp.

D. Futer, A. Thomas, * Surface quotients of hyperbolic buildings*,
Int. Math. Res. Not. IMRN 2012, no. 2, 437-477.

G. Gandini, * Bounding the homological finiteness length*, Bull.
Lond. Math. Soc. 44 (2012), no. 6, 1209-1214.

G. Gandini, * Cohomological invariants and the classifying space for
proper actions*, Groups Geom. Dyn. 6 (2012), no. 4, 659-675.

T. Januszkiewicz, P.H. Kropholler, I.J. Leary, * Groups possessing
extensive hierarchical decompositions*, Bull. Lond. Math. Soc. 42
(2010), no. 5, 896-904.

S. John-Green, * Cohomological finiteness properties of groups*, PhD
thesis, 2014, University of Southampton.

J. H. Kim, * On the actions of Higman-Thompson groups by homeomorphisms*,
Bull. Korean Math. Soc. 57 (2020), no. 2, 449-457.

R. Kropholler, * Finiteness Properties and CAT(0) groups*, PhD
thesis, 2016, University of Oxford.

A. Kubena, A. Thomas, * Density of commensurators for uniform lattices
of right-angled buildings*, J. Group Theory 15 (2012), no. 5,
565–611.

A. Minasyan, D. Osin, * Acylindrically hyperbolic groups with exotic
properties* J. Algebra 522 (2019), 218-235.

A. Minasyan, D. Osin, S. Witzel, Quasi‐isometric diversity of marked
groups. Journal of Topology 14 (2021), no. 2, 488-503.

A. Naor, L. Silberman, * Poincaré inequalities, embeddings, and wild
groups*, Compos. Math. 147 (2011), no. 5, 1546-1572.

D. Osajda, * A construction of hyperbolic Coxeter groups*, Comment.
Math. Helv. 88 (2013), no. 2, 353-367.

D. Osajda, P. Przytycki, * Boundaries of systolic groups*, Geom.
Topol. 13 (2009), no. 5, 2807-2880.

D. Osin, * Small cancellations over relatively hyperbolic groups and
embedding theorems*, Annals of Mathematics, 172 (2010), 1-39.

Sh. Weinberger, * Some remarks inspired by the C0 Zimmer program,
Geometry, rigidity, and group actions*, 262-282, Chicago Lectures in
Math., Univ. Chicago Press, Chicago, IL, 2011.

[35] G.N. Arzhantseva, C. Drutu, and M.
Sapir, * Compression functions of uniform embeddings of groups into
Hilbert and Banach spaces*,

Journal für die Reine und Angewandte Mathematik, [Crelle's Journal], 633
(2009), 213-235. pdf

** 31 citations by **

C. Anantharaman-Delaroche, * Amenability and exactness for groups,
group actions and operator algebras*, (2007),
http://www.univ-orleans.fr/mapmo/membres/anantharaman/publications/ESI07.pdf

T. Austin, * Amenable groups with very poor compression
into Lebesgue spaces*, Duke Math. J. 159 (2011), no. 2, 187–222.

T. Austin, * A finitely-generated amenable group with very poor
compression into Lebesgue spaces*, (2009), arXiv:0909.2047.

T. Austin, A. Naor, Y. Peres, * The wreath product of Z with Z has
Hilbert compression exponent 2/3*, Proc. Amer. Math. Soc. 137 (2009),
no. 1, 85-90.

L. Bartholdi, A. Erschler, * Distortion of imbeddings of groups of
intermediate growth into metric spaces*, Proc. Amer. Math. Soc. 145
(2017), no. 5, 1943–1952.

F. P. Baudier, * Quantitative nonlinear embeddings into Lebesgue
sequence spaces*, J. Topol. Anal. 8 (2016), no. 1, 117–150.

F. P. Baudier, * On the metric geometry of stable metric spaces*,
(2014), arXiv:1409.7738

F. P. Baudier, P. Motakis, T. Schlumprecht, A. Zsák, * Stochastic
approximation of lamplighter metrics*, (2020), arXiv:2003.06093.

J.-C. Birget, * One-way permutations, computational asymmetry and
distortion*, J. Algebra 320 (2008), no. 11, 4030-4062.

J. Brieussel, T. Zheng, * Speed of random walks, isoperimetry and
compression of finitely generated groups*, (2015), Ann. of Math. (2)
193 (2021), no. 1, 1-105.

Ch. Cave, D. Dreesen, * Equivariant compression of certain direct limit
groups and amalgamated free products*, Glasg. Math. J. 58 (2016), no.
3, 739–752.

J. Cheeger, B. Kleiner, A. Naor, * Compression bounds for Lipschitz
maps from the Heisenberg group to L1*, Acta Math. 207 (2011), no. 2,
291–373.

A. Dranishnikov, M. Sapir, * On the dimension growth of groups*, J.
Algebra 347 (2011), 23–39.

D. Dreesen, * Equivariant and non-equivariant uniform embeddings into
products and Hilbert spaces*, PhD thesis, 2011, Université de
Neuchâtel.

D. Dreesen, * Hilbert space compression for free products and
HNN-extensions*, J. Funct. Anal. 261 (2011), no. 12, 3585–3611.

S. Gal, * Asymptotic dimension and uniform embeddings*, Groups Geom.
Dyn. 2 (2008), no. 1, 63-84.

J. Higes, I. Peng, * Assouad-Nagata dimension of connected Lie groups*,
Math. Z. 273 (2013), no. 1-2, 283–302.

D. Hume, * A continuum of expanders*, (2014), Fund. Math. 238
(2017), no. 2, 143-152.

P.-N. Jolissaint, * Embeddings of groups into Banach spaces*, PhD
thesis, 2015, University of Neuchatel.

M. Kraus, * Quantitative coarse embeddings of quasi-Banach spaces into
a Hilbert space*, (2015), arXiv:1511.05214.

M. Mimura, H. Sako, Group approximation in Cayley topology and coarse
geometry, Part I: Coarse embeddings of amenable groups, J. Topol. Anal. 13
(2021), no. 1, 1–47.

A. Naor, * An introduction to the Ribe program*, Jpn. J. Math. 7
(2012), no. 2, 167–233.

A. Naor, * L1 embeddings of the Heisenberg group and fast estimation of
graph isoperimetry*, Proceedings of the International Congress of
Mathematicians, Volume III, 1549–1575, Hindustan Book Agency, New Delhi,
2010.

A. Naor, Y. Peres, * Embeddings of discrete groups and the speed of
random walks*, Int. Math. Res. Not. IMRN (2008), Art. ID rnn 076, 34
pp.

A. Naor, Y. Peres, * Lp compression, traveling salesmen, and stable
walks,* Duke Math. J. 157 (2011), no. 1, 53–108.

P. Nowak, G. Yu, * Large-scale geometry*, EMS Textbooks in
Mathematics. European Mathematical Society (EMS), Zürich, 2012, xiv+189pp.

A. Yu. Olshanskii, D.V. Osin, * A quasi-isometric embedding theorem for
groups*, Duke Math. J. 162 (2013), no. 9, 1621–1648.

T. Pillon, * Affine isometric actions of groups*, PhD thesis, 2015,
Université de Neuchâtel.

R. J. Putwain, * Partial translation algebras for certain discrete
metric spaces*, PhD thesis, 2010, University of Southhampton.

J.C. Robinson, * Log-Lipschitz embeddings of homogeneous sets with
sharp logarithmic exponents and slicing products of balls*, Proc.
Amer. Math. Soc. 142 (2014), no. 4, 1275–1288.

M. Sapir, * Some group theory problems*, Internat. J. Algebra
Comput. 17 (2007), no. 5-6, 1189-1214.

[34] G.N. Arzhantseva, V.S. Guba, M. Lustig
and J.-Ph. Préaux, * Testing Cayley graph densities*,

Annales mathematiques Blaise Pascal, 15(2) (2008), 169-221. pdf

** 7 citations by **

J. Cannon, * Amenability, Folner sets, and cooling functions*,
(2009).

M. Elder, A. Rechnitzer, E. J. Janse van Rensburg, * Random sampling of
trivial words in finitely presented groups*, Exp. Math. 24 (2015),
no. 4, 391–409.

M. Elder, C. Rogers, * Sub-dominant cogrowth behaviour and the
viability of deciding amenability numerically*, Exp. Math. 28 (2019),
no. 1, 67–80.

M. Elder, A. Rechnitzer, T. Wong, * On the cogrowth of Thompson's group
F*, Groups Complex. Cryptol. 4 (2012), no. 2, 301–320.

M. Elder and A. Rechnitzer and E. J. Janse van Rensburg and T. Wong, *
On trivial words in finitely presented groups*, (2012),
arXiv:1210.3425.

V. S. Guba, * On the density of Cayley graphs of R. Thompson’s group F
in symmetric generators*, International Journal of Algebra and
Computation (2021), 1-13.

S. Haagerup, U. Haagerup, M. Ramirez-Solano, * A computational approach
to the Thompson group F*, Internat. J. Algebra Comput. 25 (2015), no.
3, 381–432.

[33] G.N. Arzhantseva, A. Minasyan and D.
Osin, * The SQ-universality and residual properties of relatively
hyperbolic groups*,

Journal of Algebra, 315(1) (2007), 165-177. pdf

** 50 citations by **

C. Abbott, S. Balasubramanya, D. Osin, * Hyperbolic structures on
groups*, (2017), Algebr. Geom. Topol. 19 (2019), no. 4, 1747–1835.

Y. Antolín, A. Minasyan, A. Sisto, * Commensurating endomorphisms of
acylindrically hyperbolic groups and applications*, Groups Geom. Dyn.
10 (2016), no. 4, 1149–1210.

S. Balasubramanya, * Hyperbolic structures on Groups*, PhD theis,
2018, Vanderbilt University.

J. Behrstock, M. Hagen, A. Sisto, * Thickness, relative hyperbolicity,
and randomness in Coxeter groups*, With an appendix written jointly
with P.-E. Caprace. Algebr. Geom. Topol. 17(2) (2017), 705–740.

I. Belegradek, * Rigidity and relative hyperbolicity of real hyperbolic
hyperplane complements*, Pure Appl. Math. Q. 8 (2012), no. 1, 15–51.

I. Belegradek, D. Osin, * Rips construction and Kazhdan property (T)*,
Groups Geom. Dyn. 2 (2008), no. 1, 1-12.

I. Belegradek, A. Szczepanski, * Endomorphisms of relatively hyperbolic
groups, with an appendix by Oleg V. Belegradek*, Internat. J. Algebra
Comput. 18 (2008), no. 1, 97-110.

I. Belegradek, T. Tâm Nguyễn Phan, * Non-aspherical ends and
non-positive curvature*, Trans. Amer. Math. Soc. 368 (2016),
5363-5376.

D. Bisch, R. Nicoara, S. Popa, * Continuous families of hyperfinite
subfactors with the same standard invariant*, Internat. J. Math. 18
(2007), no.3, 255-267.

O. Bogopolski, K.-U. Bux, * From local to global conjugacy of subgroups
of relatively hyperbolic groups*, Internat. J. Algebra Comput. 27(3)
(2017), 299-314.

I. Bumagin, M. M. Zhang, * On fully residually-R groups*, Comm.
Algebra 44 (2016), no. 7, 2813–2827.

J. O. Button, * Large groups of deficiency 1*, Israel J. Math. 167
(2008), 111-140.

J. O. Button, * Acylindrical hyperbolicity, non-simplicity and
SQ-universality of groups splitting over Z*, J. Group Theory, 20(2),
371–383.

J. O. Button, R. P. Kropholler, * Nonhyperbolic free-by-cyclic and
one-relator groups*, New York J. Math. 22 (2016), 755–774.

P.-E. Caprace, N. Monod, * Isometry groups of non-positively curved
spaces: discrete subgroups*, J. Topology 2 (2009), no. 4, 701-746.

I. Chifan, A. Diaz-Arias, D. Drimbe, * New examples of W* and
C*-superrigid groups*, (2020), arXix:2010.01223.

I. Chifan, S. Das, K. Khan, * Some applications of group theoretic Rips
constructions to the classification of von Neumann algebras*, (2019),
arXiv:1911.11729.

I. Chifan, B. T. Udrea, * Some rigidity results for II1 factors arising
from wreath products of property (T) groups*, J. Funct. Anal. 278
(2020), no. 7, 108419, 32 pp.

R. Coulon, D. Osin, * A non-residually finite group acting uniformly
properly on a hyperbolic space*, (2018), arXiv:1804.09432.

F. Dahmani, V. Guirardel, D. Osin, * Hyperbolically embedded subgroups
and rotating families in groups acting on hyperbolic spaces*, Mem.
Amer. Math. Soc. 245 (2017), no. 1156, v+152 pp.

M. Edjvet, A. Vdovina, * On the SQ-universality of groups with special
presentations*, J. Group Theory (2010), 1433-5883.

I. Fernández Martínez, D. Serbin, * Detecting conjugacy stability of
subgroups in certain classes of groups*, J. Group Theory (2021), to
appear.

R. Frigerio, J.-F. Lafont, A. Sisto, * Rigidity of high dimensional
graph manifolds*, Astérisque No. 372 (2015), xxi+177 pp.

D. Fisher, L. Silberman, * Groups not acting on manifolds*, Int.
Math. Res. Not. IMRN 2008, no. 16, Art. ID rnn060, 11 pp.

Le Thi Giang, * The relative hyperbolicity of one-relator relative
presentations*, J. Group Theory 12 (2009), no. 6, 949-959.

M. Hull, * Small cancellation in acylindrically hyperbolic groups*,
Groups Geom. Dyn. 10 (2016), no. 4, 1077–1119.

M. Hull, D. Osin, * Conjugacy growth of finitely generated groups*,
Adv. Math. 235 (2013), 361–389.

T. Januszkiewicz, P. Kropholler, I. Leary, * Groups possessing
extensive hierarchical decompositions*, Bull. Lond. Math. Soc. 42
(2010), no. 5, 896–904.

Y. Jiang, * Maximal von Neumann subalgebras arising from maximal
subgroups*, (2019), arXiv:1911.10483.

K. Khan, * Fundamental groups of certain von Neumann algebras*, PhD
thesis, (2020), Vanderbilt University.

Ant. A. Klyachko, * SQ-universality of one-relator relative
presentations*, Sb. Math. 197 (2006), no. 9-10, 1489-1508.

Ant. A. Klyachko, D. E. Lurye, * Relative hyperbolicity and similar
properties of one-generator one-relator relative presentations with
powered unimodular relator*, J. Pure Appl. Algebra 216 (2012), no. 3,
524–534.

D. Lee, * Non-Hopfian SQ-universal groups*, East Asian Math. J.Vol.
34 (2018), No. 5, pp. 587–595.

E. Martinez-Pedroza, * On quasiconvexity and relatively hyperbolic
structures on groups*, Geom. Dedicata 157 (2012), 269–290.

Y. Matsuda, O. Shin-ichi, * On Cannon-Thurston maps for relatively
hyperbolic groups*, J. Group Theory 17 (2014), no. 1, 41–47.

Y. Matsuda, O. Shin-ichi, Y. Saeko, * The universal relatively
hyperbolic structure on a group and relative quasiconvexity for
subgroups*, (2011), arXiv:1106.5288.

Y. Matsuda, O. Shin-ichi, Y. Saeko, * C*-simplicity for groups with
non-elementary convergence group actions*, Houston J. Math. 39
(2013), no. 4, 1291–1299.

M. Mihalik, E. Swenson, * Relatively hyperbolic groups with semistable
fundamental group at infinity* J. Topol. 14 (2021), no. 1, 39–61.

A. Minasyan, * Groups with finitely many conjugacy classes and their
automorphisms*, Comment. Math. Helv. 84 (2009), no. 2, 259-296.

A. Minasyan, D. Osin, * Normal automorphisms of relatively hyperbolic
groups*, Trans. Amer. Math. Soc. 362 (2010), no. 11, 6079-6103.

A. Minasyan, D. Osin, * Acylindrical hyperbolicity of groups acting on
trees*, Math. Ann. 362 (2015), no. 3-4, 1055–1105.

A. Ol'shanskii, D. Osin, * C*-simple groups without free subgroups*,
Groups Geom. Dyn. 8 (2014), no. 3, 933–983.

A. Ol'shanskii, D. Osin, M. Sapir, * Lacunary hyperbolic groups*,
Geom. Topol. 13 (2009), no. 4, 2051-2140.

D. Osin, * A topological zero-one law and elementary equivalence of
finitely generated groups*, Ann. Pure Appl. Logic 172 (2021), no. 3,
102915, 36 pp.

D. Osin, * Groups acting acylindrically on hyperbolic spaces*,
(2017), arXiv:1712.00814.

D. Osin, * Small cancellations over relatively hyperbolic groups and
embedding theorems*, Annals of Mathematics, 172 (2010), 1-39.

D. Osin, * On the universal theory of torsion and lacunary hyperbolic
groups*, (2009), arXiv:0903.3978.

D. Osin, A. Thom, * Normal generation and ℓ2-Betti numbers of groups*,
Math. Ann. 355 (2013), no. 4, 1331–1347.

D. Witte Morris, * Introduction to arithmetic groups*, 2015. xii+475
pp.

M. M. Zhang, * On properties of relatively hyperbolic groups*, PhD
thesis, 2017, Carleton University.

[32] G.N. Arzhantseva and Z. Sunic, *
Construction of elements in the closure of Grigorchuk group*,

Geometriae Dedicata, 124(1) (2007), 17-26. pdf

** 4 citations by **

M. Saltan, * The relation between adding machne and p-adic integers*,
Konuralp Journal of Mathematics, 1(2) (2013), 41-49.

B. Demir, M. Saltan, * On p-adic integers and the adding machine group*,
(2010), arXiv:1007.0366.

A. Penland, * Nearly maximal Hausdorff dimension in finitely
constrained groups*, (2017), arXiv:1710.05261.

O. Siegenthaler, * Discrete and profinite groups acting on regular
rooted trees*, PhD thesis, Georg-August-Universität Göttingen, 2009,
http://webdoc.sub.gwdg.de/diss/2010/siegenthaler/siegenthaler.pdf

[31] G.N. Arzhantseva, A. Minasyan, *
Relatively hyperbolic groups are C*-simple*,

Journal of Functional Analysis, 243(1) (2007), 345-351. pdf

** 19 citations by **

C. R. Abbott, F. Dahmani, * Property Pnaive for acylindrically
hyperbolic groups*, Math. Z. 291 (2019), no. 1-2, 555–568.

C. Abbot, M. Hull, * Random walks and quasi-convexity in acylindrically
hyperbolic groups*, (2020), arXiv:1909.10876.

S.I. Adyan, V.S. Atabekyan, * C*-simplicity of n-periodic products*,
(Russian) ; translated from Mat. Zametki 99 (2016), no. 5, 643-648 Math.
Notes 99 (2016), no. 5-6, 631–635.

V.S. Atabekyan, * The set of 2-generated C*-simple relatively free
groups has the cardinality of the continuum*, Proceedings of the
Yerevan State University, Physical and Mathematical Sciences (2020),54(2),
p. 81–86.

F. Dahmani, V. Guirardel, D. Osin, * Hyperbolically embedded subgroups
and rotating families in groups acting on hyperbolic spaces*, Mem.
Amer. Math. Soc. 245 (2017), no. 1156, v+152 pp.

A. Fel'shtyn, E. Troitsky, * Twisted conjugacy classes in residually
finite groups*, (2012), arXiv:1204.3175.

R. Frigerio, J.-F. Lafont, A. Sisto, * Rigidity of high dimensional
graph manifolds*, Astérisque No. 372 (2015), xxi+177 pp.

Sh. Gong, * Property RD and the classification of traces on reduced
group C*-algebras of hyperbolic groups*, J. Topol. Anal. 9 (2017),
no. 4, 707–716.

P. de la Harpe, * On simplicity of reduced C*-algebras of groups*,
Bull. Lond. Math. Soc. 39 (2007), no. 1, 1-26.

Sh. Hejazian, S. Pooya, * Simple reduced Lp-operator crossed products
with unique trace*, J. Operator Theory 74 (2015), no. 1, 133–147.

A. Kar, M. Sageev, * Ping pong on CAT(0) cube complexes*, Comment.
Math. Helv. 91 (2016), no. 3, 543–561.

A. Le Boudec, * C*-simplicity and the amenable radical*, Invent.
Math. 209 (2017), no. 1, 159–174.

A. Le Boudec, * Groups of automorphisms and almostautomorphisms of
trees: subgroups anddynamics*, (2016), Lecture notes,
https://www.matrix-inst.org.au/wp_Matrix2016/wp-content/uploads/2017/08/LeBoudec.pdf.

M. Kalantar, M. Kennedy, * Boundaries of reduced
C*-algebras of discrete groups*, (2014), arXiv:1405.4359.

E. Martínez-Pedroza, * Combination of quasiconvex subgroups of
relatively hyperbolic groups*, Groups Geom. Dyn. 3 (2009), no. 2,
317-342.

E. Martinez-Pedroza, * On quasiconvexity and relatively hyperbolic
structures on groups*, Geom. Dedicata 157 (2012), 269–290.

Y. Matsuda, S. Oguni, * S. Yamagata, C*-simplicity for groups with
non-elementary convergence group actions*, Houston J. Math. 39
(2013), no. 4, 1291–1299.

A. Yu. Olshanskii, D. V. Osin, * C*-simple groups without free
subgroups*, Groups Geom. Dyn. 8 (2014), no. 3, 933–983.

R. D. Tucker-Drob, * Shift-minimal groups, fixed price 1, and the
unique trace property*, (2012), arXiv:1211.6395.

[30] G.N. Arzhantseva, P. de la Harpe, D.
Kahrobaei, * The true prosoluble completion of a group: Examples and
open problems,*,

Geometriae Dedicata, 124(1) (2007), 5-17. pdf

** 12 citations by **

F. Berlai, * Residual properties of free products*, Comm. Algebra 44
(2016), no. 7, 2959–2980.

K. Bencsath, A. Douglas, D. Kahrobaei, * Some residually solvable
one-relator groups*, Irish Math. Soc. Bulletin 65 (2010), 23-31.

S. Friedl, S.Vidussi, * Twisted Alexander polynomials detect fibered
3-manifolds*, Ann. of Math. (2) 173 (2011), no. 3, 1587–1643.

S. Friedl, S. Vidussi, * Twisted Alexander polynomials and fibered
3-manifolds. Low-dimensional and symplectic topology*, 111–130, Proc.
Sympos. Pure Math., 82, Amer. Math. Soc., Providence, RI, 2011.

D. Kahrobaei, * Doubles of residually solvable groups* in B. Fine,
G. Rosenberger, D. Spellman (eds), Aspects of Infinite Group Theory,
Algebra and Discrete Mathematics, World Scientific, 1 (2008), 192-200.

D. Kahrobaei, * On the residual solvability of generalized free
products of finitely generated nilpotent groups*, Comm. Algebra 39
(2011), no. 2, 647–656.

D. Kahrobaei, A. F. Douglas, K. Bencsáth, * Some residually solvable
one-relator groups*, (2013), arXiv:1310.5241.

D. Kahrobaei, S. Majewicz, * On the residual solvability of generalized
free products of solvable groups*, Discrete Math. Theor. Comput. Sci.
13 (2011), no. 4, 45–50.

Yu. Leonov, * On the closure of the first Grigorchuk group*,
(Russian); translated from Ukr. Mat. Visn. 7 (2010), no. 1, 39--48, 135 J.
Math. Sci. (N.Y.) 173 (2011), no. 4, 371–377.

G. Mantika, D. Tieudjo, * On the group of continuous automorphisms of
some profinite groups*, Lobachevskii J. Math. 39 (2018), no. 2,
243–251.

O. Siegenthaler, A. Zugadi-Reizabal, * The equations satisfied by
GGS-groups and the abelian group structure of the Gupta-Sidki group*,
European J. Combin. 33 (2012), no. 7, 1672–1690.

O. Siegenthaler, * Discrete and profinite groups acting on regular
rooted trees*, PhD thesis, Georg-August-Universität Göttingen, 2009,
http://webdoc.sub.gwdg.de/diss/2010/siegenthaler/siegenthaler.pdf.

[29] G.N. Arzhantseva, V.S. Guba, M.V.
Sapir, * Metrics on diagram groups and uniform embeddings in a
Hilbert space,*,

Commentarii Mathematici Helvetici, 81(4) (2006), 911-929. pdf

** 47 citations by **

C. Anantharaman-Delaroche, * Amenability and exactness for groups,
group actions and operator algebras*, (2007),
http://www.univ-orleans.fr/mapmo/membres/anantharaman/publications/ESI07.pdf.

T. Austin, * A finitely-generated amenable group with very
poor compression into Lebesgue spaces*, (2009), arXiv:0909.2047.

T. Austin, A. Naor, Y. Peres, * The wreath product of Z with Z has
Hilbert compression exponent 2/3*, Proc. Amer. Math. Soc. 137 (2009),
no. 1, 85-90.

T. Austin, * Amenable groups with very poor compression into Lebesgue
spaces*, Duke Math. J. 159 (2011), no. 2, 187–222.

J.-C. Birget, * One-way permutations, computational asymmetry and
distortion*, J. Algebra 320 (2008), no. 11, 4030-4062.

J. Brieussel, T. Zheng, * Speed of random walks, isoperimetry and
compression of finitely generated groups*, Ann. of Math. (2) 193
(2021), no. 1, 1–105.

N. Brodskiy, D. Sonkin, * Compression of uniform embeddings into
Hilbert space*, Topology Appl. 155 (2008), no. 7, 725-732.

N. Brown, E. Guentner, * New C*-completions of discrete groups and
related spaces*, Bull. Lond. Math. Soc. 45 (2013), no. 6, 1181–1193.

S. J. Campbell, * Property A and affine buildings*, J. Funct. Anal.
256 (2009), no. 2, 409-431.

Ch. Cave, D. Dreesen, * Equivariant compression of certain direct limit
groups and amalgamated free products*, Glasg. Math. J. 58 (2016), no.
3, 739–752.

Y. de Cornulier, Y. Stalder, A. Valette, * Proper actions of wreath
products and generalizations*, Trans. Amer. Math. Soc. 364 (2012),
no. 6, 3159–3184.

C. le Coz, A. Gournay, * Separation profiles, isoperimetry, growth and
compression*, (2019), arXiv:1910.11733.

A. Dranishnikov, M. Sapir, * On the dimension growth of groups*, J.
Algebra 347 (2011), 23–39.

D. Dreesen, * Hilbert space compression under direct limits and certain
group extensions*, Proc. Amer. Math. Soc. 141 (2013), no. 2, 421–436.

A. Eskenazis, * Geometric inequalities and advances in the Ribe program*,
PhD thesis, 2019, Princeton University.

S. Gal, * Asymptotic dimension and uniform embeddings*, Groups Geom.
Dyn. 2 (2008), no. 1, 63-84.

A. Genevois, * Lamplighter groups, median spaces, and Hilbertian
geometry*, (2017), arXiv:1705.00834.

A. Genevois, * Hyperplanes of Squier's cube complexes*, Algebr.
Geom. Topol. 18 (2018), no. 6, 3205–3256.

A. Genevois, * Embeddings into Thompson's groups from quasi-median
geometry*, Groups Geom. Dyn. 13 (2019), no. 4, 1457–1510.

A. Genevois, * Cubical-like geometry of quasi-median graphs and
applications to geometric group theory*, (2017), arXiv:1712.01618.

A. Genevois, R. Tessera, * Asymptotic geometry of lamplighters over
one-ended groups*, (2021), arXiv:2105.04878.

R. Gray, A. Malheiro, S. Pride, * Homotopy bases and finite derivation
type for Schützenberger groups of monoids*, J. Symbolic Comput. 50
(2013), 50–78.

R. Gray, A. Malheiro, S. Pride, * On properties not inherited by
monoids from their Schützenberger groups*, Inform. and Comput. 209
(2011), no. 7, 1120–1134.

G. Golan, M. Sapir, * On the stabilizers of finite sets of numbers in
the R. Thompson group F*, Algebra i Analiz 29 (2017), no. 1, 70–110;

A. Gournay, * The Liouville property and Hilbertian compression*,
Ann. Inst. Fourier (Grenoble) 66 (2016), no. 6, 2435–2454.

V. Guba, M. Sapir, * Diagram groups and directed 2-complexes: homotopy
and homology*, J. Pure Appl. Algebra 205 (2006), no. 1, 1-47.

V. Guba, M. Sapir, * On the conjugacy growth functions of groups*,
Illinois J. Math. 54 (2010), no. 1, 301–313.

U. Haagerup, G. Picioroaga, * New presentations of Thompson's groups
and applications*, J. Operator Theory 66 (2011), no. 1, 217–232.

P.-N. Jolissaint, * Embeddings of groups into Banach spaces*, PhD
thesis, 2015, University of Neuchatel.

V. Kaimanovich, * Thompson's group F is not Liouville*, Groups,
Graphs and Random Walks, London Mathematical Society Lecture Note Series,
300-342, 2017.

E. Kirchberg, A. Sierakowski, * Strong pure infiniteness of crossed
products*, Ergodic Theory Dynam. Systems 38 (2018), no. 1, 220–243.

S. Li, * Compression bounds for wreath products*, Proc. Amer. Math.
Soc. 138 (2010), no. 8, 2701-2714.

A. Naor, Y. Peres, * Lp compression, traveling salesmen, and stable
walks*, Duke Math. J. 157 (2011), no. 1, 53–108.

A. Naor, Y. Peres, * Embeddings of discrete groups and the speed of
random walks*, Int. Math. Res. Not. IMRN 2008, Art. ID rnn 076, 34
pp.

P. Nowak, * On exactness and isoperimetric profiles of discrete groups*,
J. Funct. Anal. 243 (2007), no. 1, 323-344.

P. Nowak, G. Yu, *Large-scale geometry*, (2010), EMS publishing
house, to appear,
http://www.math.tamu.edu/~pnowak/book_etb/book_etb.pdf.

A. Olshanskii, D. Osin, * A quasi-isometric embedding theorem for
groups*, Duke Math. J. 162 (2013), no. 9, 1621–1648.

S. Passidis, A. Weston, * Manifestations of non linear roundness in
analysis, discrete geometry and topology*, in Limits of graphs in
group theory and computer science by G. Arzhantseva, A.Valette (eds.),
EPFL press, 2009.

S. Pride, * Universal diagram groups with identical Poincaré series*,
Groups Geom. Dyn. 4 (2010), no. 4, 901–908.

D.-T. Salajan, * CAT(0) geometry for The Thompson Group*, (2012),
arXiv:1203.5749.

A. Sale, * Metric behaviour of the Magnus embedding*, Geom. Dedicata
176 (2015), 305–313.

M. Sapir, * Some group theory problems*, Internat. J. Algebra
Comput. 17 (2007), no. 5-6, 1189-1214.

Y. Stalder, A. Valette, * Wreath products with the integers, proper
actions and Hilbert space compression*, Geom. Dedicata 124 (2007),
199-211.

R. Tessera, * Quantitative property A, Poincaré inequalities,
Lp-compression and Lp-distortion for metric measure spaces*, Geom.
Dedicata 136 (2008), 203-220.

R. Tessera, * Asymptotic isoperimetry on groups and uniform embeddings
into Banach spaces*, Comment. Math. Helv. 86 (2011), no. 3, 499–535.

G. Yu, * Higher index theory of elliptic operators and geometry of
groups*, International Congress of Mathematicians. Vol. II,
1623-1639, Eur. Math. Soc., Zürich, 2006.

J. Brieussel, T. Zheng, * Speed of random walks, isoperimetry and
compression of finitely generated groups*, (2015), Ann. of Math. (2)
193 (2021), no. 1, 1-105.

[28] G.N. Arzhantseva, * A dichotomy for
finitely generated subgroups of word hyperbolic groups,*,

Contemporary Mathematics, 394, Amer. Math.Soc., Providence, RI, 2006,
1-11. pdf

** 11 citations by **

A. Bartels, W. Lück, * The Borel conjecture for hyperbolic and
CAT(0)-groups*, Ann. of Math. (2) 175 (2012), no. 2, 631–689.

M. Belolipetsky, * On 2-systoles of hyperbolic 3-manifolds*, Geom.
Funct. Anal. 23 (2013), no. 3, 813–827.

R. Coulon, * Asphericity and small cancellation theory for rotation
families of groups*, Groups Geom. Dyn. 5 (2011), no. 4, 729–765.

M. Gromov, * Singularities, expanders and topology of maps. I. Homology
versus volume in the spaces of cycles*, Geom. Funct. Anal. 19 (2009),
no. 3, 743-841.

D. Hume, * Direct embeddings of relatively hyperbolic groups with
optimal ℓp compression exponent*, J. Reine Angew. Math. 703 (2015),
147–172.

I. Kapovich, P. Schupp, * Random quotients of the modular group are
rigid and essentially incompressible*, J. Reine Angew. Math. 628
(2009), 91-119.

I. Kapovich, P. Schupp, * Genericity, the Arzhantseva-Ol'shanskii
method and the isomorphism problem for one-relator groups*, Math.
Ann. 331 (2005), no. 1, 1-19.

I. Kapovich, R. Weidmann, * Nielsen methods and groups acting on
hyperbolic spaces*, Geom. Dedicata 98 (2003), 95-121.

T. Koberda, * Entropy of automorphisms, homology and the intrinsic
polynomial structure of nilpotent groups*, In the tradition of
Ahlfors-Bers. VI, 87–99, Contemp. Math., 590, Amer. Math. Soc.,
Providence, RI, 2013.

A. Kvaschuk, * One variable equations in torsion-free hyperbolic groups*,
PhD thesis, 2003, University of New York.

H. Reza Rostami, * About groups with property (U), Armenian journal of
mathematics*, 3(1) (2008), 14-22.

[27] G.N. Arzhantseva and I.G. Lysenok, *
A lower bound on the growth of word hyperbolic groups,*,

Journal of the London Mathematical Society, (2) 73 (2006), 109-125.
pdf

** 14 citations by **

E. Breuillard, K. Fujiwara, * On the joint spectral radius for
isometries of non-positively curved spaces and uniform growth *,
Annales de l'Institut Fourier, Tome 71 (2021) no. 1, pp. 317-391.

J. Button, * Non proper HNN extensions and uniform uniform exponential
growth*, (2009), arXiv.org:0909.2841.

N. Cavalluchi, * Packing conditions in metric spaces with
curvaturebounded above and applications*, PhD thesis, 2020, Universià
di Roma.

N. Cavallucci, A. Sambusetti, * Discrete groups of packed,
non-positively curved, Gromov hyperbolic metric spaces*, (2021),
arXiv:2102.09829.

F. Cerocchi, A. Sambusetti, * Entropy and finiteness of groups with
acylindrical splittings*, (2017), arXiv:1711.06210.

R. Coulon, M. Steenbock, * Product set growth in Burnside groups*,
(2021), arXiv:2102.10885.

Y. Cui, Y. Jiang, W. Yang, * Lower bound on growth of non-elementary
subgroups in relatively hyperbolic groups*, 2021, arXiv:2103.02304.

T. Delzant, M. Steenbock, * Product set growth in groups and hyperbolic
geometry*, J. Topol. 13 (2020), no. 3, 1183–1215.

D. Dikranjan, A. Giordano Bruno, * Topological entropy and algebraic
entropy for group endomorphisms*, (2013), arXiv:1308.4019.

K. Fujiwara, * The rates of growth in an acylindrically hyperbolic
group*, (2021), arXiv:2103.01430.

K. Fujiwara, Z. Sela, * The rates of growth in a hyperbolic group*,
(2020), arXiv:2002.10278.

L. Ji, * A tale of two groups: arithmetic groups and mapping class
groups*, Handbook of Teichmüller theory. Volume III, 157–295, IRMA
Lect. Math. Theor. Phys., 17, Eur. Math. Soc., Zürich, 2012.

R. Kropholler, R. Alanza Lyman, T. Ng, * Extensions of hyperbolic
groups have locally uniform exponential growth*, 2020,
arXiv:2012.14880.

F. Zuddas, * Some finiteness results for groups with bounded algebraic
entropy*, Geom. Dedicata (2009), 49-62.

[26] G.N. Arzhantseva, V.S. Guba, L. Guyot,
* Growth rates of amenable groups,*,

Journal of Group Theory, 8 (2005), no.3, 389-394. pdf

** 5 citations by **

I. Benjamini, T. Gelander, * An upper bound on the growth of Dirichlet
tilings of hyperbolic spaces*, J. Topol. Anal. 9 (2017), no. 2,
221–224.

V. Capraro, * Amenability, locally finite spaces, and bi-Lipschitz
embeddings*, Expo. Math. 31 (2013), no. 4, 334–349.

V. Capraro, * Topology on locally finite metric spaces*, (2011),
arXiv:1111.0268.

T. Ceccherini-Silberstein, R. I. Grigorchuk, P. de la Harpe, *
Amenability and paradoxical decompositions for pseudogroups and for
discrete metric spaces*, (2016), arXiv:1603.04212.

V. Guba, * Strict dead-end elements in free soluble groups*, Comm.
Algebra 36 (2008), no. 5, 1988–1997.

[25] G.N. Arzhantseva, J. Burillo, M.
Lustig, L. Reeves, H. Short, E. Ventura, * Uniform non-amenability*,

Advances in Mathematics, 197 (2005), no. 2, 499-522. pdf

** 34 citations by **

S.I. Adyan, V.S. Atabekyan, * Characteristic properties and uniform
non-amenability of n-periodic products of groups*, (Russian) ;
translated from Izv. Ross. Akad. Nauk Ser. Mat. 79 (2015), no. 6, 3--17
Izv. Math. 79 (2015), no. 6, 1097–1110.

Y. Amirou, * Elements of uniformly bounded word-length in groups*,
(2018), arXiv:1811.11464.

J. Anderson, J. Aramayona, K.J. Shackleton, * Amenability and
non-uniform growth of some directed automorphism groups of a rooted
tree, Uniformly exponential growth and mapping class groups of surfaces*,
In the tradition of Ahlfors-Bers. IV, 1-6, Contemp. Math., 432, Amer.
Math. Soc., Providence, RI, 2007.

V. Atabekyan, * Uniform nonamenability of subgroups of free Burnside
groups of odd period*, Math. Notes, 85 (4) (2009), 496-502.

V. Atabekyan, * On monomorphisms of free Burnside groups*, (Russian)
; translated from Mat. Zametki 86 (2009), no. 4, 483-490 Math. Notes 86
(2009), no. 3-4, 457–462.

J. Bannon, M. Ravichandran, * A Følner invariant for type II1 factors*,
Expo. Math. 25 (2007), no. 2, 117-130.

L. Bartholdi, A. Erschler, * Ordering the space of finitely generated
groups*, Ann. Inst. Fourier (Grenoble) 65 (2015), no. 5, 2091–2144.

E. Breuillard, K. Fujiwara, * On the joint spectral radius for
isometries of non-positively curved spaces and uniform growth*,
Annales de l'Institut Fourier, Tome 71 (2021) no. 1, pp. 317-391.

E. Breuillard, T. Gelander, * Uniform independence in linear groups*,
Invent. Math. 173 (2008), no. 2, 225-263.

E. Breuillard, T. Gelander, * Cheeger constant and algebraic entropy of
linear groups*, Int. Math. Res. Not. (2005), no. 56, 3511-3523.

E. Breuillard, B. Green, T. Tao, * A note on approximate subgroups of
GL_n(C) and uniformly nonamenable groups*, (2011), arXiv:1101.2552.

N. Brown, N. Ozawa, * C*-algebras and finite-dimensional approximations*,
Graduate Studies in Mathematics, 88. American Mathematical Society,
Providence, RI, 2008. xvi+509 pp.

J. Burillo, * Grups i la paradoxa de Banach-Tarski*, Butlletí de la
Societat Catalana de Matemàtiques,Vol. 23, núm. 2, 2008. Pàg. 181-199.

Y. de Cornulier, L. Guyot, W. Pitsch, * On the isolated points in the
space of groups*, J. Algebra 307 (2007), no. 1, 254-277.

Y. de Cornulier, L. Guyot. W. Pitsch, * The space of subgroups of an
abelian group*, (2008), arXiv:0811.1549.

M. Ershov, * Kazhdan quotients of Golod-Shafarevich groups*. Proc.
Lond. Math. Soc. (3) 102 (2011), no. 4, 599–636.

M. Ershov, A. Jaikin-Zapirain, * Kazhdan quotients of Golod-Shafarevich
groups*, (2009), arXiv:0908.3734.

L. Guyot, Y. Stalder, * Limits of Baumslag-Solitar groups and dimension
estimates in the space of marked groups*, Groups Geom. Dyn. 6 (2012),
no. 3, 533–577.

R. Ji, C. Ogle, B. Ramsey, * Relative amenability and relative soficity*,
(2018), arXiv:1807.07600.

I. J. Leary, A. Minasyan, * Commensurating HNN-extensions: non-positive
curvature and biautomaticity*, (2019), arXiv:1907.03515.

R. Lyons, M. Pichot, S. Vassout, * Uniform non-amenability, cost, and
the first l2-Betti number*, Groups Geom. Dyn. 2 (2008), no. 4,
595-617.

A. Malyshev, * Non-amenability of product replacement graphs*,
(2013), arXiv:1305.2408.

A. Malyshev, * Combinatorics of finitely generated groups*, (2014),
PhD thesis, UCLA.

A. Malyshev, I. Pak, * Growth in product replacement graphs of
Grigorchuk groups*, J. Group Theory 18 (2015), no. 2, 209–234.

A. Minasyan, D. Osin, * Acylindrically hyperbolic groups with exotic
properties*, J. Algebra 522 (2019), 218–235.

P. Nowak, * Isoperimetry of group actions*, Adv. Math. 219 (2008),
no. 1, 1-26.

A.Yu. Olshanskii, M.V. Sapir, * On k-free-like groups*, Algebra and
Logic 48 (2) (2009), 245-257.

D. Osin, * Uniform non-amenability of free Burnside groups*, Arch.
Math. (Basel) 88 (2007), no. 5, 403-412.

D. Osin, * L2-Betti numbers and non-unitarizable groups without free
subgroups*, Int. Math. Res. Not. IMRN2009, no. 22, 4220-4231.

G. Pete, * Probability and geometry on groups. Lecture notes for a
graduate course*, (2017),
https://math.bme.hu/~gabor/PGG.pdf.

L. L. Pham, * Uniform Kazhdan constants and paradoxes of the affine
plane*, Transformation Groups (2020).

M. Pichot, * Semi-continuity of the first l2-Betti number on the space
of finitely generated groups*, Comment. Math. Helv. 81 (2006), no. 3,
643-652.

Y. Stalder, * Convergence of Baumslag-Solitar groups*, Bull. Belg.
Math. Soc. Simon Stevin 13 (2006), no. 2, 221-233.

R. Willett, * Property A and graphs with large girth*, J. Topol.
Anal. 3 (2011), no. 3, 377–384.

[24] G.N. Arzhantseva and P.-A. Cherix, *
On the Cayley graph of a generic finitely presented group*,

Bulletin of the Belgian Mathematical Society, 11 (2004), no. 4, 589-601.
pdf

** 18 citations by **

T. G. Ceccherini-Silberstein, A. Y. Samet-Vaillant, * Asymptotic
invariants of finitely generated algebras. A generalization of Gromov's
quasi-isometric viewpoint*, Journal of Mathematical Sciences, 156 (1)
(2009), 56-108.

P. Dani, I. Levcovitz, * Subgroups of right-angled Coxeter groups via
Stallings-like techniques*, (2019), arXiv:1908.09046.

B. Federici, * Interactions between large-scale invariants ininfinite
graphs*, PhD thesis, 2017, University of Warwick.

E. Frenkel, A. Myasnikov, V. Remeslennikov, * Amalgamated products of
groups II: measures of random normal forms*, Journal of Mathematical
Sciences volume 185 (2012), 300–320.

A. Georgakopoulos, * On planar Cayley graphs and Kleinian groups*
Trans. Amer. Math. Soc. 373 (2020), no. 7, 4649–4684.

A. Georgakopoulos, M. Hamann, * The planar Cayley graphs are
effectively enumerable I: Consistently planar graphs*, Combinatorica
39 (2019), no. 5, 993–1019.

R. Gilman, A. Myasnikov, V. Roman'kov, * Random equations in free
groups*, Groups Complex. Cryptol. 3 (2011), no. 2, 257–284.

R. Gilman, A. Myasnikov, V. Roman'kov, * Random equations in nilpotent
groups*, J. Algebra 352 (2012), 192–214.

I. Kapovich, P. Schupp, * On group-theoretic models of randomness and
genericity*, Groups Geom. Dyn. 2 (2008), no. 3, 383-404.

Y. Kemper, * Problems of enumeration and realizability on matroids,
simplicial complexes, and graphs*, (2013), PhD thesis, U Calirfornia
Davis.

A. Khukhro, * A characterisation of virtually free groups via minor
exclusion*, (2020), arXiv:2006.16918.

J. de Loera, Y. Kemper, * Polyhedral embeddings of Cayley graphs*,
Electronic Notes in Discrete Mathematics 43 (2013), 279-288.

A. Myasnikov, V. Remeslennikov, E. Frenkel′, * Free products of groups
with amalgamation: stratification of sets of normal forms and estimates*,
(Russian) ; translated from Fundam. Prikl. Mat. 16 (2010), no. 8, 189-221
J. Math. Sci. (N.Y.) 185 (2012), no. 2, 300–320.

Y. Ollivier, * A January 2005 invitation to random groups, Ensaios
Matemáticos*, 10. Sociedade Brasileira de Matemática, Rio de Janeiro,
2005. ii+100 pp.

Y. Ollivier, * Le Hasard et la Courbur*, Habilitation thesis, 2009,
École normale supérieure de Lyon.

Y. Ollivier, * Sharp phase transition theorems for hyperbolicity*,
Geom. Funct. Anal. 14 (2004), no. 3, 595—679.

M. Ostrovskii, D. Rosenthal, * Metric dimensions of minor excluded
graphs and minor exclusion in groups*, Internat. J. Algebra Comput.
25 (2015), no. 4, 541–554.

O. Varghese, * Planarity of Cayley graphs of graph products of groups*,
Discrete Math. 342 (2019), no. 6, 1812–1819.

[23] G.N. Arzhantseva and I.G. Lysenok, *
Growth tightness for word hyperbolic groups*,

Mathematische Zeitschrift, 241 (2002), no. 3, 597-611. pdf

** 35 citations by **

L. Bartholdi, R. Grigorchuk, V. Nekrashevych, * From fractal groups to
fractal sets*, Fractals in Graz 2001, 25-118,Trends Math.,
Birkhäuser, Basel, 2003.

Ch. Cashen, J. Tao, * Growth tight actions of product groups*,
Groups Geom. Dyn. 10 (2016), no. 2, 753–770.

S. Cantrell, R. Tanaka, * The Manhattan curve, ergodic theory of
topological flows and rigidity*, (2021), arXiv:2104.13451.

T. Ceccherini-Silberstein, F. Scarabotti, * Random walks, entropy and
hopfianity of free groups*, Random walks and geometry, 413-419,
Walter de Gruyter GmbH & Co. KG, Berlin, 2004.

T. Ceccherini-Silberstein, W. Woess, * Growth and ergodicity of
context-free languages*, Trans. Amer. Math. Soc. 354 (2002), no. 11,
4597-4625.

V. Chaynikov, * Actions of maximal growth of hyperbolic groups*,
(2012), arXiv:1201.1349.

R. Coulon, * Growth of periodic quotients of hyperbolic groups*,
Algebr. Geom. Topol. 13 (2013), no. 6, 3111–3133.

F. Dal’bo, M. Peigné, J.-C. Picaud, A. Sambusetti, * On the growth of
quotients of Kleinian groups*, Ergodic Theory Dynam. Systems 31
(2011), no. 3, 835–851.

F. Dahmani, D. Futer, D. T. Wise, * Growth of quasiconvex subgroups*,
Math. Proc. Cambridge Philos. Soc. 167 (2019), no. 3, 505–530.

A. Erschler, * Growth rates of small cancellation groups, Random walks
and geometry*,421-430, Walter de Gruyter GmbH & Co. KG, Berlin,
2004.

K. Fujiwara, Z. Sela, * The rates of growth in a hyperbolic group*,
(2020), arXiv:2002.10278.

I. Gekhtman, S. J. Taylor, G. Tiozzo, * Counting problems in graph
products and relatively hyperbolic groups*, Israel J. Math. 237
(2020), no. 1, 311–371.

I. Gekhtman, S. J. Taylor, G. Tiozzo, * Central limit theorems for
counting measures in coarse negative curvature*, (2020),
arXiv:2004.13084.

S. Gouezel , F. Matheus, F. Maucourant, * Entropy and drift in word
hyperbolic groups*, Invent. Math. 211 (2018), no. 3, 1201–1255.

P. de la Harpe, * Uniform growth in groups of exponential growth*,
Geom. Dedicata 95 (2002), 1-17.

P. de la Harpe, * Topics in geometric group theory*, Chicago
Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000.
vi+310 pp.

Z. He, J. Liu, W. Yang, * Large quotients of group actions with a
contracting element*, (2020), arXiv:2007.15825.

W. Huss, E. Sava, W. Woess, * Entropy sensitivity of languages defined
by infinite automata, via Markov chains with forbidden transitions*,
Theoret. Comput. Sci. 411 (2010), no. 44-46, 3917–3922.

J. Jaerisch, K. Matsuzaki, * Growth and cogrowth of normal subgroups of
a free group*, Proc. Amer. Math. Soc. 145 (2017), no. 10, 4141–4149.

K. Matsuzaki, * Growth and cogrowth tightnessof Kleinian and hyperbolic
groups*, RIMS Kôkyûroku Bessatsu B66 (2017), 021-036.

B. Mramor, * Minimisers of the Allen-Cahn equation and the asymptotic
Plateau problem on hyperbolic groups*, Ann. Inst. H. Poincaré Anal.
Non Linéaire 35 (2018), no. 3, 687–711.

Y. Ollivier, * A January 2005 invitation to random groups*, Ensaios
Matemáticos, 10. Sociedade Brasileira de Matemática, Rio de Janeiro, 2005.
ii+100 pp.

Y. Ollivier, * Growth exponent of generic groups*, Comment. Math.
Helv. 81 (2006), no. 3, 569-593.

S. Sabourau, * Growth of quotients of groups acting by isometries on
Gromov-hyperbolic spaces*, J. Mod. Dyn. 7 (2013), no. 2, 269–290.

A. Sambusetti, * Asymptotic properties of coverings in negative
curvature*, Geom. Topol. 12 (2008), no. 1, 617-637.

A. Sambusetti, * Growth tightness of negatively curved manifolds*,
C. R. Math. Acad. Sci. Paris 336 (2003), no. 6, 487-491.

A. Sambusetti, * Growth tightness of surface groups*, Expo. Math. 20
(2002), no. 4, 345-363.

A. Sambusetti, * Growth tightness in group theory and Riemannian
geometry*, in "Recent Advances in Geometry and Topology,'' Cluj Univ.
Press, Cluj-Napoca, (2004), 341-352.

E. Sava, * Lamplighter random walks and entropy-sensetivity of
languages*, PhD thesis, 2010, TU Graz.

A. Talambutsa, * Attainability of the index of exponential growth in
free products of cyclic groups*, Math. Notes 78 (2005), no. 3-4,
569-572.

W. Yang, * Growth tightness for groups with contracting elements*,
Math. Proc. Cambridge Philos. Soc. 157 (2014), no. 2, 297–319.

W. Yang, * Patterson-Sullivan measures and growth of relatively
hyperbolic groups*, Peking Mathematical Journal (2021).

W. Yang, * Growth tightness of groups with nontrivial Floyd boundary*,
(2013), arXiv:1301.5623v1.

W. Yang, * Statistically convex-cocompact actions of groups with
contracting elements*, (2016), Int. Math. Res. Not. IMRN 2019, no.
23, 7259–7323.

W. Yang, * Purely exponential growth of cusp-uniform actions*,
Ergodic Theory Dynam. Systems 39 (2019), no. 3, 795–831.

[22] G.N. Arzhantseva and D.V. Osin, *
Solvable groups with polynomial Dehn functions*,

Transactions of the American Mathematical Society, 354 (2002),
3329-3348. pdf

** 17 citations by **

M. Anshel, D. Kahrobaei, * Decision and search in non-abelian Cramer
Shoup public key cryptosystem*, (2013), arXiv:1309.4519.

N. Brady, W. Dison, T. Riley, * Hyperbolic hydra*, Groups Geom. Dyn.
7 (2013), no. 4, 961–976.

N. Broaddus, B. Farb, A. Putman, * Irreducible Sp-representations and
subgroup distortion in the mapping class group*, Comment. Math. Helv.
86 (2011), no. 3, 537–556.

M. Cavaleri, * Computability of Folner sets*, (2016), Internat. J.
Algebra Comput. 27 (2017), no. 7, 819–830.

S. Cleary, C. Martínez-Pérez, * Undistorted embeddings of metabelian
groups of finite Prüfer rank*, New York J. Math. 21 (2015),
1027–1053.

Y. de Cornulier, * Aspects de la géométrie des groupes*,
Habilitation thesis, (2014), University of Paris-Sud 11.

Y. de Cornulier, R. Tessera, * Metabelian groups with quadratic Dehn
function and Baumslag-Solitar groups*, Confluentes Math. 2 (2010),
no. 4, 431–443.

P. Davidson, * Geometric methods in the study of Pride groups and
relative presentations*, (2008), PhD thesis, University of Glasgow. http://theses.gla.ac.uk/230/01/2008davidsonphd.pdf.

W. Dison, T.R. Riley, * Hydra groups*, Comment. Math.
Helv. 88 (2013), no. 3, 507–540.

C. Drutu, * Filling in solvable groups and in lattices in semisimple
groups*, Topology 43 (2004), no. 5, 983-1033.

R. Frigerio, J.-F. Lafont, A. Sisto, * Rigidity of high dimensional
graph manifolds*, Astérisque No. 372 (2015), xxi+177 pp.

R. Ji, C. Ogle, B. Ramsey, * B-bounded cohomology and applications.*,Internat.
J. Algebra Comput. 23 (2013), no. 1, 147–204.

D. Kahrobaei, M. Anshel, * Decision and search in non-abelian
Cramer-Shoup public key cryptosystem*, Groups Complex. Cryptol. 1
(2009), no. 2, 217–225.

M. Kassabov, T. Riley, * The Dehn function of Baumslag's metabelian
group*, Geom. Dedicata 158 (2012), 109–119.

E. Leuzinger, Ch. Pittet, * On quadratic Dehn functions*, Math. Z.
248 (2004), no. 4, 725-755.

R. Tessera, * The large-scale geometry of locally compact solvable
groups*, Internat. J. Algebra Comput. 26 (2016), no. 2, 249–281.

W. Wang, * Dehn functions of finitely presented metabelian groups*,
J. Group Theory, in press.

[21] G.N. Arzhantseva, * On quasiconvex
subgroups of word hyperbolic groups*,

Geometriae Dedicata, 87 (2001), 191-208. pdf

** 30 citations by **

C. Abbot, M. Hull, * Random walks and quasi-convexity in acylindrically
hyperbolic groups*, (2020), arXiv:1909.10876.

V. Chaynikov, * Actions of maximal growth of hyperbolic groups*,
(2012), arXiv:1201.1349.

F. Dahmani, D. Futer, D. T. Wise, * Growth of quasiconvex subgroups*,
Math. Proc. Cambridge Philos. Soc. 167 (2019), no. 3, 505–530.

T. Delzant, M. Gromov, * Cuts in Kähler groups, infinite groups:
geometric, combinatorial and dynamical aspects*, 31-55, Progr. Math.,
248, Birkhäuser, Basel, 2005.

F. Dudkin, K. Sviridov, * Complementing a subgroup of a hyperbolic
group by a free factor*, (Russian) ; translated from Algebra Logika
52 (2013), no. 3, 332-351, 395, 398 Algebra Logic 52 (2013), no. 3,
222–235.

B. Farb, L. Mosher, * Convex cocompact subgroups of mapping class
groups*, Geom. Topol. 6 (2002), 91-152 (electronic).

S. Friedl, D. Silver, S. Williams, * Splittings of knot groups*,
Math. Ann. 362 (2015), no. 1-2, 401–424.

A. Genevois, * Cubical-like geometry of quasi-median graphs and
applications to geometric group theory*, (2017), arXiv:1712.01618.

R. Gitik, * On intersection of conjugate subgoups*, Internat. J.
Algebra Comput. 27 (2017), no. 4, 403–419.

Y. Glasner, J. Souto, P. Storm, * Normal complements to hyperbolic
subgroup*, (2009), preprint.
https://www.math.bgu.ac.il/~yairgl/Hyp_qc.pdf.

P. de la Harpe, * Topics in geometric group theory*, Chicago
Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000.
vi+310 pp.

S. Hersonsky, F. Paulin, * On the almost sure spiraling of geodesics in
negatively curved manifolds*, J. Differential Geom. 85 (2010), no. 2,
271–314.

E. Jabara, * Groups that are the union of a finite number of double
cosets*, Rend. Sem. Mat. Univ. Padova 116 (2006), 41-53.

I. Kapovich, R. Weidmann, * Kleinian groups and the rank problem*,
Geom. Topol. 9 (2005), 375-402.

I. Kapovich, * The Frattini subgroups of subgroups of hyperbolic groups*,
J. Group Theory 6 (2003), no. 1, 115-126.

I. Kapovich, * The non-amenability of Schreier graphs for infinite
index quasiconvex subgroups of hyperbolic groups*, Enseign. Math. (2)
48 (2002), no. 3-4, 359-375.

I. Kapovich, * The geometry of relative Cayley graphs for subgroups of
hyperbolic groups*, (2002), arXiv:math/0201045.

A. Kar, M. Sageev, * Ping pong on CAT(0) cube complexes*, Comment.
Math. Helv. 91 (2016), no. 3, 543–561.

O. Kharlampovich, A. Vdovina, * Linear estimates for solutions of
quadratic equations in free groups*, Internat. J. Algebra Comput. 22
(2012), no. 1, 1250004, 16 pp.

O. Kharlampovich, A. Mohajeri, A. Taam, A. Vdovina, * Quadratic
Equations in hyperbolic groups are NP-complete*, Trans. Amer. Math.
Soc. 369 (2017), no. 9, 6207–6238.

E. Martínez-Pedroza, * Combination of quasiconvex subgroups of
relatively hyperbolic groups*, Groups Geom. Dyn. 3 (2009), no. 2,
317-342.

A. Minasyan, * Some properties of subsets of hyperbolic groups*,
Comm. Algebra 33 (2005), no. 3, 909-935.

A. Minasyan, * On products of quasiconvex subgroups in hyperbolic
groups*, Internat. J. Algebra Comput. 14 (2004), no. 2, 173-195.

A. Minasyan, * On quasiconvex subsets of hyperbolic groups*, (2005),
PhD thesis, Vanderbilt University.

M. Ostrovskii, * Metric characterizations of superreflexivity in terms
of word hyperbolic groups and finite graphs*, Anal. Geom. Metr.
Spaces 2 (2014), no. 1, 154–168.

J. Russell, D. Spriano, H.C. Tran, * Convexity in hierarchically
hyperbolic spaces*, (2018), arXiv:1809.09303.

J. Russell, D. Spriano, H.C. Tran, * The local-to-global property for
Morse quasi-geodesics*, (2019), arXiv:1908.11292.

A. Vonseel, * Hyperbolicité et bouts des graphes de Schreier*, PhD
thesis, 2017, Université de Strasbourg.

D. Wise, * From riches to raags: 3-manifolds, right-angled Artin
groups, and cubical geometry*, CBMS Regional Conference Series in
Mathematics, 117. Published for the Conference Board of the Mathematical
Sciences, Washington, DC; by the American Mathematical Society,
Providence, RI, 2012. xiv+141 pp.

D. Wise, * The structure of groups with a quasiconvex hierarchy*,
Annals of Mathematics Studies 209, Princeton University Press, Princeton,
2021, 376pp.

[20] G.N. Arzhantseva, * A property of
subgroups of infinite index in a free group*,

Proceedings of the American Mathematical Society, 128 (11) (2000),
3205-3210. pdf

** 31 citations by **

F. Bassino, A. Martino, C. Nicaud, E. Ventura, P. Weil, * Statistical
properties of subgroups of free groups*, Random Structures Algorithms
42 (2013), no. 3, 349–373.

F. Bassino, A. Martino, C. Nicaud, E. Ventura, P. Weil, * On two
distributions of subgroups of free groups*, Proceedings of the
Seventh Workshop on Analytic Algorithmics and Combinatorics (ANALCO),
82–89, SIAM, Philadelphia, PA, 2010.

F. Bassino, A. Martino, C. Nicaud, P. Weil, * Random presentations and
random subgroups: a survey*, (2017), arXiv:1702.01942.

F. Bassino, I. Kapovich, M. Lohrey, A. Miasnikov, C. Nicaud, A. Nikolaev,
I. Rivin, V. Shpilrain, A. Ushakov, P. Weil, * Complexity and
Randomness in Group Theory: GAGTA book 1*, De Gruyter, 2020, xii+374
pp.

H. Bigdely, * A non-quasiconvex embedding of relatively hyperbolic
groups*, (2012), arXiv:1211.2730.

A.V. Borovik, A.G. Myasnikov, V.N. Remeslennikov, * Generic complexity
of the conjugacy problem in HNN-extensions and algorithmic
stratification of Miller's groups*, Internat. J. Algebra Comput. 17
(2007), no. 5-6, 963-997.

A.V. Borovik, A.G. Myasnikov, V.N. Remeslennikov, * Multiplicative
measures on free groups*, Internat. J. Algebra Comput. 13 (2003), no.
6, 705-731.

A. Borovik, A.G. Myasnikov, V. Shpilrain, * Measuring sets in infinite
groups, Computational and statistical group theory*, (Las Vegas,
NV/Hoboken, NJ, 2001), 21-42, Contemp. Math., 298, Amer. Math. Soc.,
Providence, RI, 2002.

L. Ciobanu, A. Martino, E. Ventura, * The generic Hanna Neumann
conjecture and post correspondence problem*, (2008), preprint.

P. Dani, I. Levcovitz, * Subgroups of right-angled Coxeter groups via
Stallings-like techniques*, (2019), arXiv:1908.09046.

J. Delgado Rodríguez, * Extensions of free groups: algebraic,
geometric, and algorithmic aspects*, PhD thesis, 2017, Universitat
Politècnica Catalunya.

R. Gilman, A. Myasnikov, V. Roman'kov, * Random equations in nilpotent
groups*, J. Algebra 352 (2012), 192–214.

J. Friedman, * Sheaves on graphs, their homological invariants, and a
proof of the Hanna Neumann conjecture: with an appendix by Warren Dicks*,
Mem. Amer. Math. Soc. 233 (2015), no. 1100, xii+106 pp.

J. Friedman, * The strengthened Hanna Neumann conjecture I: A
combinatorial proof*, (2010), arXiv:1003.5739v3.

V. Kaimanovich, I. Kapovich, P. Schupp, * The subadditive ergodic
theorem and generic stretching factors for free group automorphisms*,
Israel J. Math. 157 (2007), 1-46.

I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, * Average-case
complexity and decision problems in group theory*, Adv. Math. 190
(2005), no. 2, 343-359.

I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, * Generic-case
complexity, decision problems in group theory, and random walks*, J.
Algebra 264 (2003), no. 2, 665-694.

I. Kapovich, P. Schupp, * Random quotients of the modular group are
rigid and essentially incompressible*, J. Reine Angew. Math. 628
(2009), 91-119.

I. Kapovich, P. Schupp, * On group-theoretic models of randomness and
genericity*, Groups Geom. Dyn. 2 (2008), no. 3, 383-404.

I. Kapovich, P. Schupp, V. Shpilrain, * Generic properties of
Whitehead's algorithm and isomorphism rigidity of random one-relator
groups*, Pacific J. Math. 223 (2006), no. 1, 113-140.

I. Kapovich, P. Schupp, * Delzant's T-invariant, Kolmogorov complexity
and one-relator groups*, Comment. Math. Helv. 80 (2005), no. 4,
911-933.

I. Kapovich, P. Schupp, * Genericity, the Arzhantseva-Ol'shanskii
method and the isomorphism problem for one-relator groups*, Math.
Ann. 331 (2005), no. 1, 1-19.

I. Kapovich, P. Schupp, * Bounded rank subgroups of Coxeter groups,
Artin groups and one-relator groups with torsion*, Proc. London Math.
Soc. (3) 88 (2004), no. 1, 89-113.

O. Kharlampovich, A. Myasnikov, P. Weil, * Stallings graphs for
quasi-convex subgroups*, J. Algebra 488 (2017), 442–483.

O. Kharlampovich, P. Weil, * On the generalized membership problem in
relatively hyperbolic groups*, Fields of logic and computation. III,
147–155, Lecture Notes in Comput. Sci., 12180, Springer, Cham, 2020.

S. Margolis, J. Meakin, Z. Sunik, * Distortion functions and the
membership problem for submonoids of groups and monoids*, Geometric
methods in group theory, 109-129, Contemp. Math., 372, Amer. Math. Soc.,
Providence, RI, 2005.

Y. Ollivier, * A January 2005 invitation to random groups*, Ensaios
Matemáticos, 10. Sociedade Brasileira de Matemática, Rio de Janeiro, 2005.
ii+100 pp.

M. Sapir, * Asymptotic invariants, complexity of groups and related
problems*, Bull. Math. Sci. 1 (2011), no. 2, 277–364.

M. Shusterman, P. Zalesskii,* Virtual retraction and Howson's theorem in
pro-p groups* Trans. Amer. Math. Soc. 373 (2020), no. 3, 1501–1527.

B. Solie, * Genericity of filling elements*, Internat. J. Algebra
Comput. 22 (2012), no. 2, 1250008, 10 pp.

B. Steinberg, * On a conjecture of Karrass and Solitar*, J. Group
Theory 17 (2014), no. 3, 433–444.

[19] G.N. Arzhantseva, * Generic
properties of finitely presented groups and Howson's Theorem*,

Communications in Algebra, 26 (11) (1998), 3783-3792.

** 31 citations by **

F. Bassino, A. Martino, C. Nicaud, E. Ventura, P. Weil, * Statistical
properties of subgroups of free groups*, Random Structures Algorithms
42 (2013), no. 3, 349–373.

F. Bassino, A. Martino, C. Nicaud, E. Ventura, P. Weil, * On two
distributions of subgroups of free groups*, Proceedings of the
Seventh Workshop on Analytic Algorithmics and Combinatorics (ANALCO),
82–89, SIAM, Philadelphia, PA, 2010.

F. Bassino, A. Martino, C. Nicaud, P. Weil, * Random presentations and
random subgroups: a survey*, (2017), arXiv:1702.01942.

F. Bassino, I. Kapovich, M. Lohrey, A. Miasnikov, C. Nicaud, A. Nikolaev,
I. Rivin, V. Shpilrain, A. Ushakov, P. Weil, * Complexity and
randomness in group theory: GAGTA book 1*, De Gruyter, 2020, xii+374
pp. H. Bigdely, * A non-quasiconvex embedding of relatively hyperbolic
groups*, (2012), arXiv:1211.2730.

A.V. Borovik, A.G. Myasnikov, V.N. Remeslennikov, * Generic complexity
of the conjugacy problem in HNN-extensions and algorithmic
stratification of Miller's groups*, Internat. J. Algebra Comput. 17
(2007), no. 5-6, 963-997.

A.V. Borovik, A.G. Myasnikov, V.N. Remeslennikov, * Multiplicative
measures on free groups*, Internat. J. Algebra Comput. 13 (2003), no.
6, 705-731.

A. Borovik, A.G. Myasnikov, V. Shpilrain, * Measuring sets in infinite
groups, Computational and statistical group theory*, (Las Vegas,
NV/Hoboken, NJ, 2001), 21-42, Contemp. Math., 298, Amer. Math. Soc.,
Providence, RI, 2002.

L. Ciobanu, A. Martino, E. Ventura, * The generic Hanna Neumann
conjecture and post correspondence problem*, (2008), preprint.

P. Dani, I. Levcovitz, * Subgroups of right-angled Coxeter groups via
Stallings-like techniques*, (2019), arXiv:1908.09046.

J. Delgado Rodríguez, * Extensions of free groups: algebraic,
geometric, and algorithmic aspects*, PhD thesis, 2017, Universitat
Politècnica Catalunya.

R. Gilman, A. Myasnikov, V. Roman'kov, * Random equations in nilpotent
groups*, J. Algebra 352 (2012), 192–214.

J. Friedman, * Sheaves on graphs, their homological invariants, and a
proof of the Hanna Neumann conjecture: with an appendix by Warren Dicks*,
Mem. Amer. Math. Soc. 233 (2015), no. 1100, xii+106 pp.

J. Friedman, * The strengthened Hanna Neumann conjecture I: A
combinatorial proof*, (2010), arXiv:1003.5739v3.

V. Kaimanovich, I. Kapovich, P. Schupp, * The subadditive ergodic
theorem and generic stretching factors for free group automorphisms*,
Israel J. Math. 157 (2007), 1-46.

I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, * Average-case
complexity and decision problems in group theory*, Adv. Math. 190
(2005), no. 2, 343-359.

I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, * Generic-case
complexity, decision problems in group theory, and random walks*, J.
Algebra 264 (2003), no. 2, 665-694.

I. Kapovich, P. Schupp, * Random quotients of the modular group are
rigid and essentially incompressible*, J. Reine Angew. Math. 628
(2009), 91-119.

I. Kapovich, P. Schupp, * On group-theoretic models of randomness and
genericity*, Groups Geom. Dyn. 2 (2008), no. 3, 383-404.

I. Kapovich, P. Schupp, V. Shpilrain, * Generic properties of
Whitehead's algorithm and isomorphism rigidity of random one-relator
groups*, Pacific J. Math. 223 (2006), no. 1, 113-140.

I. Kapovich, P. Schupp, * Delzant's T-invariant, Kolmogorov complexity
and one-relator groups*, Comment. Math. Helv. 80 (2005), no. 4,
911-933.

I. Kapovich, P. Schupp, * Genericity, the Arzhantseva-Ol'shanskii
method and the isomorphism problem for one-relator groups*, Math.
Ann. 331 (2005), no. 1, 1-19.

I. Kapovich, P. Schupp, * Bounded rank subgroups of Coxeter groups,
Artin groups and one-relator groups with torsion*, Proc. London Math.
Soc. (3) 88 (2004), no. 1, 89-113.

O. Kharlampovich, A. Myasnikov, P. Weil, * Stallings graphs for
quasi-convex subgroups*, J. Algebra 488 (2017), 442–483.

O. Kharlampovich, P. Weil, * On the generalized membership problem in
relatively hyperbolic groups*, Fields of logic and computation. III,
147–155, Lecture Notes in Comput. Sci., 12180, Springer, Cham, 2020.

S. Margolis, J. Meakin, Z. Sunik, * Distortion functions and the
membership problem for submonoids of groups and monoids*, Geometric
methods in group theory, 109-129, Contemp. Math., 372, Amer. Math. Soc.,
Providence, RI, 2005.

Y. Ollivier, * A January 2005 invitation to random groups*, Ensaios
Matemáticos, 10. Sociedade Brasileira de Matemática, Rio de Janeiro, 2005.
ii+100 pp.

M. Sapir, * Asymptotic invariants, complexity of groups and related
problems*, Bull. Math. Sci. 1 (2011), no. 2, 277–364.

M. Shusterman, P. Zalesskii,* Virtual retraction and Howson's theorem in
pro-p groups* Trans. Amer. Math. Soc. 373 (2020), no. 3, 1501–1527.

B. Solie, * Genericity of filling elements*, Internat. J. Algebra
Comput. 22 (2012), no. 2, 1250008, 10 pp.

B. Steinberg, * On a conjecture of Karrass and Solitar*, J. Group
Theory 17 (2014), no. 3, 433–444.

[18] G.N. Arzhantseva, * On the groups
all of whose subgroups with fixed number of generators are free*,

Fundamental and Applied Mathematics, 3(3) (1997), 675-683 (in Russian).
pdf

** 19 citations by **

Yu. Bahturin, A. Olshanskii, * Actions of maximal growth*, Proc.
London Math. Soc. (2010) 101(1): 27-72.

I. Bumagin, * On small cancellation k-generated groups with
(k-1)-generated subgroups all free*, Internat. J. Algebra Comput. 11
(2001), no. 5, 507-524.

S. Cleary, M. Elder, A. Rechnitzer, J. Taback,* Random subgroups of
Thompson's group F*, Groups Geom. Dyn. 4 (2010), no. 1, 91–126.

E. Frenkel, A.G. Myasnikov, V.N. Remeslennikov, * Regular sets and
counting in free groups*, (2009), arXiv:0906.2850.

R. Gilman, A. Miasnikov, D. Osin, * Exponentially generic subsets of
groups*, Illinois J. Math. 54 (2010), no. 1, 371–388.

E. Ghys, * Random groups (following Misha Gromov, ...)*, Astérisque
No. 294 (2004), viii, 173-204.

V. Kaimanovich, I. Kapovich, P. Schupp, * The subadditive ergodic
theorem and generic stretching factors for free group automorphisms*,
Israel J. Math. 157 (2007), 1-46.

I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, * Average-case
complexity and decision problems in group theory*, Adv. Math. 190
(2005), no. 2, 343-359.

I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, * Generic-case
complexity, decision problems in group theory, and random walks*, J.
Algebra 264 (2003), no. 2, 665-694.

I. Kapovich, I. Rivin, P. Schupp, V. Shpilrain, * Densities in free
groups and Zk, visible points and test elements*, Math. Res. Lett. 14
(2007), no. 2, 263-284.

I. Kapovich, P. Schupp, * Random quotients of the modular group are
rigid and essentially incompressible*, J. Reine Angew. Math. 628
(2009), 91-119.

I. Kapovich, P. Schupp, * On group-theoretic models of randomness and
genericity*, Groups Geom. Dyn. 2 (2008), no. 3, 383-404.

I. Kapovich, P. Schupp, * Genericity, the Arzhantseva-Ol'shanskii
method and the isomorphism problem for one-relator groups*, Math.
Ann. 331 (2005), no. 1, 1-19.

I. Kapovich, P. Schupp, * Delzant's T-invariant, Kolmogorov complexity
and one-relator groups*, Comment. Math. Helv. 80 (2005), no. 4,
911-933.

I. Kapovich, P. Schupp, * Bounded rank subgroups of Coxeter groups,
Artin groups and one-relator groups with torsion*, Proc. London Math.
Soc. (3) 88 (2004), no. 1, 89-113.

I. Kapovich, P. Schupp, V. Shpilrain, * Generic properties of
Whitehead's algorithm and isomorphism rigidity of random one-relator
groups*, Pacific J. Math. 223 (2006), no. 1, 113-140.

I. Kapovich, R. Weidmann, * Nielsen equivalence in a class of random
groups*, J. Topol. 9 (2016), no. 2, 502–534.

Y. Ollivier, * A January 2005 invitation to random groups*, Ensaios
Matemáticos, 10. Sociedade Brasileira de Matemática, Rio de Janeiro, 2005.
ii+100 pp.

M. Sapir, * Asymptotic invariants, complexity of groups and related
problems*, Bull. Math. Sci. 1 (2011), no. 2, 277–364.

[17] G.N. Arzhantseva and A.Yu.
Ol'shanskii, * Generality of the class of groups in which subgroups
with a lesser number of generators are free*,

Mathematical Notes, 59(3-4) (1996), 350-355. pdf

** 69 citations by **

Y. Antolín, L. Ciobanu, N. Viles, * On the asymptotics of visible
elements and homogeneous equations in surface groups*, Groups Geom.
Dyn. 6 (2012), no. 4, 619–638.

I. Babenko, S. Sabourau, * Minimal volume entropy of simplicial
complexes*, (2020), arXiv:2002.11069.

T. Bandman, Sh. Garion, B. Kunyavskiĭ, *Equations in simple matrix
groups: algebra, geometry, arithmetic, dynamics*, Cent. Eur. J. Math.
12 (2014), no. 2, 175–211.

T. Bandman, B. Kunyavskiĭ, *Criteria for equidistribution of solutions
of word equations on SL(2*, J. Algebra 382 (2013), 282–302.

F. Bassino, I. Kapovich, M. Lohrey, A. Miasnikov, C. Nicaud, A. Nikolaev,
I. Rivin, V. Shpilrain, A. Ushakov, P. Weil, * Complexity and
randomness in group theory: GAGTA book 1*, De Gruyter, 2020, xii+374
pp.

F. Bassino, A. Martino, C. Nicaud, P. Weil, * Random presentations and
random subgroups: a survey*, (2017), arXiv:1702.01942.

F. Bassino, A. Martino, C. Nicaud, E. Ventura, P. Weil, * Statistical
properties of subgroups of free groups*, Random Structures Algorithms
42 (2013), no. 3, 349–373.

F. Bassino, C. Nicaud, P. Weil, * On the genericity of Whitehead
minimality*, J. Group Theory 19 (2016), no. 1, 137–159.

F. Bassino, C. Nicaud, P. Weil, * Generic properties of subgroups of
free groups and finite presentations*, Algebra and Computer Science,
677, American Mathematical Society, pp.1-44, 2016. Contemporary
Mathematics.

F. Bassino, C. Nicaud, P. Weil, * Silhouettes and generic properties of
subgroups of the modular group*, (2020), arXiv:2011.09179.

G. Bergman, * On monoids, 2-firs, and semifirs*, Semigroup Forum 89
(2014), no. 2, 293–335.

A. Bishop, M. Ferov, * Density of metric small cancellation in finitely
presented groups*, J. Groups Complex. Cryptol. 12 (2020), no. 2,
Paper No. 1, 18 pp.

R. Brown, J. Nan, * Stabilizers of fixed point classes and Nielsen
numbers of n-valued maps*, Bull. Belg. Math. Soc. Simon Stevin 24
(2017), no. 4, 523–535.

I. Bumagin, * On small cancellation k-generated groups with
(k-1)-generated subgroups all free*, Internat. J. Algebra Comput. 11
(2001), no. 5, 507-524.

A. Carnevale, M. Cavaleri, * Partial word and equality problems and
Banach densities*, Adv. Math. 368 (2020), 107133, 16 pp.

Ch. Cashen, J. Manning, * Virtual geometricity is rare*, LMS J.
Comput. Math. 18 (2015), no. 1, 444–455.

M. Cavaleri, * Følner functions and the generic word problem for
finitely generated amenable groups*, J. Algebra 511 (2018), 388–404.

T. Ceccherini-Silberstein, A. Samet-Vaillant, * Asymptotic invariants
of finitely generated algebras. A generalization of Gromov's
quasi-isometric viewpoint*, Functional analysis. J. Math. Sci. (N.Y.)
156 (2009), no. 1, 56–108.

S. Cleary, M. Elder, A. Rechnitzer, J. Taback, * Random subgroups of
Thompson's group F*, Groups Geom. Dyn. 4 (2010), no. 1, 91–126.

P. Dani, I. Levcovitz, * Subgroups of right-angled Coxeter groups via
Stallings-like techniques*, (2019), arXiv:1908.09046.

E. Frenkel, A.G. Myasnikov, V.N. Remeslennikov, * Regular sets and
counting in free groups*, (2009), arXiv:0906.2850.

I. Gekhtman, S. Taylor, G. Tiozzo, * Counting loxodromics for
hyperbolic actions*, J. Topol. 11 (2018), no. 2, 379–419.

I. Gekhtman, S. Taylor, G. Tiozzo, * Counting problems in graph
products and relatively hyperbolic groups*, Israel J. Math. 237
(2020), no. 1, 311–371.

E. Ghys, * Random groups (following Misha Gromov, ...)*, Astérisque
No. 294 (2004), viii, 173-204.

R. Gilman, A. Miasnikov, D. Osin, * Exponentially generic subsets of
groups*, Illinois J. Math. 54 (2010), no. 1, 371–388.

R. Gilman, A. Myasnikov, V. Roman'kov, * Random equations in nilpotent
groups*, J. Algebra 352 (2012), 192–214.

N. Gupta, I. Kapovich, * The primitivity index function for a free
group, and untangling closed curves on hyperbolic surfaces. With an
appendix by Khalid Bou-Rabee*, Math. Proc. Cambridge Philos. Soc. 166
(2019), no. 1, 83–121.

L. Guyot, * Estimating Minkowski dimensions in the space of marked
groups*, Ann. Fac. Sci. Toulouse Math. (6) 16 (2007), no. 1, 107-124.

P. de la Harpe, * Uniform growth in groups of exponential growth*,
Geom. Dedicata 95 (2002), 1-17.

A. Juhász, * A Freiheitssatz for Whitehead graphs of one-relator groups
with small cancellation*, Comm. Algebra 37 (2009), no. 8, 2714–2741.

V. Kaimanovich, I. Kapovich, P. Schupp, * The subadditive ergodic
theorem and generic stretching factors for free group automorphisms*,
Israel J. Math. 157 (2007), 1-46.

I. Kapovich, * On mathematical contributions of Paul E. Schupp*,
Illinois J. Math. 54 (2010), no. 1, 1–9.

I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, * Average-case
complexity and decision problems in group theory*, Adv. Math. 190
(2005), no. 2, 343-359.

I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, * Generic-case
complexity, decision problems in group theory, and random walks*, J.
Algebra 264 (2003), no. 2, 665-694.

I. Kapovich, I. Rivin, P. Schupp, V. Shpilrain, * Densities in free
groups and Zk, visible points and test elements*, Math. Res. Lett. 14
(2007), no. 2, 263-284.

I. Kapovich, P. Schupp, * Random quotients of the modular group are
rigid and essentially incompressible*, J. Reine Angew. Math. 628
(2009), 91-119.

I. Kapovich, P. Schupp, * On group-theoretic models of randomness and
genericity*, Groups Geom. Dyn. 2 (2008), no. 3, 383-404.

I. Kapovich, P. Schupp, * Delzant's T-invariant, Kolmogorov complexity
and one-relator groups*, Comment. Math. Helv. 80 (2005), no. 4,
911-933.

I. Kapovich, P. Schupp, * Genericity, the Arzhantseva-Ol'shanskii
method and the isomorphism problem for one-relator groups*, Math.
Ann. 331 (2005), no. 1, 1-19.

I. Kapovich, P. Schupp, * Bounded rank subgroups of Coxeter groups,
Artin groups and one-relator groups with torsion*, Proc. London Math.
Soc. (3) 88 (2004), no. 1, 89-113.

I. Kapovich, P. Schupp, V. Shpilrain, * Generic properties of
Whitehead's algorithm and isomorphism rigidity of random one-relator
groups*, Pacific J. Math. 223 (2006), no. 1, 113-140.

I. Kapovich, R. Weidmann, * Kleinian groups and the rank problem*,
Geom. Topol. 9 (2005), 375-402.

I. Kapovich, R. Weidmann, * Freely indecomposable groups acting on
hyperbolic spaces, Internat*, J. Algebra Comput. 14 (2004), no. 2,
115-171.

I. Kapovich, R. Weidmann, * Nielsen equivalence in a class of random
groups*, J. Topol. 9 (2016), no. 2, 502–534.

O. Kharlampovich, A. Myasnikov, P. Weil, * Stallings graphs for
quasi-convex subgroups*, (2014), arXiv:1408.1917.

O. Kharlampovich, P. Weil, * On the generalized membership problem in
relatively hyperbolic groups*, Fields of logic and computation. III,
147–155, Lecture Notes in Comput. Sci., 12180, Springer, Cham, 2020.

S. Kim, Ch. Staecker, * Dynamics of random selfmaps of surfaces with
boundary*, Discrete Contin. Dyn. Syst. 34 (2014), no. 2, 599–611.

I. Kozakov, * Percolation and Ising model on graphs with tree-like
structure*, (2008), PhD thesis, Vanderbilt University.

Y. Liu, M. M. Wood, * The free group on n generators modulo n+u random
relations as n goes to infinity*, J. Reine Angew. Math. 762 (2020),
123–166.

L. Louder, H. Wilton, * Negative immersions for one-relator groups*,
(2018), arXiv:1803.02671.

J. Mackay, * Conformal dimension and random groups*, Geom. Funct.
Anal. 22 (2012), no. 1, 213–239.

J. Maher, A. Sisto, * Random subgroups of acylindrically hyperbolic
groups and hyperbolic embeddings*, Int. Math. Res. Not. IMRN 2019,
no. 13, 3941–3980.

A. Mann, * How groups grow*, London Mathematical Society Lecture
Note Series, 395. Cambridge University Press, Cambridge, 2012. x+199 pp.

S. Margolis, J. Meakin, Z. Sunik, * Distortion functions and the
membership problem for submonoids of groups and monoids*, Geometric
methods in group theory, 109-129, Contemp. Math., 372, Amer. Math. Soc.,
Providence, RI, 2005.

L. Markus-Epstein, * Stallings foldings and subgroups of amalgams of
finite groups*, Internat. J. Algebra Comput. 17 (2007), no. 8,
1493-1535.

A. Myasnikov, V. Shpilrain, A. Ushakov, * Group-based cryptography*,
Birkhäuser, 2008.

Y. Ollivier, * Sharp phase transition theorems for hyperbolicity*,
Geom. Funct. Anal. 14 (2004), no. 3, 595-679.

Y. Ollivier, * Critical densities for random quotients of hyperbolic
groups*, C. R. Math. Acad. Sci. Paris 336 (2003), no. 5, 391-394.

Y. Ollivier, * A January 2005 invitation to random groups*, Ensaios
Matemáticos, 10. Sociedade Brasileira de Matemática, Rio de Janeiro, 2005.
ii+100 pp.

M. Sapir, * Asymptotic invariants, complexity of groups and related
problems*, Bull. Math. Sci. 1 (2011), no. 2, 277–364.

P. Schupp, * Coxeter groups, 2-completion, perimeter reduction and
subgroup separability*, Geom. Dedicata 96 (2003), 179-198.

V. Shpilrain, * Average-case complexity of the Whitehead problem for a
free group*, (2021), arXiv:2105.01366.

I. Snopce, S. Tanushevski, * Asymptotic density of test elements in
free groups and surface groups*, Int. Math. Res. Not. IMRN 2017, no.
18, 5577–5590.

B. Solie, * Genericity of filling elements*, Internat. J. Algebra
Comput. 22 (2012), no. 2, 1250008, 10 pp.

Ch. Staecker, * Typical elements in free groups are in different
doubly-twisted conjugacy classes*, Topology Appl. 157 (2010), no.
10-11, 1736–1741.

M. Steenbock, * Rips-Segev torsion-free groups without the unique
product property*, J. Algebra 438 (2015), 337–378.

R. Weidmann, * On the rank of quotients of hyperbolic groups*, J.
Group Theory 16 (2013), no. 5, 651–665.

D. T. Wise, * Sectional curvature, compact cores, and local
quasiconvexity*, Geom. Funct. Anal. 14 (2004), no. 2, 433-468.

D. T. Wise, * An Invitation to Coherent Groups. What's Next?*,
edited by Dylan Thurston, Princeton: Princeton University Press, 2020, pp.
326-414.

[16] G.N. Arzhantseva, * Generic
properties of finitely presented groups*,

PhD thesis, Moscow Lomonosov State University, December 1998.

** Books (edited):**

[15] G.N. Arzhantseva, A.Valette (eds.), *
Limits of graphs in group theory and computer science, *,

Fundamental Sciences, EPFL Press, Lausanne, 2009, 305 pp.
book

[14] G.N. Arzhantseva, L. Bartholdi, J. Burillo, and E.
Ventura (eds.), * Geometric group theory, *,

Fundamental Sciences, EPFL Press, Lausanne, 2009, 305 pp.
book

** Submitted papers and preprints:**

[13] G.N. Arzhantseva, D. Kielak, T. de Laat, D. Sawicki, Origami expanders, arXiv:2112.11864. pdf

[12] G.N. Arzhantseva, D. Osajda, * Graphical
small cancellation groups with the Haagerup property*,
(2014). pdf

**14 citations by **

V. Alekseev, M. Finn-Sell, * Sofic boundaries of groups and coarse
geometry of sofic approximations*, (2016), arXiv.org:1608.02242.

P. Baum, E. Guentner, R. Willett, * Exactness and the Kadison-Kaplansky
conjecture, Operator algebras and their applications*, 1-33, Contemp.
Math., 671, Amer. Math. Soc., Providence, RI, 2016.

J. Deng, Q. Wang, G. Yu, * The coarse Baum-Connes conjecture for
certain extensions and relative expanders*, (2021), arXiv:2102.10617.

M. Finn-Sell, * Controlled analytic properties and the quantitive
Baum-Connes Conjecture*, (2019), arXiv:1908.02131.

D. Gruber, A. Sisto, * Infinitely presented graphical small
cancellation groups are acylindrically hyperbolic*, (2014),
arXiv:1411.7367.

S. Knudby, * On connected Lie groups and the approximation property
(2016)*, arXiv:1603.05518.

M. Mimura, * Amenability versus non-exactness of dense subgroups of a
compact group.* J. Lond. Math. Soc. (2) 100 (2019), no. 2, 592-622.

M. Mimura, H. Sako, * Group approximation in Cayley topology and coarse
geometry, Part I: Coarse embeddings of amenable groups*, Journal of
Topology and Analysis 13 (2021), no. 1, 1–47.

M. Mimura, H. Sako, * Group approximation in Cayley topology and coarse
geometry, Part II: Fibred coarse embeddings*, Anal. Geom. Metr.
Spaces 7 (2019), no. 1, 62-108.

D. Osajda, * Small cancellation labellings of some infinite graphs and
applications*, (2014), arXiv.org:1406.5015.

N. Ozawa, Y. Suzuki, * On characterizations of amenable C*-dynamical
systems and new examples*, (2020), arXiv:2011.03420.

D. Sawicki, * Warped cones over profinite completions*, J. Topol.
Anal. 10 (2018), no. 3, 563-584.

D. Sawicki, J. Wu, * Straightening warped cones*, Journal of
Topology and Analysis (2020), 1-25.

Q. Wang, Y. Zhang, * The coarse Novikov conjecture for extensions of
coarsely embeddable groups*, (2021), arXiv:2105.04753.

[11] G.N. Arzhantseva, C. Drutu, * Geometry of infinitely
presented small cancellation groups, Rapid Decay and
quasi-homomorphisms*, (2014). pdf

** 5 citations by **

M. Brandenbursky, S. Gal, J. Kędra, M. Marcinkowski, * The cancellation
norm and the geometry of bi-invariant word metrics*, Glasg. Math. J.
58 (2016), no. 1, 153–176.

I. Chatterji, * Introduction to the rapid decay property*, (2016),
arXiv:1604.06387.

D. Gruber, A. Sisto, * Infinitely presented graphical small
cancellation groups are acylindrically hyperbolic*, (2014),
arXiv:1408.4488

A. Martin, * Complexes of groups and geometric small cancellation over
graphs of groups*, (2013), arXiv:1306.6847v2.

M. Sapir, * The rapid decay property and centroids in groups*, J.
Topol. Anal. 7 (2015), no. 3, 513–541.

[10] G.N.
Arzhantseva and T. Delzant, * Examples of random groups*,
(2008).

first version (October 28, 2008), revised version (August 26, 2011).
pdf

** 74 citations by **

A. Bartels, W. Lueck, * The Borel conjecture for hyperbolic and
CAT(0)-groups*, Ann. of Math. (2) 175 (2012), no. 2, 631–689.

M. Bestvina, V. Guirardel, C. Horbez, * Boundary amenability of Out(FN)
*, (2017), arXiv:1705.07017.

P. Baum, * Dirac operator and K-theory for discrete groups. A
celebration of the mathematical legacy of Raoul Bott*, 97–107, CRM
Proc. Lecture Notes, 50, Amer. Math. Soc., Providence, RI, 2010.

P. Baum, E. Guentner, R. Willett, * Exactness and the Kadison-Kaplansky
conjecture, Operator algebras and their applications*, 1-33, Contemp.
Math., 671, Amer. Math. Soc., Providence, RI, 2016.

P. Baum, E. Guentner, R. Willett, * Expanders, exact crossed products,
and the Baum-Connes conjecture*, (2013), arXiv:1311.2343.

J. Brodzki, Ch. Cave, K. Li, * Exactness of locally compact groups*,
Adv. Math. 312 (2017), 209–233.

M. Cordes, D. Hume, * Stability and the Morse boundary*, J. Lond.
Math. Soc. (2) 95 (2017), no. 3, 963–988.

Y. de Cornulier, Y. Stalder, A. Valette, * Proper actions of wreath
products and generalizations*, Trans. Amer. Math. Soc. 364 (2012),
no. 6, 3159–3184.

R. Coulon, * Asphericity and small cancellation theory for rotation
families of groups*, Groups Geom. Dyn. 5 (2011), no. 4, 729–765.

R. Coulon, * Automorphismes extérieurs du groupe de Burnside libre*,
PhD thesis, University of Strasbourg, 2010.

R. Coulon, * On the geometry of Burnside quotients of torsion free
hyperbolic groups. Internat. J. Algebra Comput. 24 (2014)*, no. 3,
251–345.

R. Coulon, * Théorie de la petite simplification: une approche
géométrique [d'après F. Dahmani, V. Guirardel, D. Osin et S. Cantat, S.
Lamy]*, (French) [Small cancellation theory: a geometric approach
(after F. Dahmani, V. Guirardel, D. Osin, and S. Cantat, S. Lamy)]
Astérisque No. 380, Séminaire Bourbaki. Vol. 2014/2015 (2016), Exp. No.
1089, 1–33.

R. Coulon, D. Gruber, * Small cancellation theory over Burnside groups*,
(2017), arXiv:1705.09651.

R. Coulon, M. Hull, C. Kent, * A Cartan-Hadamard type result for
relatively hyperbolic groups*, Geom. Dedicata 180 (2016), 339–371.

F. Dahmani, V. Guirardel, D. Osin, * Hyperbolically embedded subgroups
and rotating families in groups acting on hyperbolic spaces*, Mem.
Amer. Math. Soc. 245 (2017), no. 1156, v+152 pp.

T. Delabie, A. Khukhro, * Box spaces of the free group that neither
contain expanders nor embed into a Hilbert space*. Advances in
Mathematics 336 (2018), 70-96.

T. Delabie, M. Tointon, * The asymptotic dimension of box spaces of
virtually nilpotent groups*, Discrete Math. 341 (2018), no. 4,
1036–1040.

T. Deprez, * Ozawa's class S for locally compact groups and unique
prime factorization*, (2019), arXiv:1904.02090.

A. Dranishnikov, M. Zarichnyi, * Asymptotic dimension, decomposition
complexity, and Haver's property C*, Topology Appl. 169 (2014),
99–107.

C. Druţu, M. Kapovich, * Geometric group theory*, With an appendix
by Bogdan Nica. American Mathematical Society Colloquium Publications, 63.
American Mathematical Society, Providence, RI, 2018. xx+819 pp.

A. Eskenazis, * Geometric inequalities and advances in the Ribe program*,
PhD thesis, 2019, Princeton University.

A. Eskenazis, M. Mendel, A. Naor, * Nonpositive curvature is not
coarsely universal*, Invent. Math. 217 (2019), no. 3, 833-886.

M. Finn-Sell, * Almost quasi-isometries and more non-C*-exact groups*,
Math. Proc. Cambridge Philos. Soc. 162 (2017), no. 3, 393–403.

M. Finn-Sell, * Controlled analytic properties and the quantitive
Baum-Connes Conjecture*, (2019), arXiv:1908.02131.

M. Finn-Sell, * On the Baum-Connes conjecture for Gromov monster groups*,
(2014), arXiv:1401.6841.

M. Gerasimova, D. Gruber, N. Monod, A. Thom, * Asymptotics of Cheeger
constants and unitarisability of groups*, (2018), arXiv:1801.09600.

M. P. Gomez Aparicio, P. Julg, A. Valette, * The Baum–Connes
conjecture: an extended survey*, In Advances in Noncommutative
Geometry (pp. 127-244), 2019, Springer, Cham.

D. Gruber, * Infinitely presented C(6)-groups are SQ-universal*, J.
Lond. Math. Soc. (2) 92 (2015), no. 1, 178–201.

D. Gruber, * Groups with graphical C(6) and C(7) small cancellation
presentations*, Trans. Amer. Math. Soc. 367 (2015), no. 3, 2051–2078.

D. Gruber, A. Sisto, * Infinitely presented graphical small
cancellation groups are acylindrically hyperbolic *, Ann. Inst.
Fourier (Grenoble) 68 (2018), no. 6, 2501–2552.

D. Gruber, A. Sisto, * Divergence and quasi-isometry classes of random
Gromov's monsters*, (2018), arXiv:1805.04039.

D. Gruber, A. Sisto, R. Tessera, * Random Gromov's monsters do not act
non-elementarily on hyperbolic spaces*, Proc. Amer. Math. Soc. 148
(2020), no. 7, 2773–2782.

E. Guentner, R. Tessera, G. Yu, * A notion of geometric complexity and
its application to topological rigidity*, arxiv:1008.0884v1.

E. Guentner, R. Tessera, G. Yu,* Discrete groups with finite
decomposition complexity*, Groups Geom. Dyn. 7 (2013), no. 2,
377–402.

V. Guirardel, * Geometric small cancellation*, Geometric group
theory, 55–90, IAS/Park City Math. Ser., 21, Amer. Math. Soc., Providence,
RI, 2014.

S. Han, * Relative hyperbolicity of graphical small cancellation groups
*, (2020), arXiv:2010.13528.

D. Hume,* Direct embeddings of relatively hyperbolic groups with optimal
ℓp compression exponent*, J. Reine Angew. Math. 703 (2015), 147–172.

D. Hume, * Separation profiles, coarse embeddability and inner
expansion*, (2014), arXiv:arXiv:1410.0246v1.

C. Horbez, J. Huang, * Boundary amenability and measure equivalence
rigidity among two-dimensional Artin groups of hyperbolic type*,
(2020), arXiv:2004.09325.

H. Izeki, T. Kondo, Sh. Nayatani, * N-step energy of maps and the
fixed-point property of random groups*, Groups Geom. Dyn. 6 (2012),
no. 4, 701–736.

R. Kasilingam, * Topological rigidity problems*, (2015),
arXiv:1510.04139.

A. Khukhro, * Espaces et groupes non exacts admettant un plongement
grossier dans un espace de Hilbert*, Séminaire Bourbaki 71e année,
2018-2019, no. 1154.

M. Kotowski, * Gromov's random group*, (2013), notes, https://www.mimuw.edu.pl/~mk249019/notes-01-03-2013.pdf.

V. Lafforgue, * Conjecture de Baum-Connes*, théorie de Fonataine en
caractéristique p, et programme de Langlands géométriques, (2009),
Habilitation thesis, University of Paris 7.

W. Lueck, * Survey on aspherical manifolds*, European Congress of
Mathematics, 53–82, Eur. Math. Soc., Zürich, 2010.

W. Lueck, * Aspherical manifolds*, Bulletin of the Manifold Atlas
2012, 1-17.

W. Lueck, * Some open problems about aspherical closed manifolds*,
(2014) In: Ancona V., Strickland E. (eds) Trends in Contemporary
Mathematics. Springer INdAM Series, vol 8. Springer, Cham.

W. Lueck, * K- and L-theory of group rings*, (2010),
arXiv:1003.5002v1.

W. Lueck, * Isomorphism conjectures in K- and L-theory*, 2021,
http://www.him.uni-bonn.de/lueck/data/ic.pdf.

M. Mimura, * Amenability versus non-exactness of dense subgroups of a
compact group.* J. Lond. Math. Soc. (2) 100 (2019), no. 2, 592-622.

M. Mimura, H. Sako,

A. Naor, L. Silberman, * Poincaré inequalities, embeddings, and wild
groups*, Compos. Math. 147 (2011), no. 5, 1546–1572.

S. Nayatani, * Fixed‐point property for affine actions on a Hilbert
space*, RIMS Kôkyûroku Bessatsu B66 (2017), 115−131.

P. Nowak, G. Yu,* Large-Scale geometry*, (2010), EMS publishing
house, to appear. http://www.math.tamu.edu/~pnowak/book_etb/book_etb.pdf.

P. Nowak, * Group actions on Banach spaces*, Handbook of group
actions. Vol. II, 121–149, Adv. Lect. Math. (ALM), 32, Int. Press,
Somerville, MA, 2015.

Y. Ollivier, * A January 2005 invitation to random groups*, Ensaios
Matemáticos [Mathematical Surveys], 10. Sociedade Brasileira de
Matemática, Rio de Janeiro, 2005. ii+100 pp.

D. Osajda, * Small cancellation labellings of some infinite graphs and
applications*, Acta Math. 225 (2020), no. 1, 159-191.

G. Pisier, * Interpolation and Fatou-Zygmund property for completely
Sidon subsets of discrete groups (New title: Completely Sidon sets in
discrete groups)*, (2017), arXiv:1706.03844.

G. Pisier, * Tensor products of C*-algebras and operator spaces*,
London Mathematical Society student texts 96, Cambridge, New York,
Cambridge University Press, 2020, x+484 pp.

M. Puschnigg, * The Baum-Connes conjecture with coefficients for
word-hyperbolic groups*, (after Vincent Lafforgue). Astérisque No.
361 (2014), Exp. No. 1062, vii, 115–148.

M. Sapir, * A Higman embedding preserving asphericity*, J. Amer.
Math. Soc. 27 (2014), no. 1, 1–42.

M. Sapir, * Aspherical groups and manifolds with extreme properties*,
(2011), arXiv:1103.3873v3.

M. Sapir, * Asymptotic invariants, complexity of groups and related
problems*, Bull. Math. Sci. 1 (2011), no. 2, 277–364.

D. Sawicki, J. Wu, * Straightening warped cones*, (2017),
arXiv:1705.06725.

J. Špakula, R. Willett,* On rigidity of Roe algebras*, Adv. Math. 249
(2013), 289–310.

F. Vigolo, * Geometry of actions, expanders and warped cones*, PhD
thesis, 2018, University of Oxford.

Sh. Weinberger, G. Yu, * Finite part of operator K-theory for groups
finitely embeddable into Hilbert space and the degree of nonrigidity of
manifolds*, Geom. Topol. 19 (2015), no. 5, 2767–2799.

S. White, R. Willett, * Cartan subalgebras in uniform Roe algebras*,
Groups Geom. Dyn. 14 (2020), no. 3, 949–989.

R. Willett, G. Yu, * Higher index theory for certain expanders and
Gromov monster groups II*, Adv. Math. 229 (2012), no. 3, 1762–1803.

R. Willett, G. Yu, * Higher index theory for certain expanders and
Gromov monster groups I*, Adv. Math. 229 (2012), no. 3, 1380–1416.

R. Willett, G. Yu, * Higher index theory*, (2019),
https://math.hawaii.edu/~rufus/Skeleton.pdf.

R. Willett, * Property A and graphs with large girth*, J. Topol.
Anal. 3 (2011), no. 3, 377–384.

Z. Xie, G. Yu, * Higher invariants in noncommutative geometry*, In:
Chamseddine A., Consani C., Higson N., Khalkhali M., Moscovici H., Yu G.
(eds) Advances in Noncommutative Geometry, 2019, Springer, Cham.

G. Yu, * The Novikov conjecture*, Russ. Math. Surv 74 (2019), no. 3,
525–541.

[9] G.N. Arzhantseva, P.-A. Cherix, *
Quantifying metric approximations of discrete groups*,

preprint, University of Geneva, (2008), revised version (2020),
submitted. pdf

** 4 citations by **

H. Bradford, * Quantifying local embeddings into finite groups*,
(2021), arXiv:2104.07111.

H. Bradford, D. Dona, * Topological full groups of minimal subshifts
and quantifying local embeddings into finite groups*, (2021),
arXiv:2106.09145.

F. Fournier-Facio, * Ultrametric analogues of Ulam stability of groups
*, (2021), arXiv:2105.00516.

A. Ivanov, * Sofic profiles of S(ω) and computability*, Arch. Math.
Logic 60 (2021), no. 3-4, 477–494.

[8] G.N. Arzhantseva, * An algorithm
detecting Dehn presentations*,

preprint, University of Geneva, (2000). pdf

** 3 citations by **

A. Darbinyan, * The word and conjugacy problems in lacunary hyperbolic
groups*, (2017), arXiv:1708.04591.

V. Diekert, A. Duncan, A. Myasnikov, Geodesic rewriting systems and
pregroups, (2009), arXiv.org:0906.2223.

O. Kharlampovich, A. Myasnikov, P. Weil, Stallings graphs for quasi-convex
subgroups (2014), arXiv:1408.1917.

** Papers in Theoretical Computer Science/Applied
mathematics (refereed):**

[7] G.N. Arzhantseva, J. Díaz, J. Petit,
J.D.P. Rolim, and M. Serna, * Broadcasting on networks of sensors
communicating through directional antennas*,

Ambient Intelligence Computing, 1-12, Proceedings, CTI Press and
Ellinika Grammata, 2003. pdf

[6] G.N. Arzhantseva and J.D.P. Rolim, *
Considerations for a geometric model of the web*,

Approximation and Randomization Algorithms in Communication Networks,
Rome, 2002, 1-11, Proceedings, Carleton Scientific.

[5] G.N. Arzhantseva and J.D.P. Rolim,
* Computability and Complexity*,

e-learning theoretical course of the
Virtual Logic Laboratory (a project of the Swiss
Virtual Campus), 90 pp. (electronic tutorial)

** Short communications: **

[4] G. Arzhantseva, A. Thom, A.
Valette, * Finite-dimensional approximations of discrete
groups,*,

Oberwolfach Rep., 8(2) (2011), 1429-1467.
pdf

[3] G. Arzhantseva, * Uniform
embeddings of groups into a Hilbert space,*,

in I. Hambleton, E. Pedersen, A. Ranicki, H. Reich (eds.),
Manifold perspectives, Oberwolfach Rep. 6(2) (2009), 1527-1529.
pdf

[2] G. Arzhantseva, * The
uniform Kazhdan property for SLn(Z), n>3,*,

l'Enseignement Mathématique 54(2) (2008), 12.

[1] G. Arzhantseva, * The
entropy of a group endomorphismce,*,

in G. Knieper, L. Polterovich, L. Potyagailo (eds.),
Geometric group theory, hyperbolic dynamics and symplectic
geometry, embeddings of groups into a Hilbert space,
Oberwolfach Rep. 33 (2006), 2044-2045.
book

** Lecture notes:**

G.N. Arzhantseva and M. Lustig, A first course in
geometric group theory, graduate textbook project.

G.N. Arzhantseva, Geometry of small cancellation and
Burnside factors, lecture notes of the Borel seminar
minicourse.

G.N. Arzhantseva, Infinite groups: Growth and Isoperimetry,
lecture notes, the IIIe Cycle Romand de mathématiques.

** Conference announcements:**

G.N. Arzhantseva, * Genericity of Howson's property of
finitely presented groups*,

International Algebraic Conference dedicated to the memory
of D.K. Faddeev, Saint-Petersburg, Russia, 24-30 June, 1997.
Abstracts, 158-159.

G.N. Arzhantseva, * Generic classes of finitely
presented groups*,

International Algebraic Conference dedicated to the memory
of D.K. Faddeev, Saint-Petersburg, Russia, 24-30 June, 1997.
Abstracts, 158-159.

G.N. Arzhantseva, * Generic classes of finitely
presented groups*,

International Conference "Mathematics. Modeling. Ecology"
Volgograd, Russia, 27-31 May, 1996. Abstracts, p.23.